+ All Categories
Home > Documents > Design and safety approach of HTGRs and safety approach of HTGRs ... Serpong, Indonesia, 19-23...

Design and safety approach of HTGRs and safety approach of HTGRs ... Serpong, Indonesia, 19-23...

Date post: 16-Apr-2018
Category:
Upload: doandiep
View: 219 times
Download: 2 times
Share this document with a friend
91
Design and safety approach of HTGRs Jim C. Kuijper IAEA Training Course on High-Temperature Gas-Cooled Reactor Technology Serpong, Indonesia, 19-23 October 2015
Transcript

Design and safety approach of HTGRs

Jim C. Kuijper

IAEA Training Course on High-Temperature

Gas-Cooled Reactor Technology

Serpong, Indonesia, 19-23 October 2015

Introduction & outline (1)

Approach ::: Philosophy ::: Background

Context - Basic HT(G)R concepts

Some history

Origin of design criteria o Safety constraints, limits o Application & performance

Specific characteristics of HTGR systems (focus: reactor…) o Reactor physics (neutronics) o Material properties o Thermal hydraulics & heat transfer

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 2

Introduction & outline (2)

HTGR core design characteristics o Core shape and dimensions o Fuel selection and (re-) load strategy

Concluding remarks…

Presentation is based on the chapter “(V)HTR in detail – Design & safety approach” of the JRC-IET book on Generation IV systems (to be published December 2015?)

State-of-the-art ~December 2014

With special thanks to the originators of the illustrations and other info, in particular to Prof.dr.ir. Jan-Leen Kloosterman (Delft University of Technology, NL) and Mr. Xavier Raepsaet (CEA Saclay, France)

For further (detailed/background) information, see the [References]

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 3

Context (1)

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 4

Context (2)

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 5

Context (3)

(Very) High Temperature Gas-Cooled Reactor (Gen III+, IV)

(TRISO) coated particle fuel (He) gas-cooled Graphite moderator/reflector Epi-/thermal spectrum Pebble-bed and prismatic Influence of design choices on behaviour Some details of (V)HT(G)R (reactor) physics & thermal hydraulics HGTR fuel cycle – flexibility (other presentation) Not about: Calculation/analysis methods (other presentations)

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 6

Basic HTGR concepts

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 7

Pebble-bed fuel

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 8

(J.L. Kloosterman, RAPHAEL Eurocourse, March 2007)

“Prismatic” fuel

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 9

(W. Bernnat, RAPHAEL Eurocourse, March 2007)

Some history

Early gas-cooled reactors

HT(G)R plants constructed and operated

Former HGTR designs

“Current”HTGR designs

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 10

Early gas-cooled reactors Name or acronym Oak Ridge Graphite

Reactor Windscale piles P2 Magnox AGR Tokai-1

Magnox

Location Oak Ridge, TN USA

Sellafield UK

Saclay France

UK UK Tokai Japan

Operation years 1943 - 1963 1950 1951 1956 - present 1962 - present

1966 - 1998

Fuel U metal cyl. Al cladding

Nat. U Nat. U metal Al cladding

Nat. U Nat. U Nat. U

Moderator Graphite Graphite Heavy water Graphite Graphite Graphite

Coolant Air air N2 (initially) CO2 (later)

CO2 CO2 CO2

Power [MWth/MWe]

1 – 4/- - 2 / - - / 166 - / 166

Reference [R.1.7] [R.1.8] [R.1.9]

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 11

HTGR plants constructed & operated Name/ Acronym

DRAGON Peach Bottom

Fort St. Vrain

AVR THTR HTTR HTR-10

Location UK USA USA Germany Germany Japan China

Operation Years

1964 – 1975

1966 - 1974

1976 – 1989

1967 - 1988

1985 - 1991 1999 - present

2000 – present

Fuel element Cylinder Cylinder Cylinder in hex. block

Sphere Sphere Cylinder in hex. block

Sphere

Fuel coating TRISO BISO TRISO BISO BISO TRISO TRISO

Fuel kernel Carbide Carbide Carbide Oxide Oxide Oxide Oxide

Enrichment [%] 90 93 17

Power [MWth/MWe]

20 / - 115 / 40 842 / 330 46 / 15 750 / 300 30 / - 10 / -

Tin / Tout [oC] 350 / 750 377 / 750 400 / 775 270 / 950 270 / 750 395 / 950 300 / 700

He pressure [bar]

20 25 49 11 40 40 30

Power density [W/m3]

14 8.3 6.3 2.6 6.0 2.5 2.0

Reference [R.3.4] [R.3.4] [R.3.4] [R.3.4] [R.3.4] [R.3.4] [R.3.4]

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 12

HTGR designs – Some basic data

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 13

[H. Nickel, HTR/ECS, 2002]

Former HTGR designs …

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 14

[W. von Lensa, HTR/ECS, 2002]

USA – From prototype to commercial design

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 15

[W. von Lensa, HTR/ECS, 2002]

“Current” designs Name/ Acronym

MHTGR GT-MHR HTR-Modul PBMR HTR-PM

Location USA USA/Russia Germany South Africa China

Fuel element Compact in hex. block

Compact in hex. block

Sphere Sphere Sphere

Fuel coating TRISO TRISO TRISO TRISO TRISO

Fuel kernel UCO/Th-oxide UCO/MOX Oxide Oxide Oxide

Enrichment [%] 20 19.8 7.8 4.2 – 9.6 8.5

Power [MWth/MWe]

4x350/508 600 200 400/165 2 x 250/211

Tin / Tout [oC] 259 / 687 491 / 850 250 / 700 500 / 900 250 / 750

He pressure [bar]

63.7 70.7 60 90 70

Power density [MW/m3]

5.9 6.6 3.0 4.8 3.2

Remarks Preliminary design completed / Licensing process not finalised

Licensed Project terminated in 2009

Under construction

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 16

Observations

Great variety in parameters (dimensions, power, He pressure, etc.)

Trend towards higher coolant outlet temperature (HTGR VHTR)

High degree of “passive safety” possible (if sufficiently low power density…)

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 17

Origin of design criteria

INPRO (IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles) [R.2.1]

Safety Constraints / limitations

Application & performance

Design...

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 18

INPRO (1)

Comprehensive methodology for the assessment of safety and performance of an innovative reactor (so the HTGR/VHTR)

INPRO Volumes 1-9 [R.2.1]: 1. Overview of the methodology

2. Economics

3. Infrastructure

4. Waste management

5. Proliferation resistance

6. Physical protection

7. Environment

8. Safety of nuclear reactors

9. Safety of nuclear fuel cycle facilities

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 19

INPRO (2)

Evaluation of innovative nuclear system designs: o Basic Principles

o User Requirements (safety, performance, ...)

o Criteria (= Indicator + Acceptance Limit)

Only a (very) small subset hereof in this presentation...

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 20

Safety (1)

Many ways to define nuclear safety (IAEA, USNRC, ... [R.2.2])

INPRO volume 8 (reactors) and volume 9 (fuel cycle facilities)

Practical definition:

A nuclear reactor (system) is classified as “safe” if there is no health hazard to the public or personnel under all conceivable normal (operation, anticipated deviations) and off-normal (DBA, BDBA) sitiations.

Include “almost inconceivable” situations (“stress test”)???

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 21

Safety (2)

This implies:

No need for off-site evacuation or taking shelter near the site boundary

No need for moving mechanical components to ensure this

Exposure to personnel significantly lower than current internationally accepted values

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 22

Safety (3)

Safety design philosophy for a nuclear reactor: criteria at 3 distinct levels:

Top level criteria: o National regulatory body International/IAEA standards

o ALARA [R.2.3]

Basic safety functions: o Control of reactivity/criticality (ensure subcriticality)

o Removal of (decay) heat from (the fuel in) the core (temperature limit)

o Confinement of radioactive material

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 23

Safety (4)

Defence-in-depth principle to prevent, mitigate and control any off-normal event. The IAEA formulation distinguishes 5 levels of defence: o Prevent deviations from normal operation

o Detect and control deviations

o Prevent core damage by incorporating safety features/systems

o Mitigate consequences (on-site and off-site)

o Mitigate radiological consequence (on-site and off-site)

Prevention and mitigation systems.

To be applied to all safety-related activities (organisational/behavioural/design) and all (reactor) system states (full power/low power/various shutdown states).

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 24

Safety (5)

Alternative formulation of Defense-in-depth (USNRC [R.2.4][R.2.4a]):

“…, the philosophy ensures that safety will not be wholly dependent on any single element of the design, construction, maintenance, or operation of a nuclear facility”.

Both formulations share the notion of multiple, independent layers of defence or multiple barriers of protection against health hazard to public and personnel.

HTGR/VHTR can incorporate these barriers in a passive manner.

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 25

Application & performance

Envisaged application & required performance (technical/economic), mostly connected to the possibility of high coolant outlet temperature:

Electricity and (process) heat

High fuel temperature basic design choices: o Refractory materials in the core: graphite o Use of (inert) gas as coolant: He, CO2, H2

o Coated particle ful (SiC, PyC)

Other requirements, e.g. high degree of sustainability:

In GIF usually attribited to fast spectrum systems (“closing the fuel cycle”) [R.2.5]

HTGR/VHTR may also provide a high degree of sustainability [R.2.6][R.2.6a][R.2.7]

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 26

Design (1)

Several definitions of “design” possible... (see e.g. http://www.oxforddictionaries.com)

For a reactor system like a HTGR, “design” refers to the choice of materials, dimensions, and arrangement of structures and components and the choice of relevant (design) parameters (e.g. nominal power level, temperature, pressure, but also dimensions and dimensional changes) during normal operation and off-normal states.

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 27

Design (2)

Application to structures and components at different levels:

Reactor system and structures’ dimensions, components and materials more or less fixed

Fuel elements (materials and dimensions) some details may change during the lifetime of the reactor

Core layout and loading scheme variation from cycle to cycle (or continuous...)

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 28

Origin of design criteria – overview

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 29

Application – Performance, e.g.:

Electricity production

CHP

District heating

H2-production (process heat in general) [R.3.3]

Pu/MA utilization/incineration [R.2.6][R.2.6.a][R.2.7]

Fuel utilisation – Waste production (sustainability), e.g.:

High burn-up

High conversion ratio

Reduction of Pu and/or MA [R.2.6][R.2.6a]

Minimise production of waste

Direct disposal

Operation, e.g.:

Cycle length

Maintenance

Direct/indirect cycle

Plant life

Multiple modules

Safety – inherently safe design (?)

Normal operation – Incidents/Accidents

Excess reactivity

Control rod worth – Shutdown margin

Xe-effect / Xe-oscillations

(Negative) temperature reactivity coefficient

Max. (fuel) temperature

Max. power per fuel element (particle, pebble, compact)

Fast fluence in fuel and core internals

Max. burn-up

Decay heat removal (passive)

???

Constraints (limits)

Reactor physics/neutronics

Thermal hydraulics

Material science

???

Design criterion ≈ Range of permissible parameter values

Specific characteristics of HTGR

Characteristics and associated constraints/limits:

Reactor physics/neutronics: mutual interaction of the materials in the reactor with the neutron field

Material properties

Thermal hydraulics and heat transfer

...

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 30

Reactor physics/neutronics (1)

Neutronic properties of HTGR materials – which materials?

Interaction of materials with neutron field: o several reactions (fission, capture, scatter, (n,2n), (n,3n),…) possible per

nuclide o σ(E), η(E),... o material compositions/distribution changing with time

Radioactive decay

Moderator-to-fuel ratio (M/F ≈ C/U) => k

Material (nuclide) distribution over space → o Neutron distribution over energy (spectrum) o Neutron distribution over space => power distribution => temperature

distribution, decay heat distribution

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 31

Reactor physics/neutronics (2)

Enrichment ε, burn-up, conversion ratio, control rod worth,…

Resonance self-shielding – Doppler effect – CP dimensions

Neutron leakage o H/D ratio (cylindrical core)

o Neutron streaming

o Minimum neutron leakage for cylindrical core: H/D ≈ 0.924

keff ≥ 1 (uncontrolled...)

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 32

Materials in HTGR

Fissile: U235, U233, Pu239, Pu241 (usually oxide or (oxy-) carbide)

Fertile: U238, Th232 (usually oxide)

Moderator: graphite (C12)

Other materials in the fuel (e.g. inert matrix material)

Structural material: graphite, SiC

Control elements: steel, B4C

Fission products: Xe135, Sm149, Mo95, Cs133, Cs135, Tc99, Ag110, Nd145, Xe131, Rh103, Pm147, Eu153,…

Heavy isotopes: Pa233, U234, U236, Np239, Pu240, Pu242, Am…, Cm…, …

Coolant: He (“neutronically inert”)

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 33

Neutron flux spectral distribution (1) Higher thermal and epithermal flux than in LWR

Dependent upon HM load, enrichment and burn-up

(W. Scherer, HTR/ECS, 2002)

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 34

Neutron flux spectral distribution (2)

Dependent upon HM load, enrichment and burn-up [R.1.6]

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 35

Neutron flux spectral distribution (3)

Dependent upon HM load, enrichment and burn-up [R.1.6]

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 36

Controllability

Position of control structures (elements, absorber spheres,[R.1.5]) must be such that: o Sufficient subcriticality can be ensured at all times, even if the most reactive

element can not be inserted (“shutdown margin”).

o Sufficient margin for altering the reactivity (“control rod worth”) to counter changes in reactivity during operation

No real problem for prismatic block type HTGR

Limit on radial dimensions of core cavity for cylindrical pebble bed HTGR (on the other hand: THTR...)

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 37

He coolant

Helium (mostly He4) is transparent to neutrons: ”No” change in reactivity from change in He temparature or density

DLOFC is almost purely thermal-hydraulic issue

No (positive) void coefficient No limits on the use of Pu fuel

Functions of coolant (He) and moderator (graphite, C12) not combined: No correlation between cooling geometry and M/F-ratio High degree of flexibility w.r.t. fuel management while retaining excellent safety characteristics

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 38

M/F – Moderator-to-fuel ratio

M/F ≈ C/U (or C/HM or “light atoms”/HM)

Range: 500 to 3000

Under moderated?

[R.1.6]

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 39

Coated particle size

Fuel in kernel of TRISO (or BISO) particle

Resonance self-shielding (hence resonance escape probability) depends on kernel and CP size

Double heterogeneity

[R.1.6]

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 40

Coated particle size (2)

Harder spectrum and higher conversion for smaller particles

For smaller particles curve tend to the one for the homogeneous case

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 41

Migration length – Prompt fission chain

“Neutronic” dimensions of the core: Compare actual dimensions with characteristic distances of neutronics (migration length, prompt fission chain length) o Migration length M o Prompt fission chain length:

(J. Keijzer, PhD thesis, Delft, 1996 [R.3.1a])

Prismatic type: M ~ 22 cm; lPFC = 668 cm

Pebble-bed type: M ~ 32 cm; lPFC = 972 cm

If characteristic dimension of the core > prompt fission chain length, axial Xe-oscillations may occur

Core height H limited to approx. 10 m

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 42

2

PFC

M6l

Axial Xe-oscillations (1)

Xe-effect

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 43

Axial Xe-oscillations (2)

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 44

Temperature influence on reactivity

Mainly 3 temperature coefficients of reactivity:

W.r.t. temperature of the fuel (CP) (Doppler effect)

W.r.t. temperature of the moderator (in the core)

W.r.t. temperature of the reflector

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 45

Doppler effect vs. burn up

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 46

Graphite temperature effect

Moderator and reflector

Shift of Maxwellian peak to higher energy if temperature increases

Lower effective cross section (reaction rate) for “1/v” cross sections (thermal neutron energies)

Possibly higher effective cross section (reaction rate) for “non 1/v” or resonance cross sections (intermediate neutron energies)

Net effect may be positive or negative, depending on (local) circumstances (difference between reflector and moderator)

Example: equilibrium state (time-independent nuclide distribution)

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 47

Temperature coefficients of reactivity (1)

PBMR-400 in equilibrium state (U-based fuel)

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 48

Temperature coefficients of reactivity (2)

PBMR-400 in equilibrium state (Pu-based fuel)

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 49

Material properties

Radiation damage o Fuel (coatings) o In-core structures (e.g. reflector) o Fast fluence (E > 0.1 MeV)

(Chemical) compatibility of coolant and other materials – not a big problem for He

Thermal stress & Chemical interactions with(in) CPs o Limit retention capability of FP and actinides o Max. acceptable release (R/B ratios) limit on burn-up

Limit on coated particle temperature (1600 oC/1250 oC)

Limits on material temperatures in general → limit on coolant output temperature

Wigner effect in graphite → minimum coolant entrance temperature of 200 oC

Many (other) material properties of materials used in HTGR components, with influence on performance and safety. Should be properly addressed in the design process

See e.g. [R.3.3] and [R.3.4] for applicable codes and standards

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 50

Fuel at very high burn up

U-based fuel: 150 MWd/kg

Pu-based fuel: > 700 MWd/kg achieved in Dragon and Peach Bottom unit 1:

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 51

Dimensional changes in graphite

30 years of irradiation at fast flux of 3x1013 cm-2s-1 (above 0.1 MeV) gives fast fluence of 2.5x1022 cm-2

Dimensional (and other) changes in graphite by radiation damage [R.1.5]

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 52

Failure of coated particles – Fast fluence

Fast fluence < 5x1021 cm-2 (TRISO) (less restrictive nowadays?)

For CP failure mechanisms, see [R.3.1][R.3.5][[R.3.6][R.2.9]

[R.1.5]

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 53

Failure of coated particles – Temperature (1)

> 1250 oC fission product attach on SiC layer

> 1600 oC decomposition effects and porosity in SiC layer

> 2000 oC thermal decomposition of SiC dominant mechanism

See [R.3.1][R.2.9]

Maximum design base event fuel temperature: 1600 oC

Maximum (peak) fuel temperature during normal operation: 1250 oC

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 54

Failure of coated particles – Temperature (2)

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 55

[R.3.7]

Thermal hydraulics

Transfer heat from fuel to a useful purpose (Tout?)

Heat conduction, convection and radiation [R.3.15]

Coolant properties (thermodynamic, fluid dynamic): He (other possibilities: CO2/H2)[R.1.4]

Cooling geometry o Pebble bed: fixed coolant volume fraction (CVF) o Prismatic block with coolant channels: CVF somewhat more flexible in the design phase

Coolant flow o Mass flow o Flow direction (upward/downward through the core) o Core pressure drop (← core dimensions, friction,…) o ∆p ~ H3

Passive (decay) heat removal capabilities (see [R.3.9][R.3.10][R.3.11][R.3.12][R.3.13] for background info on decay heat) o Core geometry and dimensions, H/D-ratio, friction, … o Free convection

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 56

Pressure drop over the core

Pressure loss Δp over a pebble-bed core as function of core height (He-pressure is 40 bar) [R.1.5]

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 57

Coolant volume fraction in core

CVF in pebble bed is more or less fixed (~0.39)

Larger range of possible CVFs in prismatic type (coolant channels in blocks), also < 0.39 → higher fuel density possible → higher power density possible

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 58

Fluctuation of packing density (1)

Fluctuation of packing density has no significant influence on flux distribution or keff [R.3.17][R.3.18][R.3.19]

Stochastic nature of pebble bed has considerable influence on power- and temperature distribution [R.3.17][R.3.18][R.3.19]

Should be taken into account in the design extra margings for critical design parameters

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 59

Fluctuation of packing density (2)

Axial packing fraction profile: measurement and simulation [R.3.17]

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 60

HTGR core design characteristics

Core shape/dimensions and control structure positions – More or less fixed when design has been fixed

Fuel design and core (re-) loading, possibly including burnable poison – More or less flexible, even for a reactor already in operation.

Detailed design is a complex activity entailing many (other, even important) aspects well beyond this presentation, e.g. issues connected to the production, activation, transport, deposition and resuspension of (graphite) dust, especially in the case of pebble-bed HTGRs [R.4.3].

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 61

Core shape and dimensions

Pebble-bed or prismatic – Coolant Volume Fraction

Cylindrical or annular core

Dimensions o Limits on core height H:

Xe-effect (oscillations) Coolant pressure drop over core ∆p ~ pumping power ~ H3

pumping power < ~5 % of electrical output ∆p < ~ 0.8 bar

o Limits on core diameter D: Control rod worth → annular core (control elements in central column) Passive heat removal → distance to core surface not too large

H/D-ratio o Minimum neutron leakage: H/D ≈ 0.9

Fixed or dynamic inner column

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 62

Control rods – pebble bed

Control rods (usually) in reflector

Worth dependent upon thermal flux, hence reflector graphite temperature

Control rods in pebble bed not impossible (THTR), but not necessary

Reactivity requirements (feasible if cylindrical core radius not too large) o Control and hot shut down: ~4%

o Cold shut down: ~10%

(W. Scherer, HTR/ECS, 2002)

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 63

Fuel selection and (re-) load strategy

HTGRs are very flexible with regard to fuel and fuel cycle o Uncoupling between and parameters characterising cooling geometry and

neutronics optimisation

o Solid moderator (no void effect)

Many types of fuel possible in principle – not all fuel designs have been qualified

High burn-up feasible – demonstrated (AVR, Peach Bottom, FSV, THTR)

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 64

Physical reasons for flexibility w.r.t. fuel (cycle)

[R.1.6]

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 65

Fissile and fertile materials

LEU cycle (enrichment 5 to 19%)

MOX cycle

Pu only

Th (HEU; MEU; Pu) [R.1.6]

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 66

(Re-)load schemes

Pebble bed o MEDUL - continuous re-load o OTTO - Once Through Then Out N.B. Low excess reactivity for MEDUL/OTTO without BP o Peu-à-peu o cartridge o (spatial distribution of) burnable poison o ???

Prismatic o specific re-load scheme (axial and radial shift) o spatial distribution of fuel loading/enrichment o (spatial distribution of) burnable poison o ???

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 67

Examples of reload schemes

OTTO vs. Medul (re-) loading scheme for pebble-bed HTGR

Comparison of radial loading patterns in “HTR-PM” (earlier 380 MW design with 2 m core radius)

Pebble-bed cartridge core with burnable poison (ACACIA)

Two-batch axially shifted re-fueling in GTHTR 300

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 68

OTTO vs. MEDUL (re-) loading scheme

Comparison of axial power density distribution of pebble bed MEDUL (“Mehrfachdurchlauf”) and OTTO (“Einwegbeschickung”) [R.1.5]

Top Bottom

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 69

Comparison of radial loading patterns in “HTR-PM”

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 70

N.B. Earlier version with 2 m core radius and 380 MW thermal power

Radial power distribution “HTR-PM” (380 MW)

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 71

Radial power distribution “HTR-PM” (1515oC)

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 72

Pebble-bed cartridge core (ACACIA)

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 73

ACACIA reactor with annular core (and BP)

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 74

ACACIA – Initially homogeneous BP

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 75

ACACIA – Initially inhomogeneous BP

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 76

Two-batch axially shifted re-fueling in GTHTR 300

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 77

GTHTR 300 core lay-out

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 78

GTHTR 300 fuel layers and re-fueling scheme

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 79

Axial power distribution in GTHTR 300

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 80

Transient behaviour of GTHTR 300

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 81

Concluding remarks

An overview was given on main considerations regarding design– and safety philosophy of present-day HTGR designs

Focus on main features and issues w.r.t. the reactor. Many (even important) issues have NOT been treated in this presentation

Once more it has been shown that HTGR core design is extremely flexible, although there ARE limits

Many different applications, fuels, fuel cycles, etc. possible within constraints of safe operation

Burnable poison can be used to limit excess reactivity while retaining core life

Developments are ongoing, e.g.: o Radial cooling [R.5.1] o “Wallpaper” fuel [R.5.2]

Development towards higher core outlet temperatures (> 1000 oC) is possible [R.2.9] Gen IV VHTR

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 82

Coordinates

Dr.ir. J.C. Kuijper (Jim)

Nuclear Reactor Physics Expert

E [email protected]

M +31 6 4022 9728

http://www.nuclic.eu (per 1 January 2016)

Associated with Nuclear-21.Net

http://www.nuclear-21.net

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 83

Terima kasih

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 84

References (1)

[R.1.1] Generation IV International Forum, “Technology Roadmap Update for Generation IV Nuclear Energy Systems”, January 2014.

[R.1.2] Generation IV International Forum, “Annual Report 2013”.

[R.1.3] “The Very High Temperature Reactor: A Technical Summary”, Rev. 0, June 2004, MPR Associates Inc.

[R.1.4] C.W. Forsberg, P.F. Peterson, P.S. Pickard, “Molten-salt-Cooled Advanced High-Temperature Reactor for Production of Hydrogen and Electricity”, Nuclear Technology, Vol. 144, No. 3, Pages 289 302, December 2003.

[R.1.5] K. Kugeler & R. Schulten, “Hochtemperatur-reaktortechnik”, Springer-Verlag 1989, ISBN 3-540-51535-6.

[R.1.6] RAPHAEL Eurocourse on V/HTR Technology, IKE, Stuttgart, Germany, 27-29 March 2007, see

ftp://ftp.cordis.europa.eu/pub/fp6-euratom/docs/raphael-eurocourse-seminar-folder-mar-2007_en.pdf, containing:

J.C. Kuijper, “HTGR core design criteria “;

X. Raepsaet, “Physics of the High Temperature Gas-Cooled Reactor Core “.

[R.1.6a] J.L. Kloosterman, “Design criteria for the HTR core”, Lecture, Delft University of Technology, Delft, The Netherlands, 20 November 2008.

[R.1.7] M.W. Rosenthal, “An Account of Oak Ridge national Laboratory’s Thirteen Nuclear Reactors”, ORNL/TM-2009/181, Oak Ridge National Laboratory, Oak Ridge, TN, USA, March 2010.

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 85

References (2) [R.1.8] S.E. Jensen, E. Nonbøl, “Description of the Magnox Type of Gas Cooled Reactor (MAGNOX)”, Risø National Laboratory, Roskilde, Denmark, 1999, ISBN 87-7893-050-2.

[R.1.9] E. Nonbøl, ”Description of the Advanced Gas Cooled Type of Reactor (AGR)”, Risø National Laboratory, Roskilde, Denmark, November 1996, ISBN 87-550-2264-2.

[R.1.10] Fütterer, M.A., et al., “Status of the very high temperature reactor system”, Progress in Nuclear Energy (2014), http://dx.doi.org/10.1016/j.pnucene.2014.01.013

.

[R.2.1] “Guidance for the Application of an Assessment Methodology for Innovative Nuclear Energy Systems, INPRO Manual”, IAEA- TECDOC-1575 Rev. 1, November 2008.

Volume 1 - Overview of the Methodology

Volume 2 - Economics

Volume 3 - Infrastructure

Volume 4 Waste Management

Volume 5 Proliferation Resistance

Volume 6 Physical protection

Volume 7 Environment

Volume 8 Safety of Nuclear Reactors

Volume 9 Safety of Nuclear Fuel Cycle Facilities

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 86

References (3) [R.2.2] N. Prasad Kadambi, “Defence in depth in nuclear safety”, Nuclear Engineering International, 30 January 2013.

[R.2.3] IAEA, "Safety of Nuclear Power Plants: Design", Revision DS-414 to IAEA NS-R-1.

[R.2.4] USNRC, "White Paper on Risk-Informed and Performance-Based Regulation," Staff Requirements Memorandum Regarding SECY-98- 144, March 1, 1999.

[R.2.4a] USNRC, "Strategic Plan: Fiscal Years 2008-2013 (Updated)", NUREG-1614, Vol. 5, February 2012.

[R.2.5] Generation IV International Forum, “Proceedings GIF symposium, Paris, France, 9-10 September 2009”, ISBN 978-92-64-99115-6. Available at: https://inis.iaea.org/search.

[R.2.6] J.C. Kuijper et al., “Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors – Publishable Final Activity Report”, Report PUMA-1006-D411g, Euratom 6th Framework Program contract no. FP6-036457, November 2010. Available at: https://inis.iaea.org/search.

[R.2.6a] J.C. Kuijper et al., “Pu and MA management in Thermal HTRs, Quo Vadis – Insights from the Euratom PUMA project”, Paper presented at the IAEA Technical Meeting “Deep Burn HTR”, IAEA, Vienna, Austria, 5-8 August 2013. Available at: http://inis.iaea.org/search. Corresponding paper to be published.

[R.2.7] F. Venneri et al., “The Deep Burn project: 2010 overview and progress“, in: “Actinide and Fission Product Partitioning and Transmutation - Eleventh Information Exchange Meeting”, San Francisco, CA, USA, 1 – 4 November 2010, OECD/NEA Nuclear Science and Nuclear Development 2012, ISBN 978-92-64-99174-3.

[R.2.8] “Uranium 2011, 2012. Resources, Production and Demand. A Joint Report by the OECD Nuclear Energy Agency and the International Atomic Energy Agency”, OECD, Paris, France.

[R.2.9] K. Verfondern, H. Nabielek, J.M. Kendall, “Coated particle fuel for high temperature gas cooled reactors”, Nuclear Engineering and Technology, Vol. 39, No. 5, October 2007.

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 87

References (4)

[R.2.10] S. Knol et al., “The ARCHER Project”, Proc. 7th International Topical Meeting on High Temperature Reactor Technology HTR 2014, INET, Tsinghua University, Beijing, China.

[R.3.1] R.N. Morris, D.A. Petti, D.A. Powers, B.E. Boyack, “TRISO-Coated Particle Fuel Phenomenon Identification and Ranking Tables (PIRTs) for Fission Product Transport Due to manufacturing, Operations and Accidents – Main Report”, Report NUREG-6844 Volume 1, US NRC, July 2004.

[R.3.1a] J. Keijzer, “Investigations of spatial effects in nuclear reactor kinetics “, PhD thesis, Delft University of Technology, Delft, The Netherlands, 5 April 1996.

[R.3.2] A. Meier, W. Bernnat, K. Hossain, G. Lohnert, “Analyses of high temperature pebble bed reactors with plutonium fuel”, Proc. International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York, May 3-7, 2009.

[R.3.3] D. Buckthorpe, J.-S. Genot, “RAPHAEL: Synthesis of achievements on materials and components and future direction”, Proc. 5th International Topical Meeting on High Temperature Reactor Technology (HTR 2010), Nuclear Engineering and Design, Vol. 251, Pages 330 – 343, October 2012.

[R.3.4] B.K. McDowell, M.R. Mitchell, R. Pugh, J.R. Nickolaus, G.L. Schweringen, “High Temperature Gas Reactors: Assessment of Applicable Codes and Standards”, Report PNNL-20869, Prepared for the US NRC, Pacific Northwest National Laboratory, October 2011.

[R.3.5] B. Boer, A.M. Ougouag, J.L. Kloosterman. G.K. Mills, “Stress analysis of coated particle fuel in graphite of high-temperature reactors”, Nuclear Technology, Vol. 162, June 2008.

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 88

References (5) [R.3.6] J. Jonnet, J.L. Kloosterman, B. Boer, “Performance of TRISO particles fuelled with Plutonium and Minor Actinides in a PBMR-400 core design”, Nuclear Engineering and Design, Vol. 240, Pages 1320 – 1331, 2010.

[R.3.7] M.P. LaBar, A.S. Shenoy, W.A. Simon, E.M. Campbell, Y. Hassan, “Nuclear Energy Materials and Reactors Volume II The Gas- Turbine Modular Helium Reactor”, Encyclopaedia of Life Support Systems (EOLSS).

[R.3.8] J.J. Duderstadt & L.J. Hamilton, “Nuclear reactor analysis”, John Wiley & Sons, New York, ISBN 0 471 22363 8, 1976.

[R.3.9] “Decay heat power in light water reactors”, Standard ANSI/ANS-5.1-1994, American Nuclear Society, USA, 1993.

[R.3.10] “Calculation of the decay power in nuclear fuels of light water reactors - Part 1: Uranium oxide nuclear fuel for pressurized water reactors (Berechnung der Zerfallsleistung der Kernbrennstoffe von Leichtwasserreaktoren - Teil 1: Uranoxid-Kernbrennstoff für Druckwasserreaktoren)”, Standard DIN 25463-1:2014-02.

[R.3.11] “Calculation of the decay power in nuclear fuels of light water reactors - Part 2: Mixed-uranium-plutonium oxide (MOX) nuclear fuel for pressurized water reactors (Berechnung der Zerfallsleistung der Kernbrennstoffe von Leichtwasserreaktoren - Teil 2: Uran- Plutonium-Mischoxid (MOX)-Kernbrennstoff für Druckwasserreaktoren)”, Standard DIN 25463-2:2014-02.

[R.3.12] ”Decay heat power in nuclear fuels of high-temperature reactors with spherical fuel elements (Berechnung der Nachzerfallsleistung der Kernbrennstoffe von Hochtemperaturreaktoren mit kugelförmigen Brennelementen)”, Standard DIN 25485-1:1990-05.

[R.3.13] K. Tasaka et al., “Recommendations on Decay Heat Power in Nuclear Reactors”, Journal of Nuclear Science and Technology, Vol. 28, Issue 12, 1991.

[R.3.14] R.B. Bird, W.E. Stewart, E.N. Lightfoot, “Transport Phenomena”, John Wiley & Sons, 3rd printing, February 1963.

[R.3.15] “Heat Transport and Afterheat Removal for Gas Cooled Reactors Under Accident Conditions”, Technical Report IAEA-TECDOC-1163, IAEA, Vienna, Austria, 2000.

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 89

References (6) [R.3.16] G. Melese, R. Katz, “Thermal and Flow Design of Helium-cooled Reactors”, ISBN 0894480278, 1984.

[R.3.17] G.J. Auwerda, ”Core Physics of Pebble Bed High Temperature Nuclear Reactors”, PhD thesis, Delft University of Technology, Delft, The Netherlands, ISBN 978-94-6295-047-4, 22 December 2014.

[R.3.18] G.J. Auwerda et al., “Effects of random pebble distribution on the multiplication factor in HTR pebble bed reactors”. Annals of Nuclear Energy, Vol. 37, 1056, 2010.

[R.3.19] G.J. Auwerda et al., “Effect of non-uniform porosity distribution on thermal hydraulics in a pebble bed reactor”, Proc. NURETH-14, Toronto, Ontario, Canada, 2011.

[R.4.1] P. W. Humrickhouse, “HTGR Dust Safety Issues and Needs for Research and Development”, Report INL/EXT-11-21097, Idaho National Laboratory, Idaho Falls, Idaho 83415, USA, June 2011.

[R.4.2] M. Ragheb, “Nuclear, plasma and radiation science – Inventing the Future”, Web text, Lecture notes Nuclear Power Engineering NPRE 402, University of Illinois at Urbana-Champaign, USA, Spring 2015.

[R.4.3] B.M. Tyobeka, “ADVANCED MULTI-DIMENSIONAL DETERMINISTIC TRANSPORT COMPUTATIONAL CAPABILITY FOR SAFETY ANALYSIS OF PEBBLE-BED REACTORS”, PhD thesis, The Pennsylvania State University, The Graduate School, Department of Mechanical and Nuclear Engineering, August 2007.

[R.4.4] “PBMR COUPLED NEUTRONICS/THERMAL-HYDRAULICS TRANSIENT BENCHMARK - THE PBMR-400 CORE DESIGN - VOLUME 1: THE BENCHMARK DEFINITION”, Report NEA/NSC/DOC(2013)10, OECD Nuclear Energy Agency, Nuclear Science Committee, Paris, France, 17. July 2013.

[R.4.5] F. Li, X. Jing, “Comparison of loading pattern in HTR-PM”, Proc. 2nd International Topical Meeting of HTR Technology HTR 2004, Beijing, China, September 22 – 24, 2004.

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 90

References (7)

[R.4.6] D.F. da Cruz, J.B.M. de Haas & A.I. van Heek, “ACACIA: A Small Scale Power Plant With Pebble Bed Cartridge Reactor”, Proc. International Congress on Advances in Nuclear Power Plants (ICAPP ’03), Cordoba, Spain, May 4 – 7, 2003, ISBN 0-89448-675-6.

[R.4.7] X. Yan, K. Kunitomi, T. Nakata, S. Shiozawa, “Design and development of GTHTR300”, Proc. 1st International Topical Meeting of HTR Technology HTR 2002, Petten, The Netherlands, April 22 – 24, 2002.

[R.5.1] B. Boer, J.L. Kloosterman, D. Lathouwers, T.H.J.J. van der Hagen, H. van Dam, “Optimization of a radially cooled pebble bed reactor”, Proc. 4th International Topical Meeting on High Temperature Reactor Technology HTR2008, Washington D.C., USA, September 28 - October 1, 2008.

[R.5.2] A. Marmier, M. Fütterer, K.Tucek, J.B.M. de Haas, J.C. Kuijper, and J.L. Kloosterman, “Revisiting the Concept of HTR Wallpaper Fuel”, Proc. 4th International Topical Meeting on High Temperature Reactor Technology HTR2008, Washington D.C., USA, September 28 - October 1, 2008.

19-10-2015 IAEA Training Course on HTGR Technology, Serpong, Indonesia, 19-23 October 2015 91


Recommended