+ All Categories
Home > Documents > DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1...

DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1...

Date post: 08-Oct-2020
Category:
Upload: others
View: 7 times
Download: 0 times
Share this document with a friend
29
DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS # M.Rakowitz, # B. Eisfeld, * H. Bleecke, # J. Fassbender # DLR, Inst. for Aerodynamics and Flow Technology, * EADS Airbus GmbH • Introduction Grid Generation / Flow Solver Results Case 1 - 4 Additional Work Conclusions of Workshop Improved Results
Transcript
Page 1: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 1

Structured Computations on F4 - DLR / EADS

#M.Rakowitz, #B. Eisfeld, *H. Bleecke, #J. Fassbender#DLR, Inst. for Aerodynamics and Flow Technology, *EADS Airbus GmbH

• Introduction

• Grid Generation / Flow Solver

• Results Case 1 - 4

• Additional Work

• Conclusions of Workshop

• Improved Results

Page 2: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 2

Grid Generation with MegaCads

256 (288) cells

20 (23) cells

12 (13)cells

Boundary layer adaption (AIAA-87-1302) ->inner BL-block inside BL for polar

Trailing edge closedwith Bézier-splines(AIAA-95-0089),

Parametric generation of 2 grids: 3.5e6 cells and 5e6 cells with COH-topology,

Y

Z X

Modification fuselage end -> C-Blockaround wing

32 (36) cells in fuselage BL-block(turb. flat plate δ ∗ factor)

elliptic smoothing

camberline retained

Page 3: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 3

Remarks slide 2:

- The boundary-layer blocks on the wing are divided in an inner and outerpart. The inner part is adapted according to a computation of theboundary-layer thickness (AIAA-87-1302) to be in the boundary-layer forthe whole polar.

- The thickness of the fuselage boundary-layer blocks is estimated by theturbulent flat plate formula times a factor.

- The wing trailing edge is closed according to AIAA-95-0089. That reportshows that blunt trailing edges have to be resolved by 64 cells for 2Dtransonic flows. In 3D this would lead to an H-block behind the TE with ahuge number of high-aspect ratio cells. Closing the TE from 90% of thechord with Bezier-splines and retaining the camber is demonstrated tobe a good engineering approximation for transonic airfoil sections.

- The fuselage end is modified with a smooth transition to the symmetry-plane due to the C-block around the wing. The blunt geometry of thefuselage end is retained as much as possible.

Page 4: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 4

Flow Solver FLOWer

• 3D compressible RANS - eqn. in integral form

• Wilcox kϖ turbulence model

• LEA-kϖ turb. model, mod. for transonic flows (TU Berlin)

• Cell - centered FV - formulation

• Explicit dissipative operator 2nd and 4th differences scaled by thelargest eigenvalue (Jameson, Schmidt, Turkel and Martinelli)

- κ(2): 1/2, κ(4): 1/64, ζ: 0.67 (scaling due to cell aspect ratio)

• Time integration: explicit hybrid multistage Runge-Kutta scheme

• Acceleration: multigrid, local time stepping, implicit residual averaging

• 2 dummy layers at block intersections, 2nd order accurate in space onsmooth meshes

Page 5: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 5

Remarks slide 3:

- due to stability problems with the cell-vertex mode on the mandatoryworkshop grid in the beginning of this study, ζ was set too high. Thiscaused an unneccessary high level of drag for ‘Results Case 1 - 4’.

- In chap. ‘Additional Work’ and ‘Improved Computation’ (performed afterthe workshop), ζ was corrected to 0.2, which caused a decrease in drag.

- The influence of the scaling of artificial dissipation due to cell aspectratio is demonstrated on slides 9 and10.

Page 6: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 6

Case 1 (Ma: 0.75, CL: 0.5, Re: 3e6)

CL

CM

0.1 0.2 0.3 0.4 0.5 0.6 0.7

-0.16

-0.15

-0.14

-0.13

-0.12

-0.11

-0.1

α

CL

-3 -2 -1 0 1 20.1

0.2

0.3

0.4

0.5

0.6

0.7

CD

CL

0.02 0.025 0.03 0.035 0.04 0.045 0.050.1

0.2

0.3

0.4

0.5

0.6

0.7

Experiments NLRExperiments ONERAExperiments DRAFLOWer Wilcox kωFLOWer kω LEA

Page 7: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 7

Remarks slide 4:

- Influence of turbulence model on the mandatory grid computations.

- Almost no difference in drag, slight improvement in CL(α) and CM(CL) forthe LEA-kω model compared to Wilcox kω.

Page 8: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 8

Case 2 (Ma: 0.75, Re: 3e6, DLR grids)

CD

CL

0.02 0.025 0.03 0.035 0.04 0.045 0.050.1

0.2

0.3

0.4

0.5

0.6

0.7

Experiments NLRExperiments ONERAExperiments DRA3.5e6 cells Wilcox kω3.5e6 cells LEA kω5e6 cells Wilcox kω

α

CL

-3 -2 -1 0 1 20.1

0.2

0.3

0.4

0.5

0.6

0.7

CL

CM

0.1 0.2 0.3 0.4 0.5 0.6 0.7-0.17

-0.16

-0.15

-0.14

-0.13

-0.12

-0.11

-0.1

Page 9: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 9

Remarks slide 5:

- Influence of mesh size and turbulence model on DLR grid computations.

- The drag polar on the 3.5e6 cells grid shows only minor differences forthe two turbulence models. The 5e6 cells grid has a reduced drag levelcompared to the coarser grid.

- CL(α) and CM(CL) for the LEA-kω model are much better compared toWilcox kω on the 3.5e6 cells grid.

Page 10: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 10

Case 3 (CL: 0.5, Re: 3e6, DLR 3.5e6 cells grid)

Ma

CD

0.5 0.6 0.7 0.8

0.03

0.035

0.04

0.045

NLRONERADRA3.5e6 cells grid Wilcox kω

CL = 0.5 (DRA: CL = 0.52)

Page 11: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 11

Case 4 (CL:0.4/0.6, Re: 3e6, DLR 3.5e6 cells grid)

Ma

CD

0.5 0.55 0.6 0.65 0.7 0.75 0.8

0.025

0.03

0.035

0.04

0.045

0.05

NLR CL: 0.4ONERA CL: 0.4DRA CL: 0.4NLR CL: 0.6ONERA CL: 0.6DRA CL: 0.63.5e6 cells kω CL: 0.43.5e6 cells kω CL: 0.6

Page 12: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 12

Remarks to slide 6 and 7:

- The level of drag for the drag rise curves is too high due to theaforementioned (remarks slide 3) high level of numerical dissipation.

- The shape of the experimental curves is captured quite well.

Page 13: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 13

Influence T urb ulence Modelling (Ma: 0.75, Re: 3e6, DLR 3.5e6 cells grid)

CD

CL

0.02 0.025 0.03 0.035 0.04 0.045 0.050.1

0.2

0.3

0.4

0.5

0.6

0.7

Experiments NLRExperiments ONERAExperiments DRA3.5e6 cells Wilcox kω3.5e6 cells LEA kω3.5e6 cells Baldw.-Lom. cv3.5e6 cells Baldw.-Lom. cc

α

CL

-3 -2 -1 0 1 20.1

0.2

0.3

0.4

0.5

0.6

0.7

CL

CM

0.1 0.2 0.3 0.4 0.5 0.6 0.7-0.17

-0.16

-0.15

-0.14

-0.13

-0.12

-0.11

-0.1

Page 14: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 14

Remarks slide 8:

- The LEA-kω model shows an improved behaviour concerning CL(α) andCM(CL) compared to the Wilcox-kω model.

- Here it can be seen that the offset in drag is not caused by theturbulence models (check with Baldwin-Lomax).

- The turbulence model has a noticeable influence on CL(α) and a verysignificant influence on CM(CL) (check LEA-, Wilcox-kω and Baldwin-Lomax results)

Page 15: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 15

Influence Num. Dissipation (Ma: 0.75, Re: 3e6, DLR grids)

α

CL

-3 -2 -1 0 1 20.1

0.2

0.3

0.4

0.5

0.6

0.7

CD

CL

0.02 0.025 0.03 0.035 0.04 0.045 0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Experiments NLRExperiments ONERAExperiments DRA3.5e6 cells Wilcox kω3.5e6 cells Wilcox kω ZETA: 0.25e6 cells Wilcox kω5e6 cells Wilcox kω ZETA: 0.2

CL

CM

0.1 0.2 0.3 0.4 0.5 0.6 0.7-0.17

-0.16

-0.15

-0.14

-0.13

-0.12

-0.11

-0.1

Page 16: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 16

Remarks slide 9:

- Here the influence of the scaling parameter ζ (ZETA) on drag isdemonstrated for ζ: 0.67 (higher drag) and ζ: 0.2 for the two DLR grids.The lower ζ moves the polar to a lower drag level.

- CL(α) and CM(CL) change only slightly due to ζ.

Page 17: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 17

Influence Num. Dissip. (Ma: 0.75, Re: 3e6, α: 0 deg, ZETA: 0.2/0.67, DLR grid)

X/C

CP

0 0.25 0.5 0.75 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

NLRONERADRA3.5 cells Wilcox kω α: 0deg3.5e6 cells Wilcox kω ZETA: 0.2 α: 0 deg

η: 0.185

X/C

CP

0 0.25 0.5 0.75 1

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

NLRONERADRA3.5e6 cells Wilcox kω α: 0 deg3.5e6 cells Wilcox kω ZETA: 0.2 α: 0 deg

η: 0.331

X/C

CP

0 0.25 0.5 0.75 1

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

NLRONERADRA3.5e6 cells Wilcox kω α: 0 deg3.5e6 cells Wilcox kω ZETA: 0.2 α: 0 deg

η: 0.514

X/C

CP

0 0.25 0.5 0.75 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

NLRONERADRA3.5e6 cells Wilcox kω α: 0 deg3.5e6 cells Wilcox kω ZETA: 0.2 α: 0 deg

η: 0.844

Page 18: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 18

Remarks slide 10:

- From η: 0.331 the rooftop moves up and the shock steepens due to thelower artificial viscosity.

Page 19: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 19

Influence T ransition and Mesh (Ma: 0.75, Re: 3e6, DPW and DLR grids)

CD

CL

0.02 0.03 0.04 0.050.1

0.2

0.3

0.4

0.5

0.6

0.7

Experiments NLRExperiments ONERAExperiments DRA3.5e6 cells Wilcox kω3.5e6 cells Wilcox kω TRANSDPW grid Wilcox kωDPW grid Wilcox kω TRANS5e6 cells Wilcox kω5e6 cells Wilcox kω TRANS

Page 20: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 20

Remarks slide 11:

- Computations with transition (all computations here with transition usethe experimental transition strip locations) have about 5% less drag thanfully turbulent calculations.

- The DPW grid computation without transition compares well withexperiment (which uses transition strips) and gets worse when using theexperimental transition locations.

- The two DLR grid computations improve when using transitioncompared to the experimental polars. The fine grid solution (bluediamond) is very close to the polar.

Page 21: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 21

Influence T ransition and Mesh (Ma: 0.75, Re: 3e6, DPW and DLR grid)

CL- α and CM - CL

α

CL

-3 -2 -1 0 1 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Experiments NLRExperiments ONERAExperiments DRA3.5e6 cells Wilcox kω3.5e6 cells Wilcox kω TRANSDPW grid Wilcox kωDPW Wilcox kω TRANS5e6 cells Wilcox kω5e6 cells Wilcox kω TRANS

CL

CM

0.1 0.2 0.3 0.4 0.5 0.6 0.7-0.18

-0.17

-0.16

-0.15

-0.14

-0.13

Page 22: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 22

Remarks slide 12:

- For CL(α) and CM(CL) the comparison to experiment deteriorates for allthree grids when using transition.

Page 23: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 23

Influence T rans. and Mesh (Ma: 0.75, Re: 3e6, CL: 0.5, DPW and DLR grid)

X/C

CP

0 0.25 0.5 0.75 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

NLRONERADRA3.5e6 cells Wilcox kω α: -0.02deg3.5e6 cells Wilcox kω TRANS α: -0.13 degDPW grid Wilcox kω α: -0.30 degDPW grid Wilcox kω TRANS α: -0.39deg

η: 0.185

X/C

CP

0 0.25 0.5 0.75 1

-1

-0.5

0

0.5

NLRONERADRA3.5e6 cells Wilcox kω α: -0.02 deg3.5 cells Wilcox kω TRANS α: -0.13 degDPW grid Wilcox kω α: -0.30DPW grid Wilcox kω TRANS α: -0.39 deg

η: 0.331

X/C

CP

0 0.25 0.5 0.75 1

-1

-0.5

0

0.5

NLRONERADRA3.5e6 cells Wilcox kω α: -0.02 deg3.5e6 cells Wilcox kω TRANS α: -0.13 degDPW grid Wilcox kω α: -0.30 degDPW grid Wilcox kω TRANS α: -0.39 deg

η: 0.512

X/C

CP

0 0.25 0.5 0.75 1

-1

-0.5

0

0.5

NLRONERADRA3.5e6 cells Wilcox kω α: -0.02 deg3.5 cells Wilcox kω TRANS α: -0.13 degDPW grid Wilcox kω α: -0.30 degDPW grid Wilcox kω TRANS α: -0.39 deg

η: 0.844

Page 24: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 24

Remarks slide 13:

- For CL= 0.5 the influence of transition on the wing pressure distributionsis small, because of an adjustion of the angle of attack.

- The grid quality (3.5e6 cells grid DLR compared to 3.2e6 cells DPWgrid) is dominant.

Page 25: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 25

Conc lusions

Drag influencing factor s:

• Turbulence model: slight influence on drag, main influence on CL(α) andCM(CL). LEA-kω better on CL(α) and CM(CL) compared to Wilcox kω.

• Transition: ∼ 5% reduction of drag

• Numerical dissipation: ~ 2-5% reduction of CD by proper scaling

• Computational grid:

- ~ 5% reduction of CD by grid refinement (3.5e6 cells with r: 1.125 ->5e6 cells)

- ~ 20 % variation of drag between meshes of similar size (DPW grid:3.2e6 cells)!

-> Grid quality is dominant

Ongoing resear ch: Grid e xtrapolations

Page 26: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 26

Improved Computation (Ma: 0.75, Re: 3e6, DLR 3.5e6 cells grid)

Turbulence model: LEA kω

87.5% scalar dissipation / 12.5% Matrix dissipationk2: 1/4 k4: 1/64

ζ: 0.2 (scaling due to cell aspect ratio)

CL

CM

0.1 0.2 0.3 0.4 0.5 0.6 0.7-0.17

-0.16

-0.15

-0.14

-0.13

-0.12

-0.11

-0.1

Experiments NLRExperiments ONERAExperiments DRA3.5e6 cells LEA kω k2:1/4, k4: 1/64, 12.5% MATRIX diss.

CD

CL

0.02 0.025 0.03 0.035 0.04 0.045 0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

α

CL

-3 -2 -1 0 1 20.1

0.2

0.3

0.4

0.5

0.6

0.7

Page 27: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 27

Remarks slide 15:

- As a result of the DPW experience, the computations are carried on withan improved (i.e. low) setting of artificial viscosity and using the LEA-kωturbulence model on the DLR grids.

- The LEA (Linearized Explicit Algebraic Stress) kω turbulence model hasa modified anisotropy-factor compared to the Wilcox kω model. It is not aconstant any more, but a function of the variables of the mean flow field.The LEA-model is therefore supposed to be more universally valid,especially for nonplanar shear layers.

- The computed drag polar (fully turbulent) above shows an offset of about20 dc to the experimental polar (transition strips). The influence oftransition is a reduction of about 14 dc.

- The computed CL(α)-curve compares very well to the experimentalcurve up to α: 1 deg and captures the slightly nonlinear behaviourbetween 0 and 1 deg. The calulated CL for α: 2 deg is slightly low.

- One conclusion of the workshop was, that it is very difficult to capture theCM(CL)-curve. There were few computations which had these curves

Page 28: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 28

somewhere in the area of the experiments, but none of these capturedthe slope of the experimental moments. The picture above shows anencouraging agreement of the computed moment-curve with the DRA-experiment up to α: 1 deg. Another computation for α: 1.5 deg isnecessary to show if the simulation is able to capture the change inslope there.

- Conclusion: It is possible to achieve high quality CFD results even forthe moment-curve by using careful parameter settings for the artificialviscosity, a proper grid and a sophisticated turbulence model. if all theseprerequisites are set, global force and moments agree with theexperiments as well as detailed pressure distributions (see last slide).

Page 29: DLR Structured Computations on F4 - DLR / EADS · DLR Aerodynamics and Flow Technology Rakowitz 1 Structured Computations on F4 - DLR / EADS #M.Rakowitz, #B. Eisfeld, *H. Bleecke,

DLR

Aerodynamics and Flow Technology Rakowitz 29

Improved Computation (CP-distributions on wing)

X/C

CP

0 0.25 0.5 0.75 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

NLR η: 0.844ONERA η: 0.844DRA η: 0.8443.5e6 LEA kω CL: 0.5, ZETA: 0.2

η: 0.844

X/C

CP

0 0.25 0.5 0.75 1

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

NLR η: 0.331ONERA η: 0.331DRA η: 0.3313.5e6 LEA kω CL: 0.5, ZETA: 0.2

η: 0.331

X/C

CP

0 0.25 0.5 0.75 1

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

NLR η: 0.512ONERA η: 0.512DRA η: 0.5123.5e6 LEA kω CL: 0.5, ZETA: 0.2

η: 0.512

X/C

CP

0 0.25 0.5 0.75 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

NLR η: 0.185ONERA η: 0.185DRA η: 0.1853.5e6 LEA kω CL: 0.5, ZETA: 0.2

η: 0.185


Recommended