+ All Categories
Home > Documents > Development of Numerical Model to Describe Steady Streaming in Unsteady Axisymmetric Biological Flow...

Development of Numerical Model to Describe Steady Streaming in Unsteady Axisymmetric Biological Flow...

Date post: 04-Apr-2015
Category:
Upload: andrion-pineau
View: 116 times
Download: 0 times
Share this document with a friend
10
Transcript
Page 1: Development of Numerical Model to Describe Steady Streaming in Unsteady Axisymmetric Biological Flow in a Geometry with a Slowly Varying Cross-Section.
Page 2: Development of Numerical Model to Describe Steady Streaming in Unsteady Axisymmetric Biological Flow in a Geometry with a Slowly Varying Cross-Section.

Development of Numerical Model to Describe Steady Streaming in Unsteady Axisymmetric Biological Flow in a Geometry with a Slowly Varying Cross-Section

Plan et objectifs du projet

• Etude de l’influence du nombre de Womersley sur les écoulements pulsés

• à travers un tube

• à travers un tube annulaire

• Modélisation numérique

• Ecoulements stationnaire: comparaison résultats analytiques / numériques

• Ecoulements instationnaire à travers un model annulaire

• Ecoulements instationnaire à travers une géométrie à sections variables

• Comparaison qualitative des zones de recirculation

Page 3: Development of Numerical Model to Describe Steady Streaming in Unsteady Axisymmetric Biological Flow in a Geometry with a Slowly Varying Cross-Section.

Development of Numerical Model to Describe Steady Streaming in Unsteady Axisymmetric Biological Flow in a Geometry with a Slowly Varying Cross-Section

Etude de l’influence du nombre de Womersley sur les écoulements pulsés

Définition du problème:

Adimensionalisation

Conditions aux limites

Page 4: Development of Numerical Model to Describe Steady Streaming in Unsteady Axisymmetric Biological Flow in a Geometry with a Slowly Varying Cross-Section.

Development of Numerical Model to Describe Steady Streaming in Unsteady Axisymmetric Biological Flow in a Geometry with a Slowly Varying Cross-Section

Etude de l’influence du nombre de Womersley sur les écoulements pulsés

Le cas du tube: Résultats et interprétations

• Déphasage par rapport au gradient de pression (sauf pour )

• Pour de grand Womersley, le profile n’a « pas le temps » de se développer

• Zone visqueuse au bord et non-visqueuse au centre

Page 5: Development of Numerical Model to Describe Steady Streaming in Unsteady Axisymmetric Biological Flow in a Geometry with a Slowly Varying Cross-Section.

Development of Numerical Model to Describe Steady Streaming in Unsteady Axisymmetric Biological Flow in a Geometry with a Slowly Varying Cross-Section

Etude de l’influence du nombre de Womersley sur les écoulements pulsés

Le cas du tube annulaire: Résultats et interprétations:

Page 6: Development of Numerical Model to Describe Steady Streaming in Unsteady Axisymmetric Biological Flow in a Geometry with a Slowly Varying Cross-Section.

Development of Numerical Model to Describe Steady Streaming in Unsteady Axisymmetric Biological Flow in a Geometry with a Slowly Varying Cross-Section

Etude numérique: Ecoulements stationnaires

Approche analytique: Approche numérique:

Adimensionalisation

Conditions aux limites

Longueur d’entrée:

Page 7: Development of Numerical Model to Describe Steady Streaming in Unsteady Axisymmetric Biological Flow in a Geometry with a Slowly Varying Cross-Section.

Development of Numerical Model to Describe Steady Streaming in Unsteady Axisymmetric Biological Flow in a Geometry with a Slowly Varying Cross-Section

Etude numérique: Ecoulements stationnaires

Page 8: Development of Numerical Model to Describe Steady Streaming in Unsteady Axisymmetric Biological Flow in a Geometry with a Slowly Varying Cross-Section.

Development of Numerical Model to Describe Steady Streaming in Unsteady Axisymmetric Biological Flow in a Geometry with a Slowly Varying Cross-Section

Etude numérique: Ecoulements instationnaire

Comparaison résultats Fluent avec la solution analytique

• Influence du pas de temps choisi sur la solution

• Influence de la valeur du résidu sur la solution

• Influence de la discrétisation du moment (Quick/Muscl) sur la solution

• Influence de l’ordre de discrétisation temporelle sur la solution

• Influence de la condition de sortie sur la solution

Configuration de base des conditions aux limites:

Velocity inlet

Mass flow rate

Page 9: Development of Numerical Model to Describe Steady Streaming in Unsteady Axisymmetric Biological Flow in a Geometry with a Slowly Varying Cross-Section.

Development of Numerical Model to Describe Steady Streaming in Unsteady Axisymmetric Biological Flow in a Geometry with a Slowly Varying Cross-Section

Etude numérique: Ecoulements instationnaire

Influence du pas de temps:

Pas de temps = 0.1 Pas de temps = 0.05

Page 10: Development of Numerical Model to Describe Steady Streaming in Unsteady Axisymmetric Biological Flow in a Geometry with a Slowly Varying Cross-Section.

Development of Numerical Model to Describe Steady Streaming in Unsteady Axisymmetric Biological Flow in a Geometry with a Slowly Varying Cross-Section

Etude numérique: Ecoulements stationnaires


Recommended