+ All Categories
Home > Documents > Design Presentation

Design Presentation

Date post: 12-Jul-2015
Category:
Upload: abh2050
View: 974 times
Download: 0 times
Share this document with a friend
Popular Tags:
39
Wastewater Management Process Design and Economic Considerations
Transcript

Wastewater Management

Process Design and Economic

Considerations

Presentation Outline• Introduction of Project

• Process Description and Results

– PFD

– Process Units

• Neutralization Reactors

• Hydrocyclones

• Primary Clarification

• Reverse Osmosis

• Waste Disposal

• Economics

• Conclusion

• References

• Data Tables/Equations/Resources

Project Introduction

• Plant location: MN

• Produces:Metals

• Current market conditions makes plant

construction feasible.

• Plant construction delays due to EPA

regulations, TDS ≤ 10 ppm

• High flow rate and total TDS concentration

promotes creative solution

Pass 1

Equipments Used Process description

Ozone Treatment Removal of Fe and Mn

Clarifier Flocculant and polymer

addition

Multimedia Filter Total suspended solid removal

Reverse Osmosis Unit Membrane filteration

Pass 2 & 3

Equipments Used Process description

Neutralization Reactors Addition of lime

Hydrocyclone 90% solid removal

(CaCO3,CaSO4)

Clarifier Flocculant and Polymer addition

Reverse Osmosis Unit Membrane filteration

Experimental Design

• Geochemical modeling Aqueous geochemical modeling

Equilibrium concentrations (or activities) of chemical species in solution

Saturation indices (SI's) of solid phases in equilibrium with a solution.

Design software used PHREEQ from USGS

Calculation of the effects of mixing of waters,

Saturation index of the compounds higher than 1 precipitate out

Changing the solution's temperature, Eh, or pH, etc

Jar testing: simulating the coagulation/flocculation process

Flocculants and polymers were bought from integrated

engineers

Selection based on the highest amount of flocks formed per

amount of flocculants added.

Conductivity test for testing the presence of inorganics

dissolved in the mixture

Ozone Contact Tank

• Addition of Ozone- 100% Removal

- Manganese and Iron • Separated out in later

steps.

Reactor Clarifier

• Addition of flocculants to remove dissolved solids

• Flocculants settle and are removed

• Removed flocculants are sent to the landfill

• Pass 1 will be 96,200 gal with a detention time of 2 hr

• Pass 2 will be 26,500 gal with a detention time of 1.5 hr

• Pass 3 will be 8,500 gal with detention time of 1.5 hr

Sand Filter• Either dual coal-sand or tri-

media coal-sand-garnet.

• It has an effective high rate filtration process with long filter runs.

• It is a proven and widely accepted filtration process.

• Helps remove more suspended solids before going to the RO unit.

• Sized for 800gpm

• Area 80.0 ft2

• Backwash velocity calculated after filter media is chosen.

Reverse OsmosisUnit 1

• Modeled as three parallel

units with ten stages

– 800 gal∙min-1 feed flow

– 60% Recovery

– 10 mg∙L-1 Permeate

Concentration

• Special Design Parameters

– High inlet flow requires

multiple stages/passes

– Antiscalent addition

– High flux yields high pressure

inlet flow

Example Staged RO Unit

Reverse Osmosis

Unit 2

• Modeled as three parallel

units with seven stages

– 320 gal∙min-1 feed flow

– 60% Recovery

– 10 mg∙L-1 Permeate

Concentration

– 192 gal∙min-1 permeate

flow

– 12.3% membrane recovery

– 99.3% solute rejection

Unit 3

• Modeled as three parallel

units with five stages

– 128 gal∙min-1 feed flow

– 50% Recovery

– 10 mg∙L-1 Permeate

Concentration

– 192 gal∙min-1 permeate

flow

– 12.9% membrane recovery

– 99.5% solute rejection

Neutralization Reactor• Reverse Osmosis Unit Feed

– Highly saturated

• Addition of Lime– Stabilize pH

– Aid in removal of salts• Gypsum

• Calcium Carbonate

• Aragonite

• Artinite

• Calcite

• Chrysotile

• Clinoenstatite

• Diopside

• Huntite

• Hydromagnesite

• Magnesite

• Sepiolite

• Talc

• Tremolite

• Design- Modeled as circular up flow

clarifier

- Using same equations as the

Ozone Contact Tank

Hydrocyclones

• Removes solids in the

waste stream

• The removed solids are

land filled

• 16 in. with1,600 hp shaft

will be used for Pass 2

• 12 in. with 360 hp shaft

will be used for Pass 3

Reactor Clarifier

• Addition of flocculants to remove dissolved solids

• Flocculants settle and are removed

• Removed flocculants are sent to the landfill

• Pass 1 will be 96,200 gal with a detention time of 2 hr

• Pass 2 will be 26,500gal with a detention time of 1.5 hr

• Pass 3 will be 8,500 gal with detention time of 1.5 hr

Landfill design

• Hazardous waste landfill must have a double linear

• Can not be located in wetland on a floodplain

• Cover is placed on top when landfill is closed

• All leachate is collected and treated

Gypsum Removal

• Removal by vacuum

belt filtration

• Can be run using

just gravity or with a

pressure drop.

• Drying rates up to

80%.

Gypsum• Produce approximately

600kg per day.

• Widely used product.

– Plaster ingredient

– Fertilizer and soil conditioner

– Plaster of Paris

• Approximately 90% of gypsum is used in the manufacture of wallboard for residential and non-residential applications.

• Sharp rise in gypsum prices likely in 2012 due to housing industry coming back after recession.

Economics

• No future estimate– not significant in production

of profitable material.

• Gypsum– produced and sold to offset

some of the cost.

• Energy Cost – Evaporator

• $9million per year

Capital Cost, $2,823,190.

00

Operating and Maintenance

Cost, $1,560,654.00

Chemica Cost, $3,292,489.

88

Flocculation Clarifier, $798,600.

00

Neutralization Clarifier, $651,425.

00

Reverse Osmosis, $790,000

.00

Hydrocyclone, $34,084.00

Multimedia Filter, $160,000.00

Vacuum BeltFilter, $389,081

.00

Recomendations

• Flocculants and polymers for Clarifiers

• Automated process

• Pilot plant for the process

• Scaling up the process according to

fluctuation

Conclusions

• Reverse Osmosis unit over other ideas

– Evaporator

– Recrystallizer

– Carbon nano-tubes

• Should now be EPA compliant

• Profitability associated with other areas of the mine

References• BRUCE HUTTON, I. K. (2007). OPERATING AND MAINTENANCE EXPERIENCE

AT THE. Johanusburg: Anglo steel.

• Brunfelt, P. C. (2012, April). Project Discussion. (A. Shah, Interviewer)

• Iverson, D. (2012, April). Cost of the Reverse Osmosis. (A. shah, Interviewer)

• NETAFIM USA. (2010). Hydrocyclone separators for gold mine. Fresno, CA 93727: NETAFIM USA.

• Russell, D. (2012, April). Cost Of antiscalent Spectraguard 350. (A. Shah, Interviewer)

• SHARMA, J. R. (May 2010). DEVELOPMENT OF A PRELIMINARY COST ESTIMATION METHOD FOR. Arlington: THE UNIVERSITY OF TEXAS AT ARLINGTON.

• Kahan, I (2009) “eMalahleni Water Reclamation Plant – Towards Zero Waste” WISA Membrane Technology, Conference 2009

• Kawamura, S. (2000). Integrated Design and Operation of Water Treatment Facilities. John Wiley & Sons, Inc., New York.

• Groudev, Stoyan. "Safe Management of Mining Waste and Waste Facilities." http://www.safemanmin.eu/. N.p., 2008. Web. 30 Apr 2012.

• LaGrega, Michael. Hazardous Waste Management. 2nd. waveland press inc, 2010.

Appendix

RO Unit 1 Data SheetPass 1 2 3 4 5 6 7 8 9 10

From

RO1:1

Total in

Stage 1

Flow Vo (gal/min) 266.667 243.318 222.014 202.575 184.839 168.655 153.888 140.414 128.120 116.902 116.902 xxxxxxxxx

Recovery 0.0876 0.0876 0.0876 0.0876 0.0876 0.0876 0.0876 0.0876 0.0876 0.0876 0.0876 0.0876

Permeate flow (gal/min) 23.348 21.304 19.438 17.736 16.183 14.766 13.473 12.294 11.217 10.235 160.00 480.00

Concentrate Flow

(gal/min) 243.318 222.014 202.575 184.839 168.655 153.888 140.414 128.120 116.902 106.667 106.667 320.00

TDS Conc (g/gal) 3.595 3.9363 4.3104 4.7204 5.1697 5.6622 6.2019 6.7934 7.4416 8.1521 8.1521 8.1521

TDS Perm (g/gal) 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785

Membrane

HRLE-

440i

HRLE-

440i

HRLE-

440i

HRLE-

440i

HRLE-

440i

HRLE-

440i

HRLE-

440i

HRLE-

440i

HRLE-

440i

HRLE-

440i HRLE-440i HRLE-440i

Area ft^2 440 440 440 440 440 440 440 440 440 440 4400 13200

Flux (gal/ft^2*day) 76.413 69.722 63.618 58.048 52.965 48.328 44.096 40.235 36.713 33.498 52.364 52.364

Moles Feed 0.092 0.101 0.110 0.121 0.132 0.145 0.159 0.174 0.190 0.209 0.209 0.209

Moles Permeate 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102

Osmotic Pressure, Feed

(atm) 5.936 6.500 7.118 7.795 8.536 9.350 10.241 11.218 12.288 13.461 13.461 13.461

ΔΠ (atm) 5.738 6.301 6.919 7.596 8.338 9.151 10.042 11.019 12.089 13.262 13.262 13.262

ΔP (atm) 101.254 93.454 86.441 80.155 74.544 69.561 65.163 61.313 57.980 55.135 74.500 74.500

RO Unit 1 Ion BalancesFrom H:1 From C:1 1 2 3 4 5 6 7 8 9 10 Final

Element g/gal g/gal

mol/gal

Feed

mol/gal

Feed

mol/gal

Feed

mol/gal

Feed

mol/gal

Feed

mol/gal

Feed

mol/gal

Feed

mol/gal

Feed

mol/gal

Feed mol/gal Feed g/gal

K 0.037850 0.034244 0.000876 0.000959 0.001050 0.001150 0.001260 0.001379 0.001511 0.001655 0.001813 0.001986 0.086

Na 0.189250 0.171221 0.004379 0.004795 0.005251 0.005750 0.006298 0.006897 0.007555 0.008275 0.009065 0.009931 0.429

Mg 0.803785 0.727214 0.018600 0.020366 0.022301 0.024422 0.026747 0.029295 0.032087 0.035148 0.038501 0.042177 1.823

Ca 0.227100 0.205466 0.005255 0.005754 0.006301 0.006900 0.007557 0.008277 0.009066 0.009931 0.010878 0.011917 0.515

Sr 0.001514 0.001370 0.000035 0.000038 0.000042 0.000046 0.000050 0.000055 0.000060 0.000066 0.000073 0.000079 0.003

Ba 0.000114 0.000103 0.000003 0.000003 0.000003 0.000003 0.000004 0.000004 0.000005 0.000005 0.000005 0.000006 0.000

CO3 0.006359 0.005753 0.000147 0.000161 0.000176 0.000193 0.000212 0.000232 0.000254 0.000278 0.000305 0.000334 0.014

HCO3 1.616195 1.462230 0.037399 0.040950 0.044842 0.049107 0.053781 0.058904 0.064519 0.070672 0.077416 0.084807 3.665

CL 0.075700 0.068489 0.001752 0.001918 0.002100 0.002300 0.002519 0.002759 0.003022 0.003310 0.003626 0.003972 0.172

SO4 0.946250 0.856107 0.021896 0.023975 0.026254 0.028751 0.031488 0.034487 0.037775 0.041377 0.045326 0.049653 2.146

SiO2 0.018925 0.017122 0.000438 0.000480 0.000525 0.000575 0.000630 0.000690 0.000755 0.000828 0.000907 0.000993 0.043

B 0.001893 0.001712 0.000044 0.000048 0.000053 0.000058 0.000063 0.000069 0.000076 0.000083 0.000091 0.000099 0.004

CO2 0.048599 0.043970 0.001125 0.001231 0.001348 0.001477 0.001617 0.001771 0.001940 0.002125 0.002328 0.002550 0.110

Total 3.9735 3.5950 0.0919 0.1007 0.1102 0.1207 0.1322 0.1448 0.1586 0.1738 0.1903 0.2085 8.152

RO Unit 2 Data Sheet

Pass 1 2 3 4 5 6 7

From

RO2:1

Total in

Stage 2

Flow Vo (gal/min) 106.66 93.575 82.098 72.025 63.188 55.435 48.634 xxxxxx xxxxxxxxx

Recovery 0.1227 0.1227 0.1227 0.1227 0.1227 0.1227 0.1227 0.1227 0.1227

Permeate flow (gal/min) 13.0872 11.4815 10.0728 8.8369 7.7527 6.8015 5.9670 63.9997 192.00

Concentrate Flow

(gal/min) 93.5795 82.0980 72.0252 63.1883 55.4355 48.6340 42.6670 42.6670 128.00

TDS Conc (g/gal) 5.82192139 6.6308 7.5529 8.6038 9.8018 11.1673 12.7238 12.7238 12.7238

TDS Perm (g/gal) 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785

Membrane HRLE-440i HRLE-440i HRLE-440i HRLE-440i HRLE-440i HRLE-440i HRLE-440i

HRLE-

440i HRLE-440i

Area ft^2 440 440 440 440 440 440 440 3080 9240

Flux (gal/ft^2*day) 42.831 37.576 32.966 28.921 25.373 22.260 19.528 29.922 29.922

Moles Feed 0.149 0.170 0.193 0.220 0.251 0.286 0.325 0.325 0.325

Moles Permeate 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102

Osmotic Pressure, Feed

(atm) 9.613 13.139 14.966 17.048 19.422 22.128 25.212 25.212 25.212

ΔΠ (atm) 9.415 12.940 14.767 16.850 19.224 21.929 25.013 25.013 25.013

Δp (atm) 62.953 59.910 55.974 53.001 50.939 49.754 49.424 62.416 62.416

RO Unit 2 Ion BalancesFrom H:2 From C:2 1 2 3 4 5 6 7 Total

Element g/gal g/gal

mol/gal

Feed

mol/gal

Feed

mol/gal

Feed

mol/gal

Feed

mol/gal

Feed

mol/gal

Feed mol/gal Feed g/gal

K 0.08583 0.08185 0.00209 0.00238 0.00272 0.00309 0.00352 0.00402 0.00458 0.179

Na 0.42915 0.40924 0.01047 0.01192 0.01358 0.01547 0.01762 0.02008 0.02288 0.894

Mg 1.82268 1.73813 0.04446 0.05063 0.05767 0.06570 0.07485 0.08527 0.09716 3.799

Ca 0.51498 0.49109 0.01256 0.01431 0.01629 0.01856 0.02115 0.02409 0.02745 1.073

Sr 0.00343 0.00327 0.00008 0.00010 0.00011 0.00012 0.00014 0.00016 0.00018 0.007

Ba 0.00026 0.00025 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.001

CO3 0.01442 0.01375 0.00035 0.00040 0.00046 0.00052 0.00059 0.00067 0.00077 0.030

HCO3 1.83246 1.74745 0.04469 0.05090 0.05798 0.06605 0.07525 0.08573 0.09768 3.819

CL 0.17166 0.16370 0.00419 0.00477 0.00543 0.00619 0.00705 0.00803 0.00915 0.358

SO4 1.07287 1.02310 0.02617 0.02980 0.03395 0.03867 0.04406 0.05019 0.05719 2.236

SiO2 0.04291 0.04092 0.00105 0.00119 0.00136 0.00155 0.00176 0.00201 0.00229 0.089

B 0.00429 0.00409 0.00010 0.00012 0.00014 0.00015 0.00018 0.00020 0.00023 0.009

CO2 0.11020 0.10509 0.00269 0.00306 0.00349 0.00397 0.00453 0.00516 0.00587 0.230

Total 6.105 5.822 0.149 0.170 0.193 0.220 0.251 0.286 0.325 12.724

RO Unit 3 Data Sheet

Pass 1 2 3 4 5 From RO3:1

Total in

Stage 3

Flow Vo (gal/min) 42.667 37.144 32.336 28.150 24.506 xxxxxx xxxxxxxxx

Recovery 0.1294 0.1294 0.1294 0.1294 0.1294 0.1294 0.1294

Permeate flow (gal/min) 5.523 4.808 4.186 3.644 3.172 21.333 64.00

Concentrate Flow (gal/min) 37.144 32.336 28.150 24.506 21.334 21.334 64.00

TDS Conc (g/gal) 9.318 10.698 12.283 14.103 16.195 16.195 16.195

TDS Perm (g/gal) 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785 0.03785

Membrane HRLE-440i HRLE-440i HRLE-440i HRLE-440i HRLE-440i HRLE-440i HRLE-440i

Area ft^2 440 440 440 440 440 2200 6600

Flux (gal/ft^2*day) 18.075 15.736 13.699 11.925 10.382 13.963 13.963

Moles Feed 0.2383 0.2736 0.3142 0.3607 0.4142 0.4142 0.4142

Moles Permeate 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102 0.00102

Osmotic Pressure, Feed

(atm) 15.386 17.664 20.282 23.288 26.742 26.742 26.742

ΔΠ (atm) 15.186 17.465 20.082 23.089 26.542 26.542 26.542

ΔP (atm) 37.781 37.134 37.206 37.995 39.519 43.996 43.996

RO Unit 3 Ion Balances

From R:3 From C:3 1 2 3 4 5 Total

Element g/gal g/gal mol/gal Feed mol/gal Feed mol/gal Feed mol/gal Feed mol/gal Feed g/gal

K 0.17888 0.17190 0.00440 0.00505 0.00580 0.00665 0.00764 0.2988

Na 0.89439 0.85948 0.02198 0.02524 0.02898 0.03327 0.03821 1.4938

Mg 3.79866 3.65038 0.09336 0.10719 0.12307 0.14132 0.16227 6.3446

Ca 1.07327 1.03137 0.02638 0.03029 0.03477 0.03993 0.04585 1.7926

Sr 0.00716 0.00688 0.00018 0.00020 0.00023 0.00027 0.00031 0.0120

Ba 0.00054 0.00052 0.00001 0.00002 0.00002 0.00002 0.00002 0.0009

CO3 0.03005 0.02888 0.00074 0.00085 0.00097 0.00112 0.00128 0.0502

HCO3 1.90952 1.83498 0.04693 0.05388 0.06187 0.07104 0.08157 3.1893

CL 0.35776 0.34379 0.00879 0.01010 0.01159 0.01331 0.01528 0.5975

SO4 1.11799 1.07435 0.02748 0.03155 0.03622 0.04159 0.04776 1.8673

SiO2 0.08944 0.08595 0.00220 0.00252 0.00290 0.00333 0.00382 0.1494

B 0.00894 0.00859 0.00022 0.00025 0.00029 0.00033 0.00038 0.0149

CO2 0.22968 0.22071 0.00565 0.00648 0.00744 0.00854 0.00981 0.3836

Total 9.696 9.318 0.2383 0.2736 0.3142 0.3607 0.4142 16.195

Surface Complexation

Principles• Fully considers variable charge surfaces. # of sorption of

sites is constant but their individual charge, & total surface charge, vary as a function of solution composition

• Similar to aqueous complexation/speciation

• A mix of anions, cations & neutral species can sorb

• Accounts for electrostatic work required to transport species through the “diffuse layer” (similar to an activity coefficient correction) Gouy-Chapman theory

Surface complexation equations

• 1st deprotonation reaction:

+ 0 +

2

0

1

2

SOH SOH H

app

a

SOH HK

SOH

2nd deprotonation

reaction:0 - +

2 0

SOH SO H

app

a

SO HK

SOH

Divalent cation complexation

0 2+ + +

0 2

SOH M SOM H

app

M

SOM HK

SOH M

Upflow Clarifier Equations

Sand Filter

Hydrocyclones

Reactor Clarifier

RO Design Equations

• π is the osmotic pressure, atm

• i = Van’t Hoff factor

• Cs = solute concentration, mol∙L-1

• R = Universal Gas Constant, L∙atm∙mol-1∙K-1

• T = absolute temperature, K

• πp, osmotic pressure of the permeate side, atm

• πf is the osmotic pressure on the feed side, atm

RO Design Equations

• Jp = permeate flux, gal∙ft-2∙day-1

• qp = permeate flow, gal∙day-1

• Am is the membrane surface area, ft2

• Aw = membrane water permeability coefficient ,gal∙ft-2∙day-1∙atm-1

• ΔP = Pressure drop in atm.


Recommended