+ All Categories
Home > Documents > DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010....

DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010....

Date post: 27-Feb-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
53
DIRC options: present and future K i Ni hi Bl i R liff d Kurtis Nishimura and Gary Varner Blair Ratcliff and Jerry Va’vra focusing DIRC (fDIRC) imaging TOP (iTOP) Note: many contributors not contributors not those listed; only contacts for purposes of this Jochen Jochen Schwiening Schwiening Jochen Jochen Schwiening Schwiening summary! Please see publications for Schwiening Schwiening Schwiening Schwiening 1 PHENIX Decadal Meeting 16-DEC-10 details. Panda DIRC/TOP options Version 10
Transcript
Page 1: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

DIRC options: present and future

K i Ni hiBl i R liff d Kurtis Nishimuraand Gary Varner

Blair Ratcliff and Jerry Va’vra

• focusing DIRC (fDIRC) • imaging TOP (iTOP)Note: many

contributors notcontributors not those listed; only

contacts for purposes of this

Jochen Jochen SchwieningSchwieningJochen Jochen

SchwieningSchwieningp psummary!Please see

publications for

SchwieningSchwieningSchwieningSchwiening

1PHENIX Decadal Meeting 16-DEC-10

pdetails. • Panda DIRC/TOP options

Version 10

Page 2: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Starting point: upgraded “Super B” Detectors

• 3 ways to improve:• 3 ways to improve:– Pixel detector

H iti it2

– Hermiticity– Particle Identification

Page 3: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

The detector is an upgrade of

• New SVT with striplet > pixel Layer 0striplet-> pixel Layer 0

• New DCH• Smaller DIRC SOB

BABAR

• Possible forward PID• New EMC forward

endcap• Possible rear endcap

calorimeter • Improved muon ID

SuperB

p

3

Page 4: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Particle ID at the B Factories

4NIM A553 (2005) 317-322. NIM A494 (2002) 402-408.

Page 5: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Particle ID observables

Radiator

K p, K, p

Tflight

E2 = p2 + m2

O t i id t d5

Or trap inside, measure at end

Page 6: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Detection of Internally Reflected Cherenkov (DIRC) Light

• Charged particles of same momentum but different mass (e.g., K and ) emit Cherenkov light at different angles.

• Detect the emitted photons in 2+ dimensions (x,y,t)• BaBar DIRC as a model: The larger the expansion

region the better the x y

K

region, the better the x-y image...A large volume (>1m) may be required for acceptable

πx

y

θc = cos (1/nβ)

be required for acceptable performance.

Quartz :Φ Q n = 1.471 (@λ=390nm)

Φ

6NIM A515 (2003) 680-700.

Page 7: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

DIRC Implementation

7NIM A538 (2005) 281-357.

Page 8: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Particle ID Techniques• BaBar DIRC is the starting place

Jerry Va’vra

8

Page 9: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

3-D Detector Concept (Blair Ratcliff)Precisely measured detector pixel coordinates and beam parameters.Precisely measured detector pixel coordinates and beam parameters.→ Pixel with hit (xdet, ydet, thit) defines 3D propagation vector in bar

and Cherenkov photon properties (assuming average )x, y, cos cos cos Lpath, nbounces, c, fc , tpropagation

Always doing some type of focusing

f(x.y.[t-z])

9NIM A595 (2008) 1-7.

Page 10: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Fast Focusing DIRC ConceptFast Focusing DIRC Concept

10NIM A553 (2005) 96-106.

Page 11: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Focusing DIRC Prototype Optics

• Radiator:– 1.7 cm thick, 3.5 cm wide, 3.7 m long fused silica bar (spares from BABAR DIRC).

• Optical expansion region:• Optical expansion region:– filled with a mineral oil to match the fused silica refraction index (KamLand oil).– include optical fiber for the electronics calibration (PiLas laser diode).

• Focusing optics:

11

Focusing optics:– a spherical mirror with 49cm focal length focuses photons onto a detector plane.

Page 12: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Focusing DIRC prototype reconstruction

diPrototype coordinate systems: Geant 4 simulation of the prototype:

• Each detector pixel determines these photon parameters for average :c, cos cos cos Photon path length, time-of-propagation, number of photon bounces

• Use full GEANT4 simulation to obtain the photon track parameters for each pixel. (it is checked by a ray-tracing software)

12

Page 13: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Focusing DIRC Prototype (T-492)Beam spot: < 1mm NIM A595 (2008) 104-107.

Lead glass:

~36ps

Local START time:

Jose Benitez #Gholam Mazaheri #

David W.G.S. Leith #Blair N. Ratcliff #

Focusing DIRC R&D effort at Focusing DIRC R&D effort at SLACSLAC::

13

Larry L. Ruckman +Gary S. Varner +

Jochen Schwiening #

Jerry Va’vra ## SLAC + University of Hawaii

13

Page 14: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Cherenkov Photon Signal (2006)• 10 GeV/c electron beam data• approx. 7.7M triggers, 560k good single e– events• ~ 200 pixels instrumented• Ring image is most narrow in the

Cherenkov photons in time domain

g g3 x 12 mm pixel detector (H-9500 in slot 3)

Cherenkov photons in θc domain

σ=10.4mrad σ=7.5mrad slot 3H-9500

allslots

Cherenkov photons in pixel domain

θc (mrad) θc (mrad)

Cherenkov photons in pixel domain

14Hamamatsu H-8500Hamamatsu H-9500 Burle 85011-501 Burle 85011-501

Burle 85011-501Burle 85011-501

14

Page 15: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Aug 2007 Run: timing slot 7, pad 15to Philips slot 1&6 for run 27 pos 1 direct photons

slot 1, pad 28

(symmetry partner in hit plane)

for run 27, pos 1, direct photonsσ≈240ps

slot 7, pad 30 (close neighbor in hit plane)

New BLAB-based Readout

slot 6, pad 61σ≈170psσ≈275ps

15delta(time) (ns)

Future readout prototype

Page 16: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

16

Page 17: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

FDIRC FDIRC FORFOR IITALIANTALIAN SSUPERUPERBB

GEANT4renderingg

G4 model

17

Page 18: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

FDIRC FDIRC FORFOR IITALIANTALIAN SSUPERUPERBB

Photodetector:Photodetector: 12 arrays of 6*8 MaPMTs (HPK H8500) → 18,432 pixels.

Readout Electronics:TDC/ADC information for every photon.

Bottom line:

Conservative, robust design;

10x better timing resolution than BABAR DIRC;

d i d l25x smaller expansion volume than BABAR DIRC;

Cherenkov angle determined from 2D spatial coordinates;

camera design model

Figure from J. Va’vra

Time primarily used to correct chromatic dispersion.

Eagerly awaiting project approval to proceed with large prototype.

RICH2010

Collaboration on readout electronics18

Page 19: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Upgraded detector- PID () detectors

- Inside current calorimeter- Use less material and allow more tracking volume- Use less material and allow more tracking volume Available geometry defines form factor

-Barrel PID Aerogel RICH

2.6m

1.2m

e- e+

19

8.0GeV 3.5GeV

Page 20: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Time-of-Propagation (TOP) CounterNIM A595 (2008) 96 99NIM A494 (2002) 430 435

• Work at bar end, measure x,t, not y compact!

NIM A595 (2008) 96-99. NIM A494 (2002) 430-435.

~400mm

Linear-array type photon detector

20mm

Quartz radiator

x

y

z

LX

20mm

(cm

)

90±, 2GeV90 , 2GeVRed - PionBlue - Kaon(Peaks offset b 200 )by ~200 ps)

(ns) 20

Page 21: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Chromatic dispersion0 21

0 2

0.21

city

(m/n

s) Light propagation velocity inside quartz

Variation of propagation velocity depending on the wavelength of Cherenkov photons

• Due to wavelength spread of detected photons 0 19

0.2

roup

vel

ocCherenkov photons

detected photons• propagation time dispersion

0.19

300 400 500 600 700Wave length (nm)

G

• Longer propagation length Improves ring image difference

But decreases time resolutionBut, decreases time resolution.

21

Page 22: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Focusing TOP• Use dependence of Cherenkov angle to

correct chromaticityAngle information y position

c~ few mrad

– Angle information y position– Reconstruct Ring image from 3D information

(time, x and y).

c~ few mrad over sensitive range • y~20mm (~quartz thickness)

– We can measure dependence and obtain good

Virtual readout screen

– We can measure dependence and obtain good separation even with narrow mirror and readout plane, because of long propagation length.

Virtual readout screen22mm x 5mm matrix

Focusing mirror

221850mm

Page 23: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Issues with Belle II PID options• Basic TOP

– Performance marginal at best– Not robust against multiple particle hits

• Focusing TOP– Acceptance gap– Complicated image reconstruction

• Fast Focusing-DIRC– Works very well

J t d ’t fit!– Just doesn’t fit!

• Some alternative?

23

Page 24: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

C t

imaging TOP (iTOP)Concept: Use best of both TOP (timing) and DIRC while fit in Belle PID envelope

NIM A623 (2010) 297-299.

e e e ve ope

BaBar DIRC

• Use new, high-performance MCP-PMTs for sub-50ps single p.e. TTS• Use simultaneous T c [measured-

24Use wide bars like proposed TOP counter

• Use simultaneous T, c [measured-predicted] for maximum K/ separation• Optimize pixel size 24

Page 25: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Simulation Studies• Independent simulations:Independent simulations:

– Belle Geant3 + standalone code (Nagoya)– Geant4 (Hawaii)

Standalone code (Ljubljana)– Standalone code (Ljubljana)

• All utilize a Log(Likelihood) approach to determine particle classification.– PDFs are defined in x,y, and t– Geant-based versions take probability distribution

functions (PDFs) from simulated events.Extremely time consuming to generate the PDFs, but

can include all the effects (scattering, ionization, delta-rays, etc.) that Geant can provide.

– Log (Likelihood) in Ljubljana code utilizes K

Classified as KClassified as

g ( ) j janalytical expressions for the likelihood functions.Much faster! Working to integrate with full simulated data and

i f

K

improve performance.

25NIM A623 (2010) 297-299.

Page 26: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Quartz Cherenkov Device Landscapenc

e BaBar

Fast Focusing DIRC More sensitive

to tracking t i ti

More sensitive to t0

t i ti

rfor

man

Focusing TOPDIRC uncertainties uncertainties

Imaging TOP

Per

•Large (~1m) expansion

•Some expansion (~0.5 m)•Focus to correct for

•No expansion•Mainly x,t•Small expansion (~.1 m)

TOP

•Mainly x,y•Very coarse t

finite bar thickness.•Mainly x,y•Order ~200 ps tmake chromatic corrections

•Focusing & coarse y to correct chromatic effects

(Come up with some icon)

•Mainly x,t•Focusing, coarse y to correct chromatic effects

Mostly imaging Mostly

corrections

•No expansion•Only x,t

)

Compactness

imaging Mostly timing

Only x,t•No focusing chromatic degradation

26

Page 27: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

For the future: PANDA For the future: PANDA DDETECTORETECTOR

p

Endcap DIRCEndcap DIRC

EM Calorimeter(lead tungstate)

Barrel DIRC27

Page 28: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

DIRCDIRC ININ PANDAPANDA

DIRC d t t d tMost recent review

DIRC detector advantages• Thin in radius and radiation length.

• Moderate and uniform amount of material in front of calorimeter

of PANDA DIRCs:C. SchwarzRICH2010

• Moderate and uniform amount of material in front of calorimeter.

• Number of signal photons increases in forward direction (good match to asymmetric detector at fixed target experiment).

• Fast and tolerant of background.

• Robust and stable detector operations.

PANDA design includes two DIRC detectors

• Barrel DIRC similar to BABAR DIRC.

• Novel endcap Disk DIRC – 2x designs (DIRC & TOP).

Institutions currently involved• Edinburgh, Erlangen, Dubna, Ferrara, Gießen, Glasgow, GSI, Vienna.

28

Page 29: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Particle Identification coverage of the two DIRC detectors

DIRCDIRC ININ PANDAPANDA

Particle Identification coverage of the two DIRC detectors

CD

isk

DIR

CE

ndca

p

Barrel DIRC

Kaon distribution of the radiative decayJ/ψ -> K+K-γ

(search of glue balls)

Endcap Disk DIRCBarrel DIRC 29

Page 30: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

PANDAPANDA BBARRELARREL DIRCDIRC10.1016/j.nima.2010.10.061NIM A595 (2008) 112-115.

Improved version of proven BABAR-DIRC designMore compact, faster, focusing optics

96 di t b th ti f d ili Photon detectors• 96 radiator bars, synthetic fused silica 17mm (T) × 33mm (W) × 2500mm (L)

• Focusing optics: lens system

Photon detectors and electronics

• Compact photon detector: array of Burle Planacon MCP-PMT or Geiger-mode APD, total 7000-10000 channels.

• Fast photon detection: MCP-PMT/gAPD plusfast TDC/ADC (ToT) electronics

Radiator bars

Focusing optics→ 100-200 ps timing.

Still investigating several design options:

Focusing optics

Still investigating several design options:

mirror focusing, radiator plates, photon detection outside magnetic field30

Page 31: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

PANDA FPANDA FOCUSING OCUSING DDISKISK DIRCDIRC

mechanical• Image reconstruction in 2D (X, Y)

• Timing used for event correlation and

mechanicalsupport

background subtraction

• Radiator: synthetic fused silica, fused silicadisk20 mm thick, 1100 mm radius

• Focusing optics for imaging with dispersion correcting element (LiF)

disk

dispersion correcting element (LiF)

• Compact detection plane on each light guide (50x50 mm2)gu de (50 50 )

• 128 light guides, 4096 R/O channels

lightguideslightguidesand photon detectors

3110.1016/j.nima.2010.10.116

Page 32: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Option A: PANDA Option A: PANDA FFOCUSING OCUSING DDISKISK DIRCDIRC

• Direct measurement of Cherenkov angle→ need expansion region

• Design of expansion region = light guidecompromise between compact size andperformance with given MCP-PMT sizep g

• Transition from fused silica to LiF and back has two-fold

i ff t d iti t di iprism effect and mitigates dispersion

Can also correct dispersion using timing

32

Page 33: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Option B: PANDA Option B: PANDA TTIMEIME--OOFF--PPROPAGATIONROPAGATION DDISKISK DIRCDIRC

• Reconstruction in 1D+t.

• Indirect measurement of Cherenkovangle using time-of-propagation (TOP)and photon propagation angle in disk.

• Requires photon path reconstructionand fast single-photon timing σt < 50ps

Di h i i t l t l th• Dichroic mirrors to select wavelength band and to increase light path(relative error drops with increasing path length)

• Approx. 1000 R/O channels.

33

Page 34: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

PANDA TPANDA TIMEIME--OOFF--PPROPAGATIONROPAGATION DDISKISK DIRCDIRC

• Cherenkov images: pattern in TOP/φ space(φ given by PMT pixel number).

• Use first arriving photons to determineevent (start) time t0.

• Consider all photon paths up to 4 rimreflections for particle hypothesis test.

R b t t ti th d i d t• Robust reconstruction method required to deal with multiple tracks and backgrounds.

34

Page 35: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Key (common) PID R&D Items• Fused silica (quartz) radiator bar production

• High performance Timing readout

• Good single photon timing detector – 1.5T field operationp– >1C/cm2 integrated charge– <50ps Transit-Time Spread

• Triggering possibility? ( di d h b i R&D f B ll II)

35

(not discussed here, but active R&D for Belle II)

Page 36: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Readout Electronics using“O ill Chi ” NIM A583 (2007) 447“Oscilloscope on a Chip” NIM A583 (2007) 447

LABRADOR C i lLABRADOR CommercialSampling speed 1-3.7 GSa/s 3 GSa/s

Bits/ENOBs 12/9-10 8/7.4

36LABRADOR ASIC

Power/Chan. <= 0.05 W few W

Cost/Ch. < $10 > 100’s $36

Page 37: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

SummaryCl ll b ti b tClose collaboration between groups has been essential

• Focusing DIRC prototype detector (SuperB)• Full prototype test this summerFull prototype test this summer• SuperB schedule

• Belle II on very aggressive time scale• Quartz production must start 2011• Installation in spring 2014

• Panda schedule a bit more relaxedPanda schedule a bit more relaxed• Can explore some interesting new ideas• Will learn from the Super-B factory developments

J i t R&D h b f l37

• Joint R&D has been very successful

Page 38: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Source material (page 1)1. E. Nakano, “Belle PID,” NIM A494 (2002) 402-408.2 J S h i i l (B B DIRC C ll b ti ) “P f f th B B DIRC ” NIM2. J. Schwiening et al. (BaBar-DIRC Collaboration), “Performance of the BaBar DIRC,” NIM

A553 (2005) 317-322.3. J. Cohen-Tanugi, M. Convery, B. Ratcliff, X. Sarazin, J. Schwiening and J. Va’vra, “Optical

properties of the DIRC fused silica Cherenkov radiator,” NIM A515 (2003) 680-700.4 I Ad t l (B B DIRC C ll b ti ) “Th DIRC ti l id tifi ti t f4. I. Adam et al. (BaBar-DIRC Collaboration), “The DIRC particle identification system for

the BaBar experiment,” NIM A538 (2005) 281-357. 5. Blair N. Ratcliff, “Advantages and limitations of the RICH technique for particle

identification,” NIM A595 (2008) 1-7. 6 C Fi ld T H di D id W G S L ith G M h i B R t liff J S h i i J Uh J6. C. Field, T. Hadig, David W.G.S. Leith, G. Mazaheri, B. Ratcliff, J. Schwiening, J. Uher, J.

Va’vra, “Development of Photon Detectors for a Fast Focusing DIRC,” NIM A553 (2005) 96-106.

7. J. Benitez, D.W.G.S. Leith, G. Mazaheri, B.N. Ratcliff, J. Schwiening, J. Vavra, Larry L. R k G S V “St t f th F t F i DIRC (fDIRC) ” NIM A595 (2008)Ruckman, Gary S. Varner, “Status of the Fast Focusing DIRC (fDIRC),” NIM A595 (2008) 104-107.

8. Y. Enari, , M. Akatsu, T. Hokuue, T. Igaki, K. Inami, A. Ishikawa, Y. Kawakami, T. Matsuishi, T. Matsumoto, Y. Miyabayashi, T. Ohshima, K. Senyo, A. Sugi, A. Sugiyama and S T k d “P t Ti Of P ti t t f i i iS. Tokuda, “Progress report on Time-Of-Propagation counter – a new type of ring imaging Cherenkov detector,” NIM A494 (2002) 430-435.

9. K. Inami, “Development of a TOP counter for the Super B factory,” NIM A595 (2008) 96-99.

10 K Ni hi T B d H H dl B J b J K d M R L

38

10. K. Nishimura, T. Browder, H. Hoedlmoser, B. Jacobson, J. Kennedy, M. Rosen, L. Ruckman, G. Varner, A. Wong, W. Yen, “An Imaging time-of-propagation system for charged particle identification at a super B factory,” NIM A623 (2010) 297-299.

Page 39: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Source material (page 2)11 C S h D B tt i D B f d V C iti A C hi VKh D d kh f M D11. C. Schwarz, D. Bettoni, D. Branford, V. Carassiti, A. Cecchi, V.Kh. Dodokhof, M. Dueren,

K. Foehl, R. Hohler, R. Kaiser, A. Lehmann, D. Lehmann, H. Marton, K. Peters, G. Schepers, L. Schmitt, P. Schoenmeier, B. Seitz, C. Sfienti, A. Teufel, A.S. Vodopianov, “The barrel DIRC of the PANDA experiment,” NIM A595 (2008) 112-115.

12 J Sch iening for the PANDA Cherenko gro p “The barrel DIRC detector for the PANDA12. J. Schwiening for the PANDA Cherenkov group, “The barrel DIRC detector for the PANDA experiment at FAIR,” 10.1016/j.nima.2010.10.061, to appear NIM A.

13. C. Schwarz et al. (PANDA Cherenkov group), “Particle identification for the PANDA detector,” 10.1016/j.nima.2010.10.116, to appear NIM A.

14 G S Varner L L Ruckman P W Gorham J W Nam R J Nichol J Cao M Wilcox “The14. G.S. Varner, L.L. Ruckman, P.W. Gorham, J.W. Nam, R.J. Nichol, J. Cao, M. Wilcox, “The large analog bandwidth recorder and digitizer with ordered readout (LABRADOR) ASIC,” NIM A583 (2007) 447-460.

15. L.L. Ruckman, K. Nishimura, G.S. Varner, J. Vavra, D. Aston, D.W.G.S. Leith, B. Ratcliff, “The focusing DIRC with waveform digitizing electronics ” NIM A623 (2010) 303 305The focusing DIRC with waveform digitizing electronics, NIM A623 (2010) 303-305.

16. Larry L. Ruckman and Gary S. Varner, “Sub-10ps Monolithic and Low-power PhotodetectorReadout,” NIM A602 (2009) 438-445.

17. Larry L. Ruckman, Gary S. Varner and Andrew Wong, “The First version Buffered Large Analog Bandwidth (BLAB1) ASIC for high luminosity collider and extensive radio neutrinoAnalog Bandwidth (BLAB1) ASIC for high luminosity collider and extensive radio neutrino detectors,” NIM A591 (2008) 534-345.

39

Page 40: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Back-up slides

40

Page 41: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

BABARBABAR--DIRC Resolution LimitsDIRC Resolution Limits

Photon yield: 18-60 photoelectrons per track (depending on track polar angle)Photon yield: 18-60 photoelectrons per track (depending on track polar angle)

Typical PMT hit rates: 200kHz/PMT (few-MeV photons from accelerator interacting in water)

Timing resolution: 1.7ns per photon (dominated by transit time spread of ETL 9125 PMT)

Cherenkov angle resolution: 9.6mrad per photon → 2.4mrad per track

Limited by BABAR-DIRC Improvement strategy

Size of bar image ~ 4.1mrad Focusing opticsSize of PMT pixel ~ 5.5mrad Smaller pixel size

Chromaticity (n=n()) ~ 5.4mrad Better timing resolution

Focusing DIRC prototype designed to achieve • 4-5mrad c resolution per photon, • 3σ π/K separation up to ~ 5GeV/c

41

Page 42: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Chromatic EffectsChromatic Effects

Chromatic effect at Cherenkov photon production cos c = 1/n(λ) Refractive Indices and Dispersion versus Wavelength for SiO2

n(phase) n (group)Dispersion [n (phase)] Dispersion [n (group)]

n(λ) refractive (phase) index of fused silican=1.49…1.46 for photons observed in BABAR-DIRC (300…650nm)→ c

γ = 835…815mradLarger Cherenkov angle at production results in shorter photon path length 1.7

1.8

1.9

2

ctiv

e In

dex

1

10

sion

, -dn

/d

p [ (p )] p [ (g p)]Dispersion [n (group)]/ Dispersion [n (phase)]

Larger Cherenkov angle at production results in shorter photon path length→ 10-20cm path effect for BABAR-DIRC (UV photons shorter path)

Chromatic time dispersion during photon propagation in radiator bar1.4

1.5

1.6

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Ph t W l th ( i )

Refra

c

0.01

0.1

Disp

er

Photons propagate in dispersive medium with group index ng

for fused silica: n / ng = 0.95…0.99Chromatic variation of ng results in time-of-propagation (ΔTOP) variation

Photon Wavelength (microns)

ΔTOP= | –L d/ c0 · d2n/d2 |(L: photon path, dwavelength bandwidth)→ 1-3ns ΔTOP effect for BABAR-DIRC (net effect: UV photons arrive later)

42

Page 43: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

fDIRC: SLAC Cosmic Muon Telescope• Nice cosmic stand

• 1 mrad resolution• Precision timing and further studies w/ new electronics

• Installed BLAB2-based readout in Jan. 2009• Approaching 2 years of experience operating (many TB!!)pp g y p p g ( y )

1 5 GeV~1.5 GeVE_min through range stack

43

Page 44: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

fDIRC Readout System Components

Giga-bit

Fiber

BLAB2MCP

Photo-Sensor

BLAB2

BLAB2

MCP

MAIN cPCI

CARD

x8cPCI

Crate

• Up to 8x64 channels per cPCI card

BLAB2(Linux)

• Very portable DAQ• Up to 3,584 channels/cPCI crate

44

Cheap, commodity backendNIM A623 (2010) 303-305.

Page 45: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

NIM A623 (2010) 303-305.

448 channels

New: Integrated photodetector electronics with waveform sampling 45

Page 46: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Cosmic Muon Telescope:Cherenkov Angular Resolution

• Shift in mean due to systematic error in PMT holder survey• Distributions agree with tighter acceptance (near vertical) cuts

Cherenkov Angular Resolution

Distributions agree with tighter acceptance (near vertical) cuts• Chromatic correction next (T0 )

M d

Larry Ruckman thesis

Measured Simulation

Mean: 811.4 mradσ: 11.42 mrad

Mean: 822.8 mradσ: 10.06 mrad

46

Page 47: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

BLAB improved timing performance: Agilent Pulse Cross-Correlation MethodAgilent Pulse Cross Correlation Method

• Comparable performance to best

CH1

performance to best CFD + HPTDC

• MUCH lower power, CH2MUCH lower power, no need for huge cable plant!

CH2

• Using full samples significantly reduces the impact of noise 6 4 RMSthe impact of noise

• Photodetector limited6.4 psRMS

NIM A602 (2009) 438-445.

47~4.5 ps per waveform

( )

Page 48: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

TDC vs. ADC for signal in run 27pad 15

Larry’s offline correction method seems tocome close to correcting time walk.

Some over-correction, some under-correction.,more can be done offline with charge info.

Jochen Schwiening

me

(ns)

ganalysis (unpublished)

tim pad 30

48charge (pC)

profile zoom for pad 29

Page 49: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Photon detector options HAPD• HAPD– Good result from test bench with ASIC readout– Need experience with batch production

HAPD

• MCP-PMT– Good TTS for TOF information

• <20ps TOF resolution• Good ability for low momentum PID

– Improved lifetime – sufficient?

• SiPM/MPPC– Good stability, Enough gain but only 100ps TTS

MCP-PMT

y g g y p– Need large effective area or light guide to make

~5x5mm2 anode– High dark count (<~MHz)

New

Old

49

– Radiation hardness thus far not good enough 20mmMPPC

Page 50: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Highly Integrated ReadoutASIC

SiPMs/APDs

ASIC

C i S kCarrier Socket Tiled Array

50

Integrated Photodetector

packaging Gen. 0 Prototype (LAB3-based)

Page 51: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Gain NeededAmplifiers dominate

board space

Readout ASIC tiny Readout ASIC tiny (14x14mm for 16 channels)

• What gain needed?– At 106 gain, each p.e. = 160 fC

)

Gain Estimate– At 2x105 gain (better for aging), each p.e. = 32 fC

In typical 5ns pulse Vpeak dQ/dt * R 32uA

Rterm 1 p.e. peak50 1mV1k 20 V

Gain Estimate

51

– In typical ~5ns pulse, Vpeak = dQ/dt * R = 32uA * R = 32mV * R [k] (6.4mV)

1k 20mV20k 400mV

Page 52: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Cost Estimates

• ASIC costing well understood, very competitive!

NIM A591 (2008) 534-345.

Storage Depth Capacity

100

0GSa

/s

Economy of Scale for Quoted ASICs

1000BLAB ASIC cost estimate

Based on actual fabrications t ti f

1

10

rage

Dep

th in

[us]

at 1

0Sa

mpl

ing

4 Chan

8 Chan

16 Chan

32 Chan10

100

Chan

nel [

2007

$] or quotations from

foundaries

0.10 2 4 6 8 10

Array Linear Dimension [mm]

Sto

1

Cost

per

52

0.110 100 1000 10000 100000 1000000

Total Number of System Channels

Page 53: DIRC options: present and future - University of Hawaiʻiidlab/taskAndSchedule/iTOP/... · 2010. 12. 14. · More compact, faster, focusing optics • 96 di t b th ti f d ili96 radiator

Structural ConsiderationsBackward end – 1 bar option

PMT &PMT & electronics access

Important features:Backward end – 2

panel

•Both baseline designs are being studied structurally.•Integrated with existing barrel ECL support

bar option

structure.•Provides support for the drift chamber.•Panels to allow access to PMTs and electronics

53

electronics.


Recommended