+ All Categories
Home > Documents > Dimethyl Ether Production

Dimethyl Ether Production

Date post: 15-Apr-2017
Category:
Upload: aziz-albattah
View: 733 times
Download: 10 times
Share this document with a friend
19
Dimethyl Ether Production University of TN-Chattanooga ENCH 4290-Intro to ChemE Design Submitted By: Aziz Albatattah, Alwabari Abdulmohsen, Marquita Beard & Alston Casseday
Transcript
Page 1: Dimethyl Ether Production

Dimethyl Ether Production

University of TN-ChattanoogaENCH 4290-Intro to ChemE Design

Submitted By: Aziz Albatattah, Alwabari Abdulmohsen, Marquita Beard & Alston Casseday

Page 2: Dimethyl Ether Production

Outline• Introduction• Objective• Design Constraints• Assumptions• CHEMCAD Design• Sizing• Costing• Conclusion & Questions

Page 3: Dimethyl Ether Production

What is Dimethyl Ether?

• A clean burning, diesel alternative• Inexpensive• Able to meet strict emissions standards• Used in transportation, agriculture and construction

industries• Can be produced from bio or natural gases

Page 4: Dimethyl Ether Production

Objective

• Design a production process to produce 50,000 metric tons of 99.5 wt% dimethyl ether using 99 mol% methanol.

• Plant operating hours: 8,375 hours per year

Page 5: Dimethyl Ether Production

Constraints

• Feed Stream: 25 degrees Celsius and 100 kPa• 80% single pass conversion @ reactor & 100% overall

conversion• Pressure Drops:

• Heat Exchangers: 35 kPa• Mixing Points: 10 kPa• Reactor: 50 kPa• Distillation Columns: 15 kPa

Page 6: Dimethyl Ether Production

Initial Assumptions

• 50,000 metric tons of DME in 8,375 hours = 129.8 kilomoles per hour

• 259.6 kmol/hr methanol required to produce 129.8 kmol/hr DME

• Pure methanol recycle stream• The reactor feed enters at 250 degrees Celsius.

Page 7: Dimethyl Ether Production

Block Flow Diagram of DME Production

Separator Feed Prep

Methanol

Reactor

Separator Feed Prep

Storage

Wastewater Treatment

Separator

Separator

DME 99.5wt%129.8 kmol/hr

80% Conversion Methanol

99 mol%259.6 kmol/hr

Page 8: Dimethyl Ether Production

Process Flow Diagram of DME Production

1

2

35

6

8

97

17

10

3

1112

P-1 01 A/B H-1 01

R-1 01

E-1 01

cw

P-1 02 A/B

cw

T-1 01

lps

cw

E-1 02

cw

T-1 02

lps

P-1 03 A/B

1

2

6

7

13

14

4

5

8 9 10

1112 15 16

18

Figure 1: Process F low Diagram of the Production o f Dimethyl Ether

Page 9: Dimethyl Ether Production

Design• 1 Storage Tank• 3 Pumps• 1 Fired Heater• 1 Reactor• 2 Distillation Columns (Each w/ 2 Heat Exchangers & 1 Reflux

Pump)• 2 Heat Exchangers• 1 Recycle Stream

Page 10: Dimethyl Ether Production

Stream PropertiesStream No. 1 10 18 17Stream Name Temp C 25.0 44.98 51.04 111.60 Pres kPa 100.0 1010.00 1045.00 155.00Enth MJ/h -64666 -26673 -17850 -38258Vapor mole frac. 0.00 0.00 0.00 0.00 Total kmol/h 269.70 132.55 74.11 137.16 Total kg/h 8575.80 6097.18 2249.41 2479.41 Total std L m3/h 10.69 9.06 2.84 2.84 Total std V m3/h 6044.96 2971.08 1661.10 3074.19 Flow rates in kg/hDimethyl Ether 0.00 6075.31 78.28 0.00Methanol 8491.13 21.88 2071.03 19.49 Water 84.67 0.0002 140.10 2459.42

Page 11: Dimethyl Ether Production

Heat Exchangers E-101 E-102 E-103 E-104 E-105 E-106Type S&T S&T Kettle S&T S&T KettleArea(m2) 45.8 41.6Duty (MJ/h) -15718 -1454 4046 -3149 -4444 4690

Temp.(oC) 343 (Tmax) 79 (Tmax) 153 45 51 112Pres. (kPa) 950 (max) 105 (max) 1060 1010 105 155Phase V to L V to L L to V V to L V to L L to VMOC SS CS CS CS CS CSVessels/Tower/Reactors V-101 R-101 T-101 T-102 V-102 V-103Temp.(oC) 31 343 153 112 45 51Pres. (kPa) 1045 1000 1060 155 1010 105Orientation Horiz. Vertical Vertical Vertical Horiz. Horiz.MOC CS SS CS CS CS CS

Height/Length (m) 9 15 8.54 9.76 17.5 11.79Diameter (m) 10 5 0.76 0.76 5.85 3.93Internals s.p. Sized for 2X 14 Valve 16 Valve

Catalyst Vol. Trays TraysTray MOC CS CS CS CS

P-101 P-102 P-103 P-104 P-105(A/B) (A/B) (A/B) (A/B) (A/B)

Flow (kg/h) 8576 10866 2289 2214 1409Fluid Density (kg/m3) 786 654 768 622 768Power (shaft) (kW) 2.86 0.554 0.778

P-101 P-102 P-103 P-104 P-105(A/B) (A/B) (A/B) (A/B) (A/B)

Type/Drive Centrif./ Centrif./ Centrif./ Centrif./ Centrif./Electric Electric Electric Electric Electric

Effi ciency (Fluid 1 1 1 1 1Power/Shaft Power)

MOC CS CS CS CS CSTemp. (in) (oC) 25 77 51 45 51Press. (in) (kPa) 100 915 105 1010 105Pres. (out) (kPa) 1045 1035 1045 1010 105

Pumps/Compressors

Pumps/Compressors

Shell

Size

Equipment Summary

Page 12: Dimethyl Ether Production

SizingMethanol Storage Tank:

Volume-519 m3

Height-9 m Diameter-10 m

Reactor: Catalyst Volume-5.89 m3

Reactor Volume-11.78 m3

Height-15 m Diameter-5 m

Page 13: Dimethyl Ether Production

Sizing

• Heat Exchangers:• E-101: 45.8 m2

• E-102: 41.6 m2

• Pump Power:• P-101 A/B- 2.86 kW• P-102 A/B-0.554 kW• P-103 A/B-0.778 kW

Page 14: Dimethyl Ether Production

Sizing• Distillation Column 1, T-101:

• 14 CS valve trays• Height-8.54 m• Diameter-0.76 m

• Distillation Column 2, T-102:• 16 CS valve trays• Height-9.76 m• Diameter-0.76 m

Page 15: Dimethyl Ether Production
Page 16: Dimethyl Ether Production

Economic Information Calculated From Given Information

Revenue From Sales $ 42,944,796 material

CRM (Raw Materials Costs) $ 20,110,251 material

CUT (Cost of Utilities) $ 1,510,000 COM

CWT (Waste Treatment Costs) $ 747,544 material

COL (Cost of Operating Labor) $ 758,030 custom

Factors Used in Calculation of Cost of Manufacturing (COMd)

Comd = 0.18*FCIL + 2.76*COL + 1.23*(CUT + CWT + CRM)

Multiplying factor for FCIL 0.18

Multiplying factor for COL 2.76

Facotrs for CUT, CWT, and CRM 1.23

COMd $ 30,387,551

Page 17: Dimethyl Ether Production

NPVProject 1

0 1 2 3 4 5 6 7 8 9 10Revenue (42,944,796)$ (42,944,796)$ (42,944,796)$ (42,944,796)$ (42,944,796)$ (42,944,796)$ (42,944,796)$ (42,944,796)$ (42,944,796)$ (42,944,796)$ Cost of Manufacturing 30,387,551$ 30,387,551$ 30,387,551$ 30,387,551$ 30,387,551$ 30,387,551$ 30,387,551$ 30,387,551$ 30,387,551$ 30,387,551$ Depreciation 313,207$ 313,207$ 313,207$ 313,207$ 313,207$ 313,207$ 313,207$ 313,207$ 313,207$ 313,207$ Net Income before tax (12,244,038)$ (12,244,038)$ (12,244,038)$ (12,244,038)$ (12,244,038)$ (12,244,038)$ (12,244,038)$ (12,244,038)$ (12,244,038)$ (12,244,038)$ Tax @ 35% 4,285,413$ 4,285,413$ 4,285,413$ 4,285,413$ 4,285,413$ 4,285,413$ 4,285,413$ 4,285,413$ 4,285,413$ 4,285,413$ Income after tax (7,958,624)$ (7,958,624)$ (7,958,624)$ (7,958,624)$ (7,958,624)$ (7,958,624)$ (7,958,624)$ (7,958,624)$ (7,958,624)$ (7,958,624)$ Depreciation (313,207)$ (313,207)$ (313,207)$ (313,207)$ (313,207)$ (313,207)$ (313,207)$ (313,207)$ (313,207)$ (313,207)$ Cash Flow 3,132,074$ (8,271,832)$ (8,271,832)$ (8,271,832)$ (8,271,832)$ (8,271,832)$ (8,271,832)$ (8,271,832)$ (8,271,832)$ (8,271,832)$ (8,271,832)$ Discounted Cash Flow ($37,174,326)NPV (34,042,252)$

Cummulative Cash Flow 3,132,074$ (5,139,758)$ (13,411,590)$ (21,683,422)$ (29,955,253)$ (38,227,085)$ (46,498,917)$ (54,770,749)$ (63,042,581)$ (71,314,413)$ (79,586,244)$ Internal Hurdle Rate 18%

Page 18: Dimethyl Ether Production

Conclusion

• Based off the NPV spreadsheet there is never a breakeven point

• The discounted cash flow over ten years is - $37, 000, 000

Page 19: Dimethyl Ether Production

References

Bondiera, J., and C. Naccache. “Kinetics of Methanol Dehydration in Dealuminated H-Mordenite: Model with Acid and Base Active Centres.” Applied Catalysis 69 (1991): 139-148.

“DME Basics.” Oberion Fuels. http://www.oberonfuels.com/technology/dme-basics-2/ (accessed

November 30, 2015).


Recommended