+ All Categories
Home > Documents > Deuteron induced reactions, spin distributions and the ...An small, we can apply rst order...

Deuteron induced reactions, spin distributions and the ...An small, we can apply rst order...

Date post: 20-Oct-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
25
Deuteron–induced reactions, spin distributions and the surrogate method Gr´ egory Potel Aguilar (NSCL, LLNL) Filomena Nunes (NSCL) Ian Thompson (LLNL) Varenna, June 17th 2015 Varenna, June 17th 2015 slide 1/25
Transcript
  • Deuteron–induced reactions, spin distributions and thesurrogate method

    Grégory Potel Aguilar (NSCL, LLNL)Filomena Nunes (NSCL)Ian Thompson (LLNL)

    Varenna, June 17th 2015

    Varenna, June 17th 2015 slide 1/25

  • Introduction

    We present a formalism for inclusive deuteron–induced reactions. We thuswant to describe within the same framework:

    elastic breakup

    direct transfer

    compound nucleus

    Direct neutron transfer: should becompatible with existing theories.

    Elastic deuteron breakup: “transfer”to continuum states.

    Non elastic breakup (direct transfer,inelastic excitation and compoundnucleus formation): absorption aboveand below neutron emissionthreshold.

    Important application in surrogatereactions: obtain spin–paritydistributions, get rid ofWeisskopf–Ewing approximation.

    Varenna, June 17th 2015 slide 2/25

  • Historical background

    breakup-fusionQreactions

    protonsQandQαQyieldsbombardingQ209BiQwithQ12CQandQ16OQ

    BrittQandQQuinton,QPhys.QRev.Q124Q819617Q877

    Kerman and McVoy, Ann. Phys.122 (1979)197

    Austern and Vincent, Phys.Rev. C23 (1981) 1847

    Udagawa and Tamura, Phys.Rev. C24(1981) 1348

    Last paper: Mastroleo,Udagawa, Mustafa Phys. Rev.C42 (1990) 683

    Controversy between Udagawaand Austern formalism leftsomehow unresolved.

    Varenna, June 17th 2015 slide 3/25

  • Inclusive (d , p) reaction

    let’s concentrate in the reaction A+d→ B(=A+n)+p

    ϕdχd

    ϕA

    χpχn

    ϕAχp

    ϕ1,ϕ2,...,ϕn

    ϕn+1,ϕn+2,...

    χp

    BB

    B B B

    elastic breakup

    direct transfer

    neutron captureinelastic excitationcoumpound nucleus

    non

    elas

    tic b

    reak

    up

    we are interested in the inclusive cross section, i.e., we will sum over allfinal states φcB .

    Varenna, June 17th 2015 slide 4/25

  • Neutron states in nuclei

    E-E

    Fx9M

    eV8

    scatteringxstates

    weaklyxboundxstates

    deeplyxboundxstates

    Wx9MeV8

    EF

    Imaginaryxpartxofxopticalxpotential neutronxstates

    narrowxsingle-particle

    scatteringxandxresonances

    broadxsingle-particle

    Mahaux,xBortignon,xBrogliaxandxDassoxPhys.xRep.x120x919858x1x

    Varenna, June 17th 2015 slide 5/25

  • Derivation of the differential cross section

    the double differential cross section with respect to the proton energy andangle for the population of a specific final φcB

    d2σ

    dΩpdEp=

    ~vdρ(Ep)

    ∣∣∣〈χpφcB |V |Ψ(+)〉∣∣∣2 .Sum over all channels, with the approximation Ψ(+) ≈ χdφdφA

    d2σ

    dΩpdEp= − 2π

    ~vdρ(Ep)

    ×∑c

    〈χdφdφA|V |χpφcB〉 δ(E − Ep − E cB) 〈φcBχp|V |φAχdφd〉

    χd → deuteron incoming wave, φd → deuteron wavefunction,χp → proton outgoing wave φA → target core ground state.

    Varenna, June 17th 2015 slide 6/25

  • Sum over final states

    the imaginary part of the Green’s function G is an operator representationof the δ–function,

    πδ(E − Ep − E cB) = lim�→0=∑c

    |φcB〉 〈φcB |E − Ep − HB + i�

    = =G

    d2σ

    dΩpdEp= − 2

    ~vdρ(Ep)= 〈χdφdφA|V |χp〉G 〈χp|V |φAχdφd〉

    We got rid of the (infinite) sum over final states,

    but G is an extremely complex object!

    We still need to deal with that.

    Varenna, June 17th 2015 slide 7/25

  • Optical reduction of G

    If the interaction V do not act on φA

    〈χdφdφA|V |χp〉G 〈χp|V |φAχdφd〉= 〈χdφd |V |χp〉 〈φA|G |φA〉 〈χp|V |χdφd〉= 〈χdφd |V |χp〉Gopt 〈χp|V |χdφd〉 ,

    where Gopt is the optical reduction of G

    Gopt = lim�→0

    1

    E − Ep − Tn − UAn(rAn) + i�,

    now UAn(rAn) = VAn(rAn) + iWAn(rAn) and thus Gopt are single–particle,tractable operators.

    The effective neutron–target interaction UAn(rAn), a.k.a. opticalpotential, a.k.a. self–energy can be provided by structurecalculations

    Varenna, June 17th 2015 slide 8/25

  • Capture and elastic breakup cross sections

    the imaginary part of Gopt splits in two terms

    =Gopt =

    elastic breakup︷ ︸︸ ︷−π∑kn

    |χn〉δ(E − Ep −

    k2n2mn

    )〈χn|+

    neutron capture︷ ︸︸ ︷Gopt

    †WAn Gopt ,

    we define the neutron wavefunction |ψn〉 = Gopt 〈χp|V |χdφd〉

    cross sections for neutron capture and elastic breakup

    d2σ

    dΩpdEp

    ]capture= − 2

    ~vdρ(Ep) 〈ψn|WAn |ψn〉 ,

    d2σ

    dΩpdEp

    ]breakup= − 2

    ~vdρ(Ep)ρ(En) |〈χnχp|V |χdφd〉|2 ,

    Varenna, June 17th 2015 slide 9/25

  • 2–step process (post representation)

    p

    n

    d

    A A

    non elastic breakupelastic breakup

    p

    n

    A

    G

    p

    B*

    to detector

    step1

    step2

    breakup

    propagation of n in the field of A

    n

    Varenna, June 17th 2015 slide 10/25

  • Austern (post)–Udagawa (prior) controversy

    The interaction V can be taken either in the prior or the postrepresentation,

    Austern (post)→ V ≡ Vpost ∼ Vpn(rpn) (recently revived by Moroand Lei, University of Sevilla)

    Udagawa (prior) → V ≡ Vprior ∼ VAn(rAn, ξAn)in the prior representation, V can act on φA → the optical reduction givesrise to new terms:

    d2σ

    dΩpdEp

    ]post=− 2

    ~vdρ(Ep)

    [=〈ψpriorn |WAn |ψpriorn

    〉+ 2<

    〈ψNONn |WAn|ψpriorn

    〉+〈ψNONn |WAn |ψNONn

    〉],

    where ψNONn = 〈χp| χdφd〉.

    The nature of the 2–step process depends on the representation

    Varenna, June 17th 2015 slide 11/25

  • neutron wavefunctions

    the neutron wavefunctions

    |ψn〉 = Gopt 〈χp|V |χdφd〉

    can be computed for any neutron energy

    0 5 10 15 20 25 30-2

    -1

    0

    1

    2

    En=2.5 MeVEn=-7.5 MeV

    rBn

    bound state

    scattering state

    transfer to resonant and non-resonant continuumwell described

    these wavefunctions are not eigenfunctions of the HamiltonianHAn = Tn +

  • Breakup above neutron–emission threshold

    proton angular differential cross section

    0 20 40 60 80 100 120 140 160 1800.001

    0.01

    0.1

    1

    10

    100

    L=1L=2L=0L=3L=4L=5total

    dσ/dΩ

    (mb/

    sr,,M

    eV)

    Ep=9,MeV

    93Nb,(d,p),,Ed=15,MeV

    θ

    En=3.8,MeV

    Varenna, June 17th 2015 slide 13/25

  • neutron transfer limit (isolated–resonance, first–orderapproximation)

    Let’s consider the limit WAn → 0 (single–particle width Γ→ 0). For anenergy E such that |E − En| � D, (isolated resonance)

    Gopt ≈ limWAn→0

    |φn〉〈φn|E − Ep − En − i〈φn|WAn|φn〉

    ;

    with |φn〉 eigenstate of HAn = Tn +

  • Validity of first order approximation

    For WAn small, we can apply first order perturbation theory,

    d2σ

    dΩpdEp(E ,Ω)

    ]capture≈ 1π

    〈φn|WAn|φn〉(En − E )2 + 〈φn|WAn|φn〉2

    dσndΩ

    (Ω)

    ]transfer

    -5 -4 -3 -2 -1 0 1 2 3 40

    20

    40

    60

    80

    100

    120

    En

    σ(m

    b/M

    eV)

    -5 -4 -3 -2 -1 0 1 2 3 40

    5

    10

    15

    20

    En-5 -4 -3 -2 -1 0 1 2 3 4

    0

    2

    4

    6

    8

    En

    σ(m

    b/M

    eV)

    σ(m

    b/M

    eV)

    completed calculationfirstd order

    WAn=0.5dMeVWAn=3dMeV WAn=10dMeV

    we compare the complete calculation with the isolated–resonance,first–order approximation for WAn = 0.5 MeV, WAn = 3 MeV andWAn = 10 MeV

    Varenna, June 17th 2015 slide 15/25

  • Application to surrogate reactions

    B*

    B*

    Desired reaction: neutron induced fission, gamma emission and neutron emission.

    The surrogate method consists in producing the same compound nucleus B* by bombarding a deuteron target with a radio active beam of the nuclear species A.

    A theoretical reaction formalism that describes the production of all open channels B* is needed.

    n

    A

    A d

    fission

    gammaemission

    neutronemission

    fission

    gammaemission

    neutronemission

    Surrogate for neutron capture

    Varenna, June 17th 2015 slide 16/25

  • Disentangling elastic and non elastic breakup

    We show some results for the 93Nb(d , p) reaction with a 15 MeV deuteronbeam (Mastroleo et al., Phys. Rev. C 42 (1990) 683)

    4 6 8 10 12 14 16 18 20 220

    10

    20

    30

    40

    50

    60

    70

    ))))shift)real)partof)optical)potential

    0 2 4 6 8 10 12 14 16 180

    10

    20

    30

    40

    50

    60

    70

    dσ/d

    E)(m

    b/M

    eV)

    Ep

    93Nb(d,p)Ed=15)MeV

    total)proton)singleselastic)breakupnon)elastic)breakup

    dσ/d

    E)(m

    b/M

    eV)

    Ep

    we have used the Koning–Delaroche (Koning and Delaroche, Nucl.Phys. A 713 (2003) 231) optical potential

    the real part of the optical potential has been shifted to reproducethe position of the L = 3 resonance

    contributions from elastic and non elastic breakup disentangled.

    Varenna, June 17th 2015 slide 17/25

  • Obtaining spin distributions

    4 6 8 10 12 14 16 180

    5

    10

    15

    20

    25

    30

    dσ/d

    E (m

    b/M

    eV)

    Ep

    93Nb(d,p)Ed=15 MeV

    L=0

    L=1

    L=2

    L=3

    spin distribution of compound nucleus

    dσldEp

    =2π

    ~vdρ(Ep)

    ∑lp ,m

    ∫ ∣∣ϕlmlp(rBn; kp)∣∣2W (rAn) drBn.Varenna, June 17th 2015 slide 18/25

  • Getting rid of Weisskopf–Ewing approximation

    Younes and Britt, PRC68(2003)034610

    Weisskopf–Ewingapproximation:P(d , nx) = σ(E )G (E , x)

    inaccurate for x = γ and forx = f in the low–energy regime

    can be replaced by P(d , nx) =∑J,π σ(E , J, π)G (E , J, π, x) if

    σ(E , J, π) can be predicted.

    0 1 2 3 4 5 6 70

    5

    10

    15

    20

    Ln

    σ (m

    b/M

    eV) Ep=10 MeV

    Varenna, June 17th 2015 slide 19/25

  • Summary, conclusions and some prospectives

    We have presented a reaction formalism for inclusivedeuteron–induced reactions.

    Valid for final neutron states from Fermi energy → to scatteringstates

    Disentangles elastic and non elastic breakup contributions to theproton singles.

    Probe of nuclear structure in the continuum.

    Provides spin–parity distributions.

    Useful for surrogate reactions.

    Need for optical potentials.

    Extend for (p, d) reactions (hole states)?

    Varenna, June 17th 2015 slide 20/25

  • The 3–body model

    rAp

    rBn

    rpn

    An

    p

    rdθpd

    ξA

    Bd

    rAn

    From H to H3B

    H = Tp +Tn +HA(ξA) +Vpn(rpn) +VAn(rAn, ξA) + VAp(rAp, ξA)

    H3B = Tp + Tn + HA(ξA) +Vpn(rpn) + UAn(rAn) + UAp(rAp)

    Varenna, June 17th 2015 slide 21/25

  • Observables: angular differential cross sections (neutronbound states)

    0 20 40 60 80 100 120 140 160 1800.01

    0.1

    1

    10

    100

    transferNfrescocapture

    0 10 20 30 40 50 60 700

    10

    20

    30

    40

    50

    60

    70

    θ

    dσ/dΩ

    (mb/

    sr)

    L=0

    L=1

    93NbN(d,p)N@N15NMeV

    WAn=0.5NMeV

    capture at resonantenergies compared with

    direct transfer (fresco)calculations,

    capture cross sectionsrescaled by a factor〈φn|WAn|φn〉π.

    double proton differential cross section

    d2σ

    dΩpdEp=

    ~vdρ(Ep)

    ∑l ,m,lp

    ∫ ∣∣∣ϕlmlp(rBn; kp)Y lp−m(θp)∣∣∣2W (rAn) drBn.Varenna, June 17th 2015 slide 22/25

  • Observables: elastic breakup and capture cross sections

    4 6 8 10 12 14 16 18 20 220

    10

    20

    30

    40

    50

    60

    70

    captureelasticNbreakuptotal

    Ep

    σN(m

    b/M

    eV)

    93NbN(d,p)N@N15NMeV

    elastic breakup and capture cross sections as a function of the protonenergy. The Koning–Delaroche global optical potential has been used asthe UAn interaction (Koning and Delaroche, Nucl. Phys. A 713 (2003)231).

    Varenna, June 17th 2015 slide 23/25

  • Sub–threshold capture

    -7 -6 -5 -4 -3 -2 -1 00

    10

    20

    30

    40

    50

    60

    En

    WAn=0.5 MeV

    WAn=3 MeV

    -7 -6 -5 -4 -3 -2 -1 00

    2

    4

    6

    8

    10

    12

    L=2

    L=0

    L=4 L=5dσ

    /dE

    (mb/

    MeV

    )

    Varenna, June 17th 2015 slide 24/25

  • Non–orthogonality term

    -4 -2 0 2 4 6 8 10 12 14 16 18 200

    3

    6

    9

    12

    15

    18

    21

    24

    En

    θp=10o

    93Nbld,pyEd=25.5wMeV

    dσ/d

    Ewlm

    b/M

    eVy

    0 10 20 30 40 50 60 70 80 90 1000.1

    1

    10

    100

    θCM

    d2σ/

    dEdΩ

    NEB without nonworthogonalityNEB with non orthogonality

    En=-3 MeV

    En=5 MeV

    lmb/

    MeV

    wsry

    Varenna, June 17th 2015 slide 25/25

    IntroductionHistorical background


Recommended