+ All Categories
Home > Documents > DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Date post: 04-Dec-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
210
DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ATMOSPHERE 0-70 KM ALTITUDE FEBRUARY 1983 ' . METEOROLOGY GROUP RANGE COMMANDERS COUNCIL . WHITE SANDS MISSILF R9NGE KWAJALEIN MISSILE R&XE YUMA PROVING GROUND . . 3' PAYFIC HISSILE TEST CENTER NAVAL WEAPONS CENTER ATLANTiC FLEET WEAPONS TRAINING FACILITY NAVAL AIR TEST CENTER EASTERN SPACE AND M I S S I L t CENTER ARVAHENT DIVISION WESTERN SPACE AND M I S S I L E CENTER AIR FORCE SATELLITE CONTROL FACILITY AIR FORCE FLIGHT TEST CENTER AIR FORCE TACTICAL FIGHTER WEAPONS CENTER
Transcript
Page 1: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

DOCUMENT 361-83

CAPE CANAVERAL, FLORIDA

RANGE REFE9ENCE ATMOSPHERE 0-70 KM ALTITUDE

FEBRUARY 1983

' . METEOROLOGY GROUP

RANGE COMMANDERS COUNCIL . WHITE SANDS M I S S I L F R9NGE

KWAJALEIN M I S S I L E R & X E YUMA PROVING GROUND . .

3'

P A Y F I C H I S S I L E TEST CENTER NAVAL WEAPONS CENTER

ATLANTiC FLEET WEAPONS TRAINING F A C I L I T Y NAVAL A I R TEST CENTER

EASTERN SPACE AND M I S S I L t CENTER ARVAHENT D I V I S I O N

WESTERN SPACE AND M I S S I L E CENTER A I R FORCE SATELLITE CONTROL F A C I L I T Y

A I R FORCE FLIGHT TEST CENTER A I R FORCE TACTICAL FIGHTER WEAPONS CENTER

Page 2: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

.. . .-.-..- . ' . - . -_ . . _ . _ - . .... . - . . . . . . . . . . - . . - - . . . - . . . - . - . . . . . . . . . . - - . .-- .--.:.-:. ' .-- .-- .----- . -. ' - ' ' - . ' ' - U ~ A S S I F ~ E D

- . - . . ..s SECURITY CLASSIFICATION OF THIS PAGE (Ilhan Dmte Enleted)

REPORTDOCUMENTATIONPAGE 1. REPORT NUMBER 2. GOVT ACCESSION NO

DOCUMENT 361 -83 IAQ-P 1 ~ 5 5 5.7 4. T ITLE (md Subtitle)

RANGE REFERENCE ATMOSPHERE 0-70 KM ALTITUDE

CAPE CANAVERAL, FLORIDA 7. AUTHOR(.)

::zteorology Group Range Comanders Counci 1 White Sands M i s s i l e Range, NM 88002

9- PERFORMING ORGANIZATION NAME AND ADDRESS

Same as Block 7

- - - - - --

11. CONTROLLING OFFICE NAME AND ADDRESS

Secretar iat , Range Conanders Counci 1 ATTN: STEWS-SA-R White Sands M i s s i l e Range, NM 88002

MONITORING AGENCY NAME & ADDRESS(if d l f f e m t froo, Control i l~U Office)

READ INSTRUCTIONS BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

- --

I 5. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

0. CONTRACT OR GRANT NUMBER(*)

10. PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS

12. REPORT DATE

February 1983 I 13. NUMBER O F PAGES

21 3 IS. SECURITY CLASS. (of thte mrt)

Same as Block 11 SCHEDULE

16. DISTRIBUTION STATEMENT (of hi. Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

17. DlSTRlBuT ION STATEMENT (of tha .latract m t e ~ d i n Block 20, i f dfffermt horn Report)

10. SUPPLEMENTARY NOTES

Supersedes Document i04-63, " A t l a n t i c M i s s i l e Range, Cape Kennedy, F lor ida," Parts 1 and 2) AD451780 and AD751 581 .

19. KEY WORDS (Continue on rmveree eidm I f necemmry r r d identify .Sy block number)

Range reference atmosphere, data q u a l i t y cont ro l , coordinate system, s t a t i s t i c a parameters, wind model s, orthogonal axes, data samples, a1 t i tude levels , derived monthly mean, annual mean model atmcspheres, thermodynamic quan t i t i es .

O. Ab6TRACT (T- am- H - a d Identify by block numb-)

FOREWORD

See attached.

F O W DD ,UI TJ 1473 ~ m n c w OF 1 wov 6s IS OBSOLETE UNCLASSIFIED SSCURlTY CL&SSIFICATlOW OF THIS PAGE (Ih.n Detm Entered)

Page 3: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

DOCUMENT 361 -83

CAPE CANAVERAL , FLORIDA

RANGE REFERENCE ATMOSPFERE 0-70 KM ALTITUDE

February 1983

Prepared by

Range Reference Atmosphere Committee Meteor01 ogy Group

Range Comnanders Counci 1

Secretar iat Range Comnanders Council .. /* . .

White Sands M i s s i l e Range, New Mexico 88002

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Page 4: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE OF CONTEXTS

CHAPTER I . INTRODUCTION ................................ 1

A . Definition and Purpose of the Range Reference Atmosphere ....................... 1

B . Scope of the Range Reference Atmosphere and Arrangement of Tables ................. 1

C . Data Quality Control Procedures ............ 2 D . Organization of the Chapters ................ 3

CHAPTER I 1 . WIND STATISTICS AND MODELS ................ 5

A . General Considerations ...................... 5 B . Coordinate System and Computation of

Statistical Parameters ....................... 8 C . Statistical Wind blodels ..................... 1 0 D . Statistical Parameters With Respect to Any

Orthogonal Axes ............................ 2 5

CHAPTER I11 . STATISTICS OF THERMODYNAMIC QUANTITIES AND MODELS ................................... 27

A . General Considerations ...................... 27 B . Establishing Data Samples at the Required ...

3 0 Altitude Levels ............................. C . Computation of Statistical Parameters for

Tables I1 and 111 ........................... 3 5 D . Derived Monthly Mean and Annual Mean

Model Atmospheres .......................... 38 E . T herrnodynamic Quantities Derivable from

the Basic Tables ............................ 38

CHAPTER I V . CONCIAUSIONS AND RECOMMENDATIONS ........ 4 5

REFERENCES ................................................... 4 6

CONVERSION U N I T S ............................................ 33

.................................................... APPENDIX A 105

.................................................... APPENDIX R 158

iii

Page 5: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

LIST OF ORGANIZATION XCRONYAIS

AD Armament Division

AFFTC

AFSC

AFSC IAFGL

AFSCF

AFT FW C

AW S

BMD

DOD

Air Force Flight Test Center

Air Force Systems Command

AFL 3 /Air Force Geophysics Laboratory

Air Force Satellite Control Facility

Air Force Tactical Fighter Weapons Center

Air Weather Service

Ballistic Missile Division

Department of Defense

DOE Department of Energy

DOEINTS DOE /Nevada Test Site

DPG Dugway Proving Ground

ESMC Eastern Space and Missile Center

ET R Eastern Test Range

ICMR Kwajalein Missile Range

NASA National Aeronautics and Space Administration

NASA / ~ I S F C .. NASAIMarshall Space Flight Center - NASAIWFC . - NASAJWallops Flight Center

. . .+ ' 0 -

NOAX . . . . National Oceanic and Atmospheric Administration

NWC Naval Weapons Center

PMT C Pacific Missile Test Center

SAMTO Space and Missile Test Or gani zat ion

USA IDTA U.S. ArmyJDeseret 'I j t Center

USAECOM U . S . Army Electronics Command

USAFETAC United States Air Force Environmental Technics1 Applications Center

Page 6: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

UTTR

WSMC

WSMR

WTR

YPG

6585TG

TSCF

Utah Test and Training Range

Western Space and kiissile Center

White Sands Missile Range

Western Test Range

Y uma Proving Ground

6585th Test Group

Targeting Systems Characterization Facility

h00@8¶im Fo r i r i -W&I mrc T X O w o u n c e d 0 Just liication 0

I

Page 7: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

FOREWORD

Atmospheric parameters are essential to the research and develop- ment of missiles and aerospace vehicles. The need for realistic atmos- pheric models derived in a consistent manner for each of the several major test ranges was recognized in the early 1960's. An atmospheric model which is derived from statistical data for a particular geographical location is referred to as a reference atmosphere.

Following the first Range Reference Atmosphere (RRA) by the Inter-Range Instrumentation Group (IRIG) for Cape Kennedy, Florida, issued in 1963 and additional publications for several ranges up to 1974, improved upper-air data bases have become available from which to develop the RRA. This is the result 3f the extended period of records and improvement in the upper-air measuring program by rocketsondes for altitudes above the rawinsonde ceiling of 30 km altitude. Revised and improved R R A s are j ustified because :

1) Needs tor more definitive statistical atmospheric models have arisen due to changes and advances in aerospace technolow. The Space Transportation System (Space Shuttle) i s one example.

2) There is now an extended and improved upper- air data base for most ranges from which to develop a more definitive RRA.

3) There are requirements for RRAs for n e w r anges and r ange sites.

4 ) There have been scientific advances in understanding the upper atmospheric structure and physical relationships.

5) Advances in statistical modeling techniques have been made due to the general availability of high-speed electro~ic computers. This has led to the adoption of advanced concepts in atmospheric modeling. For these reasons the' Range Reference Atmosphere Committee (RRAC) was tasked by the Range Commander's Council/hleteorology Group (RCC IMG) to establish new :and improved RRAs. The purpose, scope, and objectives

, P

of this task are? ' .

Purpose: This bmmittee, Task MG-1, establishes R R A s for the several ranges as p~ovided by the RCC. An liRA i s a model of the Earth's atmosphere over a geographical location of interest for use by DOD and other U.S. Government range users. The R R A is used to provide planning data for evaluating envimnmental constraints for the particul tir' configurations of environment - sensitive systems and components being develofied or undergoing tests.

Scope: Using the best available upper atmosphere data base to include rawinsonde, rocket sonde and possibly other high-altitude data sources for the range location, the tas!~ is to establish a niodel of certain statistics for wind and thermodynamic quantities derived in a uniform manner and pub!ished in a standardized format.

Page 8: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Objectives: The wind statistics shall be, insofar as practical, modeled to be consistent with rigorous mathematical probability properties of the multivariate normal probability theory . The thermodynamic quantities sta- tistics shall be, insofar as practical, modeled to be consistent with the hydrostatic equation, the equation of state, and the probability principle-, which are related through these physical equations. The document shall serve as an authoritative source of information and as an atmospheric model for a particular range. The first in the series of revised RRAs to be pub- lished is for Kwajalein Missile Range (KhlR) (publication date December 1982). The altitude range required for KMR i s 0 to 70 km. The order of priority for the subsequent publications is:

Range - Altitude Range Required

1. AFFTC /Edwards AFB , CA 0 - 70 knla

2 . EdMC/Cape Canaveral AFS , FL 0 - 70 km

3. WSMCIVandenberg, AFB, CA 0 - 70 krna

4. WSMRJWhite Sands, NM 0 - 70 km

5. PMTC /Point Mugu, CA 0 - 70 krn

6. UTTR /Dugway CMichales AAF) , UT 0 - 30 km b

7. AD /Eglin AFB , FL 0 - 30 km

8. ESMC /Ascension Island 0 - 70 krn (Terminates at 66 krn because of insufficient data)

9. NASA/Wallops Flight Center, VA 0 - 7 0 km

10. Taquac (Guam) 0 - 30 km

11. PMTCIBarking Sands, HI 0 - 70 krn

In keeping with the RCC's object~ve of standardization, the modeling techniques, basic text . and tabulation fornlnt are to be the same for all RRAs. These new and revised RRAs present not only the mean values of the thermodynamic quantities (pressure, ternperat ure , virtual tempera- ture. and density) but also include a st:ltistical measure for the dispersion, i . e . , standard deviations and skewness coefficients. New quantities pre- sented are water vapor pressure and dewpoint temperature. The sta- tistical modeling for the wind is entirely new. The new approach use:; the properties of the bivariate normal probability distribution function.

a. Use rocketsonde data from Pi.iTC/Point Nugu for altitudes above 30 krn. b . Consider augmenting data base from EZy or Salt Lake City.

Page 9: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

All final computations were performed by the United States Air Force Environmental Technical Applications Center (USAFET AC ) in response to a task from Eastern Space and Missile Center (ESAIC) .

The text was prepared jointly between USAFETXC and the NASA1 George C . Marshall Space Flight Center's Space Sciences Laboratory, Atmospheric Sciences Division. The editing and preparation of the manu- script master was performed by the NASAIRISFC orgo'i-iizntion.

The co-chairmen express their gratitude to all RRAC members and their respective colleagues who have made significant technical contribu- tions to the establishment of these RRAs.

Special thanks are tendered to Lt. B. Novogard for his diligence in performing the many computations and the development of the primary Tal~les, I through IV. Special thanks goes to Lt. F. Wirsing for editing and formulating the equations for the derivable thermodynamic equations. These gentlemen performed this outstanding work under the direction of Major B. Lilius, USAFETAC.

Grateful acknowledgment goes to Mrs. Annette Tingle, NASAIMSFC , for editing the manuscript.

The RCC JMG Range Reference Atmosp?, r e Committee consists of representatives from the U.S . Air Force, U. S . Army, National Aeronautics and Space Administration, U. S. Navy, and National Oceanographic and Atmospheric Administration. The committee members for the RR A for the first publication are:

G . G. Boire, WSMC

0. H . Daniel, ESMC

R . de Violini , PMT C

F. G. Finger, NOAAINWS

E . E. Fisher, F!Q AFSC

B. R . Hixon, PMTC

J . M . Hobbie, K M R

E. J . Keppel, AD

S . F. Kubinski, WSR'IR

F. J . Schmidlin, NASAJWFC

0. E. Smith Co- Chairman, NASA IMSFC

Alaj. B. W . Galusha Co-Chairmap , USAFIETAC

v i i i

Page 10: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

CHAPTER I. INTRODUCTION

A. Definition and Purpose of the Range Reference Atmosphere

A. 1 Definition

A reference atmosphere i s a statistical model of tke Earth's atmos- phere derived from upper-air measurements over a partlzular geographi- cal location. Hence, the atmospheric models developed by the Range Reierence Atmosphere Committee (RRAC) in response to a task by the Range Commander's Council~Meteorology Group (RCC IMG) and published by the Secretariat, Range Commander's Council (RCC) are called Range Reference Atmospheres (RRAs). This organization group, formerly called the Inter-Range Instrumentation Gmup/Meteorology Working Group (IRIGI MVJG), published a series of R R A s during the period 1963 through 1974.

A . 2 Purpose

A series of revised and expanded RRAs are to be published for locations of interest to the RCC. These publications are to serve as an authoritative reference source on certain upper air statistics and as atmos- pheric models for a particular range site (location). The technical useful- ness of these documents for the ranges, range users, U.S. aerospace industries , and the scientific community is recognized becuuse of the standardization of the development techniques and the preser tation of the tabulations.

B. Scope of the Range Reference Atmosphere and Arrangement of Tables

B . l Scope

14. The RRA contains thbulations for monthly and annual means, stan-

dard deviations, skewness coefficients for wind speed, pressure tempera- t ure , density, water vapor pressure, virtual temperature , dew -point tem- perature, :nd the means and standard deviations for the zonal and meridional wind components and the linear (product moment) correlation coefficient between the wind components . These statistical parameters are tabulated at the statior, elevation and at 1 km intervals from sea level to 30 km and at 2 km intervals from 30 to 90 km altitude. The wind sta- tistics are given at approximately 10 m above the station elevcltions and at altitudes with respect to mean sea level thereafter. For those range sites without rocketsonde measurements, the R R A s terminate at 30 km altitude or they are extended , if required, when rocketsonde data from a nearby launch site are aval1:,ble. There are four sets of table;. for each of the 12 monthly referert,? periods aud the annual reference period.

f B. 2 Arrangement of Tables ',

The statistical parameters for the RRA models are presented in four tables.

Page 11: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Table I contains all the wind statistical parameters. This table gives the monthly and annual means and standard deviations of the zonal and meridional wind components and the linear (product moment) correla- tion coefficient between these two components; , the mean, standarc devia- tion and skewness coefficient of the wind speed; and the number of wind observations ( sample size).

Table I1 contains the monthly and annual means, standard deviations, and skewness values of pressure, temperature, and density, and the num- ber of observations used for each of these thermodynamic quantities.

Table 111 contains the monthly and annual means, standard deviations and skewness values of the water vapor pressure, virtual temperature and dew point, and the number of observations for each of these moisture- related quantities. The statistical parameters for water vapor pressure and dew point terminate at 15 km altitude. Above 15 km the statistical parameters for virtual temperature are considered to be the same as those for temperature.

Table IV contains the monthly and annual mean atmospheric models for the thermodynamic variables : pressure, virtual temperature, and density. This table is derived from the monthly and annual mean vctual temperature versus altitude (geometric) using the hydrostrltic equation and the equation of state. Also presented i s the geopotential height corre- sponding to the tabulated geometric altitudes. mi

The physical unit for all wind parsmbters i s m Is. The physical unit for pressure is mb; for temperature and virtual temperature, K ; for density, gm lm" and for water vapor pressure, mb. In all cases :he skewness coefEcient and the correlation coefficient between wind compo- nents are unitless. All reference to altitude is geometric altitude anu has the unit km. All reference to height i s geopotential height and has the unit geopot~ntial m or km. All geometric altitudes and geopotential heights are with respect to mean sea level.

C . Data Quality Control Procedures

A small proportion (less than 10 percent) of the soundings in the data base used to calcuIate the RRA tables contained erroneous data values. The soundings which contained these erroneous values were eliminated from the data base using th* following procedures:

1 ) Soundings containing gaps in their height data g-%eater than 200 rnb were rejected. This step was taken because some soundings only contained height values at their "mandat~ry" pressure levels, which were occasionally missing, resulting in soundings with no height information at all.

2 ) An initial set of RRA statistics was computed using all the remain- ing soundings. This initial set of statistics was used to determine data limits for the temperature, pressure, U and V components of the wind, and the dew point (for the 0-30 km portion of the R R A ) or the density (for the

Page 12: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

30-90 km portion of the RRA). The lower (upper) data limits were set at the mean value for a specific paramet@-., minus (plus) six standard deviations of that quantity, One pair o* data limits was computed fm each of these parameters, month of the year and data level.

3) This initial set of data limits was then used to screen the data base. All the soundings which contained vaiuas outside these data iimits were rejected. A new RRA was thon computed using the screened datg base. This second RRA was used to generate a second set of data limits.

4) The second set of data limits was then used to screen the d'ata base further. A new RRA was again generated. The skewness values in this RRA were then evaluated according to empirical criteria specified in Section I1 ,A. 3 of this document for the winds and according to criteria in Section 1II.A. 3 for the thermodynamic quantities. If these criteria were satisfied, the new RR.4 was then used to generate a final set ~f data limits, which were used to quality control the data base for the final ver- sion of the RRA.

5) Occasionally, the third RRA which was generated did not satisfy all of the skewness criteria. This indicated that some incorrect values were still present in the data base. To complete quality control, the dats limits-to- RRA -to-data-limits cycle was continued for additional iterations (usually one or two) until the resulting RRA satisfied the skewness zri- teria. At that point, a f i ~ s l set of data limits was generated. 'This final set of 6 : ~ t a limits was then used to quality control the data 3ase and generate the final RRA.

D. Organization of the Chapters

Because there are plans to publish a series of R R A s , comments on the special organization of the document are in order. The RRA document is arranged in four chapters. Chapter I is the Introduction. Chapter 11, Wind Statistics and Models, contains the techniques used to arrive at the wind statistical parameters, Table I , and the probability functions which are to be used as wind models to derive several wind statistics. Chapter 111, Statistics of The::aodynamic Quantities and Models, contains the tech- niques used to arrive at the thermodynamic and moisture-related statistical parameters given in Tables I1 and 111 and +he atmospheric thermodynamic model presented in Table IV. This chapter also conteins sets of equations to calculate several atmospheric properties. Chapter IV contains the general conclusions and recommendations. These four chapters are reprinted without change for each documented RRA to dssure cansistency and for vxpediescy in preparing the documentation. To account for vari- ations particular to a specific RRA, two appendixes have been included. Appendix A, Examples of Wind Statistics, is designed to give a few illus- trative examples of wind statistics for the specific RRA and cursory obser- vations, comparisons, or comments on wind statistics. Appendix B , Range Specific Information, is designed to present specific information particular to the range, such as geographical !.ocation, data base, etc . , and any curso-:y observations or comments on the thermodynamic quantities.

Page 13: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Read these appendixes! They are located as the last two units in the document oecause they may vary in length depending on the c' -1rcun;- stances. Appendixes A and B and the principal Tables I , 11, 111, and IV are the only changes to be made to each RRA documen, published in this new RRA series.

Page 14: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

CHAPTER 11. WIND STATISTICS AND NODELS

A . General Considerations

A. 1. Objectives

An objective of the RRA is to furnish minimum tabulation for the wind statistics. To meet this objective, the bivariate normal probability distribution was adopted as a statistical model for the wind treated as a vector quantity at the RRA data levels. Only five statistical parameters are required to completely describe this probability function. In Cartesian coordinates these parameters are the means and standard deviations of the two orthogonal components and the correlation coefficient between the two components. These five statistical parameters for the zonal and merid- ional (meteorological coordinates) components are given in Table I. The statistical properties of the bivariate normal probability distribution are used to derive many wind ststistics that are of interest to the ranges and range users. This procedure produces consistent wind statistics that are connected through rigorous m~thematical probability functions. By using these functions, extensive tabulations of wind stztistics are avoided.

The statistical properties of the bivariate normal probabi!ity distri- bution presented for the vector wind statistical model are:

1) The wind components are uni~sr ia te normally distributed.

2) The conditional distribution of one component given a value of the other component is univariate normally distributed.

3) The wind speed i s ol the form of a generalized Rayleigh distribution.

4) The frequency distribution of wind direction can be derived.

5) The conditional distribution of wind speed given o v:~lue of wind direction (wiild rose) can be derived.

6) The five tabulated wind statistical parameter ; which are with respect lo the lneteorological zonal and meridional coordinate system can be derived for any arbitrary rotation of the orthogonal axes.

The probability distribution functions and sets of equations to derive wind statistics for the previously stated properties of the vector wind model are presented. Illustrative examples s re presented in Appendix A . N o attempt is made to give the derivation of the probability functions. The reader is referred to Smith (1976) for some derivations and several applications of the probability distribution properties for wind statistics.

Page 15: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE A. LIST OF SYMBOLS USED IN CHAPTER I1

N - The number of wind measurements in Table I

r - A general variable for the bivariate normal probability distri- bution in polar coordinates

R - A generalized Rayleip.)! variable used for derived wind speed probability distribution

R ( U , V) - The linear (product moment) correlation coefficient between the zonal and meridional wind components in Table I

SK (W) - Skewness parameter for wind speed in Table I

S (U) - The standard deviation of the zonal wind component in Table 1

S ( V ) - The standard deviation of the meridional wind component ir. Table I

S ( W ) - The standard deviation of wind speed in Table I

t - A standardized normal variate used in text Table A

U - The zonal wind component

CBAR - The mean value of the zonal wind component in Table I

V - The meridi~nal wind component

VBAR - The mean valm of the meridional wind component in Table I

W - Wind speed or modulus of wind vector, a scalar quantity

WBXR - The mean value of wind speed in Table I

X - A general component variable or coordinate axes

Y - A general component variable or coordinate axes - X - A general component mean value in the [x.y] coordinate systen; - Y - A general component mean value in the [x,y] coordinate system

u (alpha) - f! ~~1'Lion angle for the [x,y] coordinate system

Page 16: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE A. (Concluded)

(theta) - Wind direction in the polar coordinate system

(Lambda) - A parrrneter in the bivariate normal probability

distribution in text Table B

5 (Xi) - The mean value in the standardized normal probability distribution used in text Table A

n (Pi) - Constant = 3.14159 . . . p (Rho) - The general linear correlation coefficient between the two component variables in the [x,y] coordinate system

"x ' "y - The general standard deviations of the x and y compo-

nent variables in the [ x ,yJ coordinate system.

A. 2. Data Quality Control

The U and V components of the wind were used to generate data limits which were set at plus and minus s is standard deviations from the mean for each of the quantities. These data limits were used to screen the wind data base, a s described in Section I.C. The data bast was con- sidered to be free fmm errors if:

1) The skewness of the wind speed was below 4.0 at data levels where the mean wind speed was less than 15 m/s, and

2) The skewness of the wind speed was below 2.5 at data levels where the mean wind speed was greater than 15 mls.

A . 3. Limitations

For the wind statistics, the correlation coefficients for like wind components and unlike wind components between altitude levels were not computed. Therefore, wind statistics with respect to altitude (profile) cannot be derived from the RRA statistics. For wind profile modeling techniques the user i s referred to Smith ( 1976). However, the wind statistics at discrete altitudes are valid; all of the probability distribution functions given in Chapter I1 can be derived from the five ivind component statistical parameters contained in Table I , and the derived distributions can be considered as wind models at discrete altitudes

Page 17: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

By convention, in the statistical literature Greek letters are used for population or theoretically known parameters, and sample estimates are denoted by English alphabetical letters or with a "hatr ( ,) over the Greek letters. In Chapter I1 Greek letters are used for the variances and the linear correlation coefficient, and the means are denoted by X and P when dealing with the bivariate normal distribution. It will always be understood that Table I contains sample estimates of the statistical parameters end they are with respect to the meteorological zonal (u) and meridional (V) coordinate system.

B . C00~dinate System and Computation of Statistical Parameters

B .l. Coordinate System

Wind measurements are recorded in terms cf magnitude and direction. The wind direction is measured in degrees clc~.kwise froln true north and is the direction from which the wind is blowing. The wind magnitude (the modulus of the vector) is the scalar quantity and is referred to as wind speed or scalar wind. A statistical description that accounts for the wind as a vectcr. quantity i s appropriate and requires a coordinate system.

FP the RRA the standard meteorological coordinate system has been chosen -or the wind statistics, all tables of statistical parameters, and related discussions because the coordinate system used in aerospace and related kpplied fields has not always been consistent.

(Jsing Figure 1, the polar and Cartesian forms for the meteorological coordinate system are defined :

\V = wind speed, scalar wind, or magnitude of the wind vector in *'is.

; = wind direction. 0 is measured in degrees clockwise from true north and is the direction f m which the wind is blowing.

U = zonal wind component, positive west to east in m/s.

V = meridional wind component, positive south to north in mis.

The co.,lponents 3 and W define the polar form, and the U-V components clefit-? the Cartesian fcrrns:

Page 18: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

NORTH

I U (ZONAL) -

,- -2 EAST

Figure 1. The meteorobgical coordinate system.

It i s helpful to note the difference between the mathematical conven- tion for a vector direction and the meteorological convention for wind direction, viz . :

9 met = 270 - 0 math

when 0 - < 1:. - < 270 degrees

8 met = 360 + (270 - 0 math)

when 270 - < €! - < 360 degrees.

B .2. Computation of Statistical Parameters

The wind statistical parameters in Table I for the means and standard deviations of the zonal anc; nleridional wind components and wind speed and the skewness parameter of wind speed were computed using the sums technique presented in Chapter 111. C - 3 . In addition , the linear (product moment) correlation coefficient between the zonal and meridional wind com- ponctlcs, r ( u , v ) in Table I , was computed. This correlation coefficient is defined a s

Page 19: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

These statistical parameters are with respect to the Standard Meteorological Coordinate System.

C . Statistical Wind Models

C . I . Wind Component Statistics

The univeriate normal (Gaussian) probability distribution function is used to obtain wind component statistics. In generalized notations, this probability density function (pdf) is

t2 - T

f ( t ) = e A?;

where t = X - <lux is the standardized variate with 5 defining the clean

and ux the standard deviation. The probability distribution function

(PDF; is

Because this integral cannot be obtained in closed form, it is widely tabulated for zero mean and unit standard deviation. For a convenient reference for the HRA , selected values of F(t) are given in Table B. To emphasize the connotation of probability, F(t) is shown in Table B as P { X I . The t values in Table B are used as multiplier factors to the standard deviation to express the probability that a normally distributed variable, X , is less than or equal to a given value as

P { X 2 mean + t o = probability, p . X I

Page 20: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE B . VALUES OF t FOR STANDARDIZED NORMAL (UNIVARIATE) DISTRIBUTION FOR PE3CENTILES

AND INTERPERCENTILE RANGES

Page 21: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

For example, when t = 1.6449, the probability that X is less than or equal to the mean plus 1.6449 standard deviations is 0.95. That value of X which is less than or equal to the n~ean plus 1.6449 standard devia- tions is called the 95th percentile value of X. AZs,o given in Table 2 are the numerical values to express the probability that X falls in the interval X1 and X2; i.e. ,

X 1 5 X 5 X2 = Interpercentile Range (8)

where X I = % - Ox

For t = 1.9602 the probability that X lies in the interval X1 and X2 is

0.95. The values of X1 and X2 in this example comprise the 95th inter-

percentile range.

For a normally distributed variable, the mode (most frequent value) and the median (50th percentile value) are the same as the mean value. The means and standard deviations of the zonal and meridional wind components from Table I are used in equations (7) and (8) to compute the percentile values and interpercentile ranges of the zonal and merid-. ional wind components. When equation (7) is illustrated on a normal probability graph, a straight line is formed.

C .2. The Vector Wind Model

Because wind is a vector quantity having direction and magnitude which can be expressed as two components in an orthogonal coordinate system, a probability model which describes the joint relationship is the bivariate normal probability distribution. In general component notation, the bivariate normal probability density function (BNpdf) i s

Page 22: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

where the five parameters are i,?, the component means, ';,uy, the

component standard deviations, and L , the correlation coefficient between the two component variables, X and Y .

For many applications the interest is in determining the probability that a point { x , Y } will fall within a contor gf equal probability densit . give a family of ellipses depending on the value of the constant. The

I The exponential terms of equation (91, when set equal to a constant, A ,

ellipses have a common center at the point {x,?} . Integration of equa- tion (9) over the region bounded by the contours of equal probability density gives

. .

2(1 - p') P(X) = 1 - e

2 Solving for h and replacing P( A ) by p gives

Now define

For ready reference and comparisons, Ae is shown in Table C for selected vglues of p.

The probability ellipse that contains p-percent of the wind vectors expressed in the most general form is the conic defined by

where

Page 23: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE C . VALUES OF X FOR BIVARIATE NORMAL DISTRIBUTION ELLIPSES AND CIRCLES

P ( 5 1

0.000

5.000

10.000

15.000

20.000

25.000

30.000

;:3.000

:XI. 24 7

40.000

45.000

50.000

54.406

5.5. 000

60.000

6::. 212

A = \' 2 \r -In ( 1 - P) C

-- h :: \ -In ( I - P)

C

A C

(ellipse)

0.0000

0.3203

0.4590

0.5701

0. GC.80

0.7585

0.8446

0.9282

1.0000

1.0108

1.0935

1.1774

1.2533

1.2GR7

1.3537

1.4112

X C

(circle)

0.0000

0.2265

0.3246

0.4031

0.4723

0.5363

0.5972

0.65G3

0.7071

0.7147

0.7732

0.8325

0.88G2

0.8926

0.9572

1.0000

P(', )

65.000

68.268

70.000

75.000

80.000

55.000

8G.466

90.000

95.000

95.450

98.000

98.168

98.889

99.000

99.730

99.5377

A C

( cllispc)

1.4490

1.5151

1.5518

1.6651

1.7941

1.9479

2.0000

2.1460

2.4477

2.4860

2.7971

2.8284

3.0000

3.0348

3.4393

4.242(i

A C

(circle)

1.0246

1.0713

1.0973

1.1774

1.2686

1.3774

1.4142

1.5175

1.7308

1.7579

1.9778

2.0000

2.1213

2.14b0

2.3320

3. 0000

Page 24: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

and

For graphical presentations the range of the variable is important in order to arrange the scale. The largest and smallest values of X and Y for a given probability ellipse, p , are given by

where, as before, 1 = f i /-in (1 - p) . e

Although there are several approaches to graphing the probability ellipses, the following proced *re is advantageous for electronic computer plotting. In - establishing - the computer plotting program, the sample estimates for X ,Y , ax, a and p are constants in equation (13). The user

Y' makes the choice of probability ellipses desired. Thus, p in equation ( 1 2 ) is programmed as a parameter. The largest and smallest values for X and Y are computed by equations (14 ) and (15) for the largest probability ellipse selected. This sets the graphical scale. Values of X within the range of X smallest to X largest are obtained by incrementing X between these limits. Using the quadratic equation, a solution of equation (13) is made for Y for each value of X and plotted. The centroid (X , P ) for the family of ,)robability ellipses is plotted as a point. Labeling and other identification completes the plotting program.

Page 25: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

For a given probability, equation ( 13) defines an ell.ip:se which con- tains p-percent of the points X,Y. Since the entire area un?er the bivariate normal density function [equation ( 9) 1 is unity, upon intepation for a given probability ellipse, that given ellipse contains F-percent of the total area. In the wind statistics p-percent of the wind -Tr.-.4.0rs rall within the specified probability ellipse. From this point of . . a speci- fied probability ellipse gives the joint probability that p-pel . af the U-V components lie within the given ellipse.

2 When ox2 = o = 0 and p = 0 in the hivariate normal distribution, Y

the probability ellipses of equation (13) reduce to circles whose centers are at the means R,P. The radii of the probability circles are 4rlAc, where

and

Values for hc for selected probabilities, p , are given in Table 3.

Because this function is simple, it can be easily graphed manually. However, the generalized plotting technique for electronic computer plot- ters as represented by equation (13) can be advantage~usly used. -

C. 3. Derived Distributions for Wind Statistics

In this subsection the probability distribution functions and sets of equations are presented to derive certain probability distribution func- tions for wind statistics. These derived probability distributions are:

1) The conditional distribution of wind components

2 ) The generalized Rayleigh distribution for wind speed

3) The distribution for wind direction

4 ) The cor~ditional distribution of wind speed given a wind direc- tion (wind rose).

The required five statistical parameters for these derived distributions for wind statistics are given in Table I .

Page 26: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

C . 3 . 1 . The Conditional Distribu!ion of Wind Components

Given that two random variables X and Y are bivarikte normally distributed, the condjtional distribution f(Y Ix) is read as f(Y) given X , and dkewise f(X I Y ) is read as f(X) given Y . The conditional probability distribution function F(Y /X) has the mean E ( Y I X ) and variance ~ ~ ( ~ 1 ~ ) . where

and

The conditional standard deviation is

By interchanging the variables and parameters, the conditional distribution function for F(X (Y*) has the conditional mean

conditional variance

and conditional standard deviation

Page 27: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

The preceding conditional probability distribution functions are univariate normal distributions for a (fixed) given value for one of the bivariate normal-variables. Thus the t-values given in Table 2 are applicable for conditional probabilities statements. For example,

?or t = 1.6449 there is a 95 percent chance that Y is less than or equal to + 1.6449 a

( Y lx*) given that X = X*. In symbols this statement

reads

Ix = x * )

Interval probabihty statements can also be made; namely,

where X* can take on any fixed value of X, but a co~venient arrangement is to let X* = + to x '

The close connection of the regression function of Y on X tc the conditional mecn for the bivariate ~ o r m a l distribution is noted ; namely,

Similarly, the regression function of X on Y is

These are linear functions and express the same results as would be obtained from a least-squares regression line.

C . 3 . 2 . The Generalized Rayleigh Distribution for Wind Speed

If two random kariables, X and Y, are bivariate normally distributed, then the probability distribution for the modulus, R , can be derived in terms of the five parsmeters which defirte the bivariate normal distribution.

Page 28: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

The distribution of R s:, derived is called a generalized Aayleigh distri- bution because there arc no restrictions on the parameters. For applica- tions to the RRA, the variable R is recognized as wind speed or the modulus of the wind vector.

The probability density function for R is expressed as

The functions, Io( *) , Ik( -) , and 12k( *) are the modified Bessel function

of the first kind for zero order, kth order, and 2kth order. The coefficients are:

where o and :b a are the rotated variances to produce zero correlation

betweell X and Y . J~ and % are the positive and negative mots' of the exprzssio~

1. See footno:e on next page.

Page 29: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

and

Since this density function cannot be integrated in closed form from zero to R, numerical integration is used to ob?.& practical wsults for the probability distribution function ; i. e. ,

A number of special cases can be obtained from the general Rayleigh distribution [equat io~ (29 ) ) . the most simple of which is to let o z a = i;

X Y and % = = 0 with independent variables X and Y . This gives

1. This computaconal form is obtained fmm the determinant

where K is a 2 and oa and ub are analogous to the standard ( + . - I ' deviation of the major and minor axes of the bivariste normal p m b ~ bility ellipse.

Page 30: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

which is remgnized as the classical Rayleigh probability density function. The density function, equation (31), can be integrated in closed form over any range of the variable R. Hence, the probability distribution function, F(R) , for equation (31) is

C. 3.3. The Derived Distribution of Wind Direction

Considering the wind as a vector quantity and bivariate normally distributed, the wind direction can be derived. This is done by first writing the bivariate normal probability denslty function in polar coor- dinates whose variables are

1 -- (a2r2 - 2br + c2) g(r -3) = rdle , (see fmtnote 2) (33)

where

2. This expression, equation (33), in Smith (1976) is given with respect to the mathematical convention for a vector direction.

Page 31: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

and r = 7 x + y is the modulus of the vector or speed and 8 is the direction of the vector. After integrating g(r ,B) over r = 0 to , the probability density function of d is

where a2, b , c2, and dl are as previously defined in equation (33) and

X 1 2 - - t d t

4 ( - ~t (XI = - J e 2 f i -00

is taken from tables of normal distribution functions or made available thro..:gh a coniputer subroutine.

If desired, equation (34) can be integrated numerically over a chosen range of 0 to obtain the probability that the vector direction will lie within the chosen range; i. e. ,

One application may be to obtain the probability that the wind will flow from a given quadrant or sector as , for example, onshore.

C. 3 . 4 . The Derived Conditional Distribution of Wind Speed Given the Wind Direction (Wind Rose)

Continuing with the considerations in Section C. 3 . 3 . of this chajjter , the conditional probability density function (pdf) for wind speed, r , given a specified value for the wind direction, 0 , can be expressed as

Page 32: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

where the coefficients, a - and b - and the function $ ( g) are as previously

defined in equation (33) and in equation (34).

From equation (36) the mode (most frequent value) of the conditional wind speed given a specified value of the wind direction is the positive solution of the quadratic equation ,

which is

The locus of the conditional modal values of wind speed when plctted in polar form versus the given wind directions forms an ellipse.

The noncentral moment for equation ( 36) is expressed as

Now the first noncentral moment is identical to the first central moment or the expected value, E (r 10). The integration ~f equation (39) for the first moment is sufficiently simple to yield practical computstions and can be expressed as

Page 33: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

i-ience, equation (40) gives the conditional mean value of the wind speed given a specified value for tho ,vind direction.

The integration of equation (36) for the limits r = 0 to r = r* gives the probability that the conditional wind speed is < r* given a value for the w i ~ d direction, 9. This conditional ~robabilitf distribution (PDF) can be written as

By aefinition equation (41) is an expression for a "wind rose". Empirical wind rose statistics are often tabulated o r graphically illustrated giving the frequency that the wind speed is not exceeded for those wind speed values which lie within assigned class ir.te~;~als of the wind direction. Aiter evaluation of equation (41) for various values of wind speed, r*, and the given wind directions, 0. interpolations can be performed to obtain various percentile values of the conditional wind speed.

For the special case when b in equation (33) (i.e. , for x 2 y = 0) , the conditional modal values of wind speeds [equation (38)], the condi- tional mean values of wind speeds [equation (40)], and the fixed condi- tional percentile values of wind speeds [interpolated from evaluations of equation ( 4 l ) l ,when plotted in polar form versus the given wind directions produce n family of ellipses.

For the special case when x = = 0, equation ( 36) reduces to the following simple case :

There is a special significance of equatiorl ( 4 2 ) whe.1 related to the bivar- iate normal probaoility distribution. I f r* and 0 are measured from the centroid of the probability ellipse, then the probability that r < r* is the same as the given probability ellipse. Further, solving equation ( 4 2 ) for r*, gives

Page 34: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

If a probability ellipse P is chosen, equation (42) gives the distance of r along any 9 from the centroid of the ellipse to the intercept of the specified probability ellipse. If there is an interest in conditional proba- bility of winds for a given 9 relative to the monthly means, equation (43) is applicable. If i t is desired to find the magnitude of the wind along any 8 relative to the monthly mean to the intercept of a given proba'oility ellipse, equation (43) is applicable.

D . Statistical Parameters With Respect To Any Orthogonal Axes

The five wind statistical parameters presented in Table I are given with respect to the standard meteoroiogical coordinate system ; i .e. . these parameters are for the zonal and meridional components. For many aerospace vehicles and range applications there is a need for wind sta- tistics with respect to or,hogonal axes other than west to east and south to north. For example, it may be required to present wind statistics with respect to a flight azimuth of an aerospace vehicle whose flight azimuth is a degrees from true north measured in a clockwise direction. The following sets of equations are presented to compute the five paranleters for the new coordinate axes rotated u degrees clockwise from true north.

a. Rotation of the means through a degrees:

b. Rotation of the variances through a degrees:

+ 2po,oy cos (90 - a) sin (90 - a)

- 2pu a cos ( 9 0 - a) sin ( 9 0 - a) . x Y

Page 35: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

c. Rotation of the linear correlation coefficient through a degrees:

where mv (X ,Y la is the rotated covariance.

3

cov ( X , Y I a = cov ( X . Y ) [ms1 (90 - a) - sin' (90 - a)]

9 + ms (90 - a) sin (30 - a) (oy2 - o '9

X

and

By using these rotational equations, the bivariate normal distribution with respect to any desired rotated coordinates can be obtained from sample estimates that have been compute^ with respect to a specific axis. The marginal distributions after rotation are also normally (univariate) distri- buted. By using the rotational equations, computational efforts are greatly reduced for applications requiring sttltistics with respect to several coordinate axes.

Appendix A presents some illustrative examples for the wind stafis- tics of the specific RRA.

Page 36: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

CHAPTER 111. STATISTICS OF THERMODYNAMICS QUANTITIES AND MODELS

A . General Considerations

A . 1. 0 bjectives

The objectives inherent in developing the thermodynamic section of the RRA were to describe the thermodynamic characteristics of the atmos- phere using a minimum of data tabulations. A set of parameters was selected which, together, thermodynamically describe the climatological state of the atmosphere. These parameters are the pressure, temperature, density, dew point, virtual temperature, and water vapor pressure. Used together, these parameters permit the calculation of a large number of derived quantities. Some of these quantities, such as the speed of sound, are dealt with in Section 111 .E.

The probability distribution of each of the six thermodynamic RRA parameters i s described by i ts mean value, i ts standard deviation, and i ts skewness. Several of these parameters (temperature, pressure, dew point and density! have probability distributions which are close to a univar'ate normal distribution; the others do not. The skewness parameter gives an estimate of the asymmetrical departures of a probability distribution.

Hydrostatically modeled mean values of pressure and density were calculated (Table IV), so that users may determine the departure of the actual climatological values of these parameters from hydrostatic conditions. This was done by hydrostatically integrating the pressure from the lowest RRA data level to the termination altitude of the particular RRA.

TABLE D . LIST OF SYMBOLS USED IN CHAPTER 111

Cs - S ~ e e d of sound

Cd - Collision diameter

E - Vapor pressure

g:'.p -. Gravity at latitude '4

H - Geopotenti:il heignt

Hr,, - Geopotential height at n rnnndittory radiosonde data level

Hs - Geopotential height at a significant radiosonde data level

Page 37: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE D. (Continued) a J

Kt - Coefficient of thermal conductivity

L - Mean free path length

M - Mean molecular weight of air at sea level

M3q - Annual third moment of quantity Q

M3q - Monthly third moment of quantity Q

n - Refractive modulus

N - Refractive index

NA - Avogadro's constant

Nq - Number of values of quantity Q

P - Pressure

Pm - Pressure at a mandatory radiosonde data level

Ps - Pressure at a significant radiosonde data level

Ph - Hydrostatically integrated mean monthly or annual pressure

Q - Any tabulated RRA quantity

R * - Universal gas constant

R ' - Specific gas constant of dry air

r', r * - Parameters used in converting z to h and vice versa

S - Sutherland's constant, used in the calculation of dynamic viscosity

T - Temperature

Td - Dew point

T v - Virt ?la1 temperature

vm - Virtual temperature at a mandatory radiosonde data level

vs - Virtual temperature at a significant radiosor.de data level

V - Mean air particle speed _I *

Page 38: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

T A B U D . (Concluded)

vc - Rlean collision frequency

w - Parameter used in the hydrostatic interpolation of pressure and density

Z - Geometric altitude

- Wavelength

Q~

- Skewness of quantity Q

9 - Constant used in the equation for viscosity

Y - Ratio of specific heat at constant pressure to specific heat at constant volume

rl - Kinematic coefficient of viscosity

U - Dy~amic coeffi-ient of viscosity

P - Density

ph - Mean monthly o r annual density derived from Ph

r? - Standard deviation of the quantity Q

A . 2. Data Quality Control

Data limits derived from the following parameters were used to screen the thermodynamic portion of the RRA data base: temperature, pressure, dew point (for the 0-30 km portion only), and density (for the 30-70 km portion only). These limits were set to plus and minus six standard deviatioris from the mean values of each of these quantities. These limits were used to screen the thermodynamic portion of the R R A data base, according to the procedures described in Section I.C. The data base used to generate the thermodynamic portion of the R R A (Tables I , 11, and IV) was considered to be free from errors if:

a) The skewness values of the pressure and temperature were between - 2 .5 and 2.5 at all data levels.

b) The skewness values of the density were between -3.5 and 3.5 at data levels between 0 and 30 km.

C ) The skewness values of the density were between - 3 . 0 and 3 . 0 at data levels between 30 and 70 km.

d) The skewness values cf the dew point were between - 2 .5 and 2.5 ~t all data levels with more than 10 data values.

Page 39: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

A. 3. Limitation of Thermodynamic Statistics

The correlation coefficients between the thermodynamic quentities and the n ~isture-related quantities were not calculated at discrete altitudes nor were any of the correlations between altitudes. Therefore, valid sta- tistical dispersion models that require the relationship between two or more of these quantities at the same altitude or between altitudes cannot be derived. Approximations for the correlation coefficients between pressure, virtual temperature, and density at discwte dtitudes may be obtained from the coefficients of variation as developed by BueU ( 1970) . The coefficient of variation is the standard deviation divided by the mean. "'he mean values and the standard deviations are taken from Table 11. A model for the profile of monthly and annual mean pressure, virtual temperature, and density that is in excellent agreement with the respective statistical mean values is given by Table IV. This agreement results because the physical relationships, given by the hydrostatic equation and the equation of state, were used to derive Table IV. When only the monthly or annual mean values for pressure, virtual temperature, and density are required, it is recommended that Table IV be used.

B . Establishing Data Samples at the Required Altitude Levels

This section describes the computational procedures used to establish data samples of the thermodynamic RRA parameters at the RRA data levels. References are cited only when an equation given is one of many available in the literature or when an equation is stated in an unusual form.

B . 1. Conversion of Data Recorded in Geopotential Heights to Gwmetric Altitude

The upper air rocketsonde observations used to obtain the table values above 30 km were recorded in terms of geometric altitude and can be interpalated directly to the altitude intervals shown in the tables. i-lowever, the radiosonde observations used to obtain the tabular values below 30 km were recorded in terms of geopotential heights. The change of coordinates from geopotential height to gecmetric altitude (h to z ) is accomplished by calculating a table of geopotential heights which correspond exactly to the geometric altitudes at which the atmospheric parameters are tabulated. The radiosonde observations are then interpolated to these geo- potential heights. The relationship used to calculate geometric altitude from geopotential height is

where

Page 40: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

and

g is the sea level gravity at the latitude $ corresponding to the proper @ location. T k s value is given by (List, 1968)

- ' gm is the rate of change of gravity at the sea level. This quantity is a zo given by the equation

9 = -3.085462 x + 2.27 x lo-' cos (20) - 2 x 10-l2 cos (40) . a zo

(51)

The units used for gravity are m./s2, while the units for - - 2 ag$ a r e s ,

a =o

The resulting table of values of H obtained by using even increments of 2 in equation (49) is shown i n Table IV of the RRA. The values of H above 30 km are not used in the interpol3tion of original data but are included for the convenience of the user.

R . 2. Calculations on the Original Rawinsonde Data Records

It was necessary to interpolate the information from the original rawinsonde data records to the geometric altitudes specified as the R R A data levels. The parameters for which this Mei-polation was required were the temperature, dew point, and pressure. The ;ther parameters were calculated from the interpolated values at each RRA data level. These "derived" parameters were the water vapor pressure, density, and virtual em per at ure.

B .2.1. Calculation of the Geopotential Height at Significant Levels

Two somewhat different interpolation procedures were used to obtain data at the levels shown in the tables from radiosonde and rocketsonde observations. The procedure used to interpolate radiosonde observations begins with the calculatior. of virtual temperature at each data level in a sounding. The virtual temperature was computed by

Page 41: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

where T and T are in degrees K and e and p are in millibars. v

The radiosonde soundings contain a mix of data taken at "mandatorytt and "significant" levels. Pressure, temperature, and dew point informa- tion was given in these soundings at both types of levels. However, geo- potential height information was only given at the mandatory leveb. The heights at the significant levels were "ffled in" (calcrllated) hydrostatically using pressure and temperature data from these levels. This procedure permitted t k use of most of ine significant level data in the calculation of the RRA tables. The equation used for this process was

where the subscripts s and m denote quantities at significant and manda- tory levels. This equation was not used i f the difference between two adjacent mandatory levels was greater than 200 mb. All soundings with such data gaps were rejected for use in compiling the RRA.

B . 2 .2 . Temperature

Radiosonde temperatures were interpolated logarithmically with respect to pressure using the equation

where the subscripts U and L indicate values at the nearest data levels in the actual sounding above and below the interpolated level.

B . 2 . 3 . Pressure

The pressure values in each radiosonde sounding were interpolated to the RRA data levels using the equation

p = pL exp H~ - H~ 29.2712617 (0.5) (T + T )

v~ v~

Page 42: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

where the subscript L indicates virtual temperature, geopotential , and pressure values at the data level below and closest to the level at which data were required.

B .2.4. Dew-Point Temperature

Dew-point values were interpolated logarithmically with respect to pressure using the equation

The subscripts U and L indicate data at the nearest upper and lower data levels in a sounding.

B .2.5. Derived Water Vapor Pressure

The water vapor pressure is calculated from the interpolated dew- point values at the RRA data levels using Teten's approximation:

B .2.6 Derived Density

The density values derived from radiosonde observations were calculated at the RRA data levels using the equation

B -2 .7 Derived Virtual Temperature

The virtual temperature values are calculated at the RRA data levels for each soundi~g using the equation

where Tv and T are in degrees K and p and e are the pressure and vapor pressure, respectively, in millibars.

Page 43: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

B.3 . Calculations on the Original Rocketsonde Data Records

The rocketsonde data records used to calculate the RRA table valiles above 30 km were given in terms of geometric altitude. For this reason, slightly different calculations were required to convert the recorded data values to values at the RRA data levels. The pressure, temperature, and density were all interpolated to the RRA data levels; moisture-related parameters (virtual temperature, water gapor pressure, and dew p i n t ) were not calculated, since atmospheric moisture at altitudes above 30 km was considered to be negligible.

No interpolation was done across gaps in the pressure or temperature data within a sounding larger than 7000 m . Data values at the RRA levels within such a gap were set to missing.

Rocketsonde temperatures were interpolated linearly with respect to geometric altitude using the equqtion

where the subscripts U cnd L indicate values at the nearest data level in the actual sounding above and below the interpolated level.

B -3.2. Pressure

The pressure values in each rocketsonde sounding were interpolated to the RRA data levels using the equation

P = PL exp

- TvU + TvL and W = r* where T, = - 2

r * + Z + 2

Page 44: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

B . 3 . 3 Density

Rocket sonde density values were interpolated using the equation

where W is specified in Section 111 .B .3.2.

C. Computation of Statistical Parameters for Tables iI and 111

The procedure used for computing the monthly and annual means, standard deviations, and skewness values from the data values at the RRA data levels was accomplished in three steps. Initially, certain sta- tistical sums were calculated and stored as the soundings in the data base were processed. These sums were then used to calculate the monthly statistics given in the RRA tables. The annual statistics were then cal- culated from these stored sums and the monthly statistics.

C. 1. Storec .;tatistical Sums

The sums which were calculated were

where Q is any one of the quantities given in the thermodynamic part of the RRA.

C .2. Calculation of the Monthly Statistics

C .2.1. Monthly Means

The mean monthly values of the thermodynamic RRA quantities were calculated using the equation

where N is the number of observed values of the quantity Q for a Q given month.

Page 45: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

C .2.5 Monthly Standard Deviations

The monthly standard deviations of the thermodynamic RRA quanti- ties were calculated using the equation

C .2.3 Monthly Skewness Values

The monthly skewness values of the wind speed and of the thermo- dynru~lic RRL quantities are calculated using the equation

where M 3 is the third moment of the quantitl Q , a is its standard Q deviation, and Q

C .3. Calculation of the Annual Statistics

Equations (63) and (64), used to calculate the monthly values of the standard deviations and skewness values, involve taking the differences between two pairs of large sums containing Q**2 and Q**3, where Q is any thermodynamic RRA quantity. Using these equations to compute the annual statistics would have resulted in a substantial loss of precision, as these sums become larger by several orders of magnitude in such a case. This problem was avoided by calculatirig the annual means, stan- dard deviations, and skewness lralues from the monthly statistics.

C. 3.1. Annual Mean Values

The annual mean values of the thermodynamic R R A quantities were calculated using the equation

Page 46: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

where GA is the total of all observed values of Q and N is the total Q number of observations of Q.

C.3.2. Annual Standard Deviations

The annual standard deviations of the thermodynamic RRA quantities were calculated using the equation

(65) where N = the number of data v ~ l u e s for Q in month i ( i = 1 to 12)

Qi and Qi = the monthly mean of Q and a = the standard deviation of

Qi quanti+y Q in month i.

C .3.3. Annual Skewness Values

The annual skewness values of the thermodynamic RRA quantities are calculated using the equation

where M = the third moment about the mean of quantity Q in month i 3Q

and M = the annual third moment about the mean of the quantity Q. 3Q

Page 47: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

D. Derived Monthly Mean and Annual Mean Model Atmospheres

A set of mcdeled monthly mean and annual mean hydrostatic values of pressure and density was calculated from the lowest R R A data level ( 0 km, mean sea level) upwards to 30 km, and from 30 km upwards to 70 km. The integration from 0 to 30 km was computed independently of the integration from 30 to 70 km because of the difference in data sources. The two different values for 30 km are provided for comparison. When 30 km data are required, the values given in the 0 to 30 km table should be used. These hydrostatically modeled mean values, which are given in Table IV, are useful as a check on the validity of the pressure and den- sity values given in Table 11. In most cases, the values in Tables I1 and IV for any given data level are within 1 percent of each other. The hydrostatic pressure vclues in Table IV were calculated using the equation

where, H1 - H is in meters and a "0" subscript refers to values at the 0 RRA data level immediately below ths level being checked. p0 at the !owest data level i s set equal to the RRA mean pressure; p l , calculated

for the next highest data level, i s taken as po for the level above that.

This process is repeated for all the other R R A data levels. The hydro- >,atic density corresponding to the hydrostatic pressures is calculated from these pressures and the RRA virtual temperature values using the formula

where p H and PH are the hydrostatic density and pressure shovn in

Table IV of the R R A .

E . Thermodynamic Quantities Derivable from the Basic Tables

Several other quantities can be calculated from the statistics listed in Tables I 1 and 111. The equations given in this section can be used to calculate the approximate mean values of these quantities at each RRA data level. It is not possible to infer or derive any information concerning the standard deviation or skewness values of these quantities from the data in Tables I1 and I11 of the R R A .

Page 48: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE E. LIST OF PRIMARY PHYSICAL CONSTANTS

Po = standard atmospheric pressure at sea level 5 = 1.013250 x 10 ~ e w t o n l m ~ = 2116.22 lblft 2

= standard atmospheric density at sea level

= 1.2250 kglm3 = 0.076474 lblft3

To = standard temperature at sea level = 288.15 K = 15. O°C = 59. O°F

go = standard gravity at sea level at latitude 45O32'33"

= 9. 80665 m l s 2

s = Sbtherland's constant used in calculation of dynamic viscosity = 110.4 K

TI = ice-point temperature at Po = 273.15 K

3 = constant used in calculation of dynamic viscosity

= 1.458 x kglsec m K 3 = 7.3025 x l o e 7 lblsec ft R'

y = ratio of specific heat of a i r at constant pressure to specific heat of air at constant volume

= 1 . 4

C,, = mean effective collision diameter of air molecules

= 3.65 x 10-lo m = 1.1975 x ft

Na = Avogodro's constant

= 6.022169 x mol = 2.73179 x 1 0 ~ ~ 1 l b mol

R * = gas constant = 8.31432 Joulelmol K

2 R' = gas constant for d r y air = 2.8704 x 10 JouleJkg K

M = molecular weight of dry air = 29.966 grnlmol > b

Page 49: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

E .l. Mean Air-Particle Speed

The mean air particle speed, V , is the arithmetic average of the speeds of all air particles in the volume element being considered. For a valid average to occqlr, there must be a sufficient number of particles involved to represent mean conditions. The equation for "Vtt for dry air is :

A computational form for dry air, using tabulated values, is:

where T is the temperature in degrees K from Table 11. Equation <69), when corrected for moist air, becomes:

The computational form for moist air is:

where Tv is the virtual temperature in degrees K from Table 111.

E. 2. Mean Free Path

The mean free path, L , i s the mean value of the distance traveled by each neutral air particle, in a selected air parcel, between successive collisions with other particles in that parcel. A meaningful average requires that the selected parcel be large enough to contain a substantial number of particles. The equation for L is given by:

Page 50: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

where C, is the effective collision diameter of the mean air molecules. u

The 1976 standard atmosphere value of 3.65 x 10-lo is valid for the range - - of altitudes in the RRA.

A computational form for moist air, using tabulated values, is:

L = 2.335 x (meters) , ( 74)

where T is the temperature in degrees K from Table I1 and P is the pressure, in mb , from Table 11.

A form of (73) to correct L for moist air is:

The computational form for moist air is:

T -7 v L = 2.3325 x 10 (meters) ,

where Tv is the virtual temperature in degrees K from Table I11 and P

is the pressure in rnb from Table 11.

E .3. Mean Collision Frequency

The mean collision frequency Vc is considered to be the average speed of air particles contained in an air parcel divided by the mean free path of the particles inside that parcel. Computationally this is equiva- lent to :

Page 51: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TO determine Vc for d r y air, use V and L from equations (70)

and (74). To determine Vc for moist air , use V and L from equa t io~s (72) and (76).

E. 4. Speed of Sound

The expression for the speed of sound, Cs, in dry air , in m j s is

To compute Cs for dry air from tabulated values, use:

where T i s the temperature in degrees K fmm Table 11. One form for the speed of sound in moist air is:

where Tv i s the virtual temperature from Table 111. A computational

form for moist air is :

C s ' 1 4 . 0 1 8 5 x 1 0 2 T v , ( m l s ) .

E .5. Dynamic Coefficient of Viscosity

The coefficient of dynamic viscosity, p , i s defined as a coefficient of internal friction developed where gas regions move adjacent to each other at different velocities. The following expression i s taken from the U. S. Standard Atmosphere (1976) :

Page 52: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

The computational form is:

IJ = (1.458 x loe6) T ~ ' ~

T + 110.4 , (a) where T is temperature in degrees K from Table 11.

E . 6. Kinematic Coefficient of Viscosity

The kinematic coefficient of viscosity, designated as n , is defined to be the ratio of the dynamic coefficient of viscxlsity of a gas to i ts density. or :

The computational form is:

where p is the dynamic coefficient of viscosity from equation (83) and p

is the density in g m - 3 from Table 11.

E .7. Coefficient of Thermal Conductivity

The empirical expression used for the coefficient of thermal conduc- tivity, designated as Kt, is given in the 1976 Standard Atmosphere as :

2.65019 x 10- 3 , T3/2 K = - , (wattslm-deg K)

T + 245.4 x 10-(12'T)

where T is in degrees K ,

E .8. Refractive Modulus and Refractive Index

The refractive modulus or refractivity (Selby and McClatchey , 1975; Smith and Weintraub, 1953) is defined as N , where

Page 53: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

and n is the refrac+ive index.

For microwave frequencies below approximately 30 GHz (equivalent to wavelengths above 1 cm) , N , the refractive modulus, is given by the empirical equation

P N = 77.6 - + 3.73 x 10 (dimensionless) , =d 7

where E and P are in millibars and T and Td are in degrees K.

The following expression is valid for the visible and infrared wave- lengths shorter than approximately 30 pm (0.03 m m ) .

P N = 77.6 + 0.584 - TX dimensionless , ( 83)

where X is the wavelength in microns and T is in degrees K .

The expression for N for the wavelength from 0.03 mm to 1 c m is an extremely complex function of wavelength.

Page 54: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

CHAPTER IV. CONCLUSIONS )',ID RECOhlMENDATIONS

Conclusions

This document satisfies the technical objectives established for the Range Reference Atmosphere committee by the Range Commanders Council Meteorology Group. Upper air statistics and models for wind and thermo- dynamic quantities for the spedfic site have been derived in a consistent and uniform! manner which will be used in publications for all other assigned site locations. These Range Reference Atmospheres represent an improvement over the previously ~ubl ished Range Reference Atmos- pheres because of the availability of more ex te~s ive upper air data bases and the adaptation of more advanced statistical techniques. A statistical measure of central tendency :ruean values) and a measure of dispersion (standard deviation with respect to the mean values) for monthly and annual reference periods have been tabulated for all variables in a con- sistent manner from data bases that have been edited and quality con- trolled in the same manner. Further, a statistical measure for symmetry (skewness coefficient which involves the third statistical moment) has been tabulated for all variables except the zonal and meridional wind components. Even with these improvements, the user of these Range Reference Atmospheresmust retwgnize certain limitations of the statistical tabulations. Namely:

1) The wind profile structure with respect to altitude cannot be modeled from the RRA statistics because the inter-level and cross-level correlations were not computed.

2) The profile structure with respect to altitude for any of the thermodynamic variables or a1.y quantities derivable from these va14ables cannot be modeled because the prerequisik correlaticlns were not computed. However, the profile of monthly and annual means for pressurz, virtual temperature, and density are in agreement (Table IV) with the hydrostatic equation and the equation of state.

The preceding limitations are cited to prevent s misuse of the RRAs. More extensive statistical tabulations were beyond the scope of this com- mittee's task. A s greater insight is gained through uscge of these REAs, many adaptations of the statistical tabulations for specific engineering and scientific applications are envisioned.

Recommendations

It is recommended that the wind and thermodynamic statistical tabu- lations and attendant models contained in the R R A s be used as a standard reference source, as may be appropriate, by the Rariges ~ . l d Ra~lge users. It is further recommended that the respective Range Staff Meteorologist or respo~~sible agency staff member be consu:~ed for the applicability of the Range Reference At~nospheres for specific engineering applications.

Page 55: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

REFERENCES

Buell, Eugene C. : Statistical Relations in a Perfect Gas. Journal of Applied hleterology , 9, 1970, pp. 729-731.

List, R . J . ; Editor: Acceleration of Gravity, Smithsonian Meteorological Tables, Sixth Ed. Smithsonian Institution, Washington, D. C. , 1968, p. 488.

Selby , J .Z .A. ; and McClatchey , R .A. : AFCRL-TR-75-0255, Atmospheric Transmittance f- 0.25 to 28.5 pm - Computer Code Lowtran 3., A i r Force Cam bridge Research Laboratories. Available t hrough the National Technical Information Senrice, Washington, D .C. , 1975.

Smith, E .K. ; and Weintraub, S. : The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies, Proceedings of the Institute of Radio Engineers, 41. 8, August 1953, pp. 1035-1037.

Smith, O.E.: NASA TM X-73319, Vector Wind and Vector Wind Shear lvlodels fit 0-27 km Altitude for Cape Kennedy, Florida, and Vandenberg AFB , California. Prepared under sponsorship of t h e National Aeronautics P - C ~ Space Administration. Available through the National Technical Information Service, Washington, D . C . , July 1976.

U .S . Standard Atmosphere, 1976. Prepared under the sponsorship of the National Aeronautics and Space Administration, United States Air Force, and Unlted States Weather Bureau, Av~ilable through U . S . Government Printing Office, Washington, D . C . , October 1976.

PREVIOUS RANGE REFERENCE ATMOSPHERES PUBLISHED BY IRIG

Atlantic hlissile Range Reference Atmosphere for Cape Kennedy. Florida (Part I ) , Document 104-63, April 16, 1963, (AD 451 780).

White Sands Missile Range Reference Atmosphere for White Sands Missile Range, New Mexico (Part I ) , Document 104-63, June 28, 1964. (AD 451 781).

Fort C hurchill Missile Range Reference Atmosphere for Fort C hurchill, Manitoba, Canada (Part I ) , Document 104-63, August 7, 1964, (AD 634 727).

Pacific Missile Range Reference Atmosphere for Eniwetok, Marshall Islands (Part I ) , Document 104-63, September 1 , 1964, (AD 479 264).

Fort Greely FAissile Range Reference Atmosphere for Fort Greely, Alaska (Part I ) , Document 104-63, October 6, 1964, (AD 634 726).

Page 56: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

REFERENCES (Concluded)

Eglin Gulf Test Range Atmosphere f o r Eglin AFB. Florida (Part I ) , Document 104-63. January 25, 1965, (AD 472 601).

Pacific Missile Range Reference Atmosphere f o r Point Argue110 , Catifornia (Part I ) , Document 104-63, April 1965, (AD 472 602).

Wallops Island Test Range Reference Atmosphere (Part I ) , Document 104-63, July 10, 1965, (AD 474 071).

Eastern Test Range Reference Atmosphere f o r Ascension Island, South Atlantic (Part I ) , 1)ocument 104-63, July 1966, (AD 645 591).

Johnston Island Test Site Reference Atmosphere (Part I ) , Document 104- 63, January 1970, (AD 782 652).

Lihue, Kauai, Hawaii Reference Atmosphere (Part I), Document 104-63, January 1970, (AD 782 653).

Cape Kennedy, Florida Reference Atmosphere (Part 11) , Document 104-63, September 1971, (AD 753 581).

White Sands Missile Range Reference Atmosphere (Part 11), Document 104-63, September 1971, (AD 782 654).

Wallops Island Test Range Reference Atmosphere (Part 11), Document 104-63, September 1971.

Fort Greely Missile Range Reference Atmosphere (Part 11), Document 104-63. September 1971.

Edwards Air Force Base Reference Atmosphere (Part I ) . Document 104-63. September 1972, (AD ?82 651).

Kwajalein Missile Range hefzrence Atmosphere for Kwajalein. Mmshall Islands (Part I ) , Document 104-63, October 1974.

Page 57: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

CONVERSION Uh'ITS

Physical Constants and Conversion Factors

Numerical values in this document are given in the International System of Units (SI , Systhe International d1Unit6s). The values in parentheses are equivalent U. S. Customary Units, which are English units adapted for use by t b United States of America. The SI and U. S. Customary Units provided in Table F are those normally used for meesuring and reporting atmospheric data.

By definition, the following fundamental conversion factors are exact:

TKZE U. S. customary units Metric

Length 1 U. S. yard (yd) 0.9144 meter (m) Mass 1 avoirdupois pound (Ib) 453.59237 gram (g) Time 1 second (s) 1 second (s) Temperature 1 degree Rankine (OR) 915 degree Kelvin (OK)

To aid in the conversion of units, conversion factors based on the above fundamental conversion factors are given in Table F.

Page 58: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 59: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 60: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

SlATlW4 z lul

.003 1.033 2.000 3.000 4.003 5.000 6.000 7.000 8.003 3.000

1O.OOJ 11 .000 12.030 13.COO 14 .ooo 15.000 16.030 17.000 la.cco 19.noo 23.009 I?!. 030 22. a00 23.000 T*. OC0 2 ' ~ . O O C 26.230 i7.003 h). 333 Z9.330 33.093 3.?.UOO 3u. 000 z6.000 33.000 '93.C31) 42. 390 rb. 000 46.000 49 . G O 5fl.009 Ijy . cn0 Y*. 050 56.030 59.005 60.500 62. t33 64. OUO 66.005 53. COO 70.000

TABLE I- 1. WIND STATISTICAL PARAMETERS

JANUARY

ISAN v S.D. v fllS M I S

-.8r 3.42 I .49 6.45 1.70 6.11 2.00 6.S6 2.40 7.03 2.81 't .70 3.45 8.46 4.01 9.62 4.42 10.73 4.75 11.56 4.85 12.63 4.78 13.53 4 . m 13.43 4.83 12.25 4.47 lO.'tO 4.46 8.99 4.0: 7.86 3. PI 6.71 2.53 5.62 1.73 4.41 1.01 3.41

.43 3.02 -. lb 3.36 . (h 3.15 .29 3.W .47 3.91 - 9 2 3.91

1 .% 4.42 2.2: 5. I3 2.70 5.46 3.5? 5.75 2 . m 6.57 1-36 7.33 -. tC 8.04 1.17 8.83 2.ca 8.53 3.30 10.07 8.47 10.82 8.83 12.17 7.73 12.46 8 13.79 8.n 15.19 9.81 14.93 9.97 1b.m

1 2 . 2 1 3 . ~ ~ 12. I 1 15.43 9 . Y 16.4, 3.91 17.14

-3.C8 1 9 . h -9.47 10.m

-15.67 20.80

KIN US HIS 3.92 8.72

10.0s 12.85 16. I6 19.64 23.30 m.99 30.67 3 . 1 5 37.22 40.08 c9.33 52.72 40.05 35.95 31.19 25 .3 19-62 13.90 10.06 0.06 7.* 7.83 8.79 9.68

10.65 12.02 13.45 14.76 16.44 18.99 21 .47 21 .oo 20.86 21.18 22.45 23.30 *.us r'5.w 28.02 2?. I 8 31 -44 35.92 S0.73 46.20 53.22 56.80 63.09 G3.19 65.05

Page 61: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

STAT ION z ffl .OD3

1 .ooo 2.000 3.000 '4.000 5.000 6.000 7.000 8.000 9.000 10 .ooo 1I.WO 12.000 I3.000 tr .ooo 15.000 16.000 17.000 18.030 19.000 i?o.ooo 21.003 22.000 23.000 a.000 a.000 26.000 27.000 28.030 a. 000 30.000 Y .COO 3.000 w .ooo 3a. 000 40.030 92. OOJ 44.000 '46.000 '40.000 50.000 52.000 r(.OOO 56.000 58.000 60.000 6z. 000 6'4.000 66.000 68.000 73.000

TABLE 1-2. WIND STATISTICAL PARAMETERS

FEBRUARY

CIpE C b N A H l W S.O. U RIU.VI

rvs 2.88 -.awl 7.10 .0019 7.6 .Om3 7.98 .m 8.n .IOW 9.85 .la+ 10.89 -167'4 19.01 .22n 13-27 .P= lU.57 .223S 15.66 2339 16.01 23% 15.C1 .2197 lC.10 .a31 13.01 2632 ll.IS .2558 9.W 2305 8.80 -2221 8.3S 2387 7 . .an 6.m .%60 7.07 .359 8.04 .XI5 7.62 .Y22 8.71 .3311 9.51 2351 9.~9 . 2 m 9 . .a66 10.22 .I955 1o.w .aJC 11.23 .3000 13.11 -489 I4.W .3301 15.36 .26Y6 16.60 .2709 18.41 -0397 19.01 .OI05 19.16 .086S 0 -1373 22.74 .I909 22.86 .I35 23.26 .I939 22.08 .i?773 21.- .am 20.04 .3470 20.79 .a36 22.98 .TI23 10.40 .I697 19.22 .I879 17.07 2619 20.78 .21W

7%. m. 797. l98. 789. lm. m. 707. 780. m. 765. %I. 739. lz6. 710. 707. 702. 690. 607. m. w. 670. 663. 6s9. 648. 638. 616. 563. 533. 372. 361. 111. 112. 116. 117. 118. la. 120. 120. 120. 118. 117. 115. 110. 95. 82. 53. CY. 39. 30. 27.

Page 62: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE I-3. WIND STATISTICAL PARAMETERS

MARCH

STAT ION z Kn

.003 1 .ooo 2.000 3.000 6.000 5.000 6.000 7.000 8.000 9.000

10.000 11 .ooo I2.OCO 13.000 I4 .ooo 15.060 16.000 17.000 1e.000 19.000 iO.000 21 .GCO 22. OCO 23. COO a. 000 a. 000 &. 000 27. OCO 28. OCO 29. COO 30.000 32.000 3 .000 36.000 a. 000 40. 090 42.000 44.000 46.000 48. CCO 50. COO 5z. 000 9. oeo 56.000 50.000 60.000 e. 000 gr . OOP 66.000 w.000 70.000

- a m 0 MAN U nrs .a

2.m 6.65

1 0 . 3 I4.04 17.00 21.31 a . 8 0 20.38 31 .lF 35.62 38.08 4l.7l 41 .80 39.07 35. I5 a n 23.61 17.12 11.18 6.95 3.09 1.93 -93 . Y .59

1-26 2.44 3.76 6.- (1.24

14.72 17.21 15.16 13.76 14.35 15.31 1 6 . 9 18.60 20.75 24.21 27.09 27.57 29.09 30.60 3%. 3c 35. N 33.95 27.67 1 9 . 9 13.93

CAPE C S.D. U

nrs 2.90 6 . m 7.38 0. I* 9.08 : 10.09

10.93 11.75 I2.W 13-50 14-59 1 u . n 1 4 . a 12.63 11.09 9.0'4 0.33 7.27 6.88 5.93 5. I2 5-31 s.n 5 . 9 6.49 7. I* 7.57 8.11 8.93 9.48

10.29 10.32 12.87 13.72 1r .a 1 6 . a 18.19 19.45 2 0 . a 20.09 20.95 21 .n 20.20 20.35 21.01 21.79 21.60 23.65 23.71 27-68 27.79

ISAN v nrs

-.el I .a

, 1.N 1.00 -75 .a . R .9B

1.12 .Q .7l .1 . I4 . 48 -7'4

1.08 . s7 .n .so .I2

-.32 -.R

-1.11 -.90 -.a -.w -.ui . n

.92 1.31 1.70 2.63

-00 -.El

. I9 2.53 4.21 4.42 6.31 7.86 0.31 7.90 s.53

10.7'4 11.67 hZ.47 10.01 7.90 I .a

-3.19 -6.W

KIN US nls 4.00 8.66 9.93

1 e . n IS.% 19.50 22.96 X.63 30.31 3 3 . 9 ~ 38.05 *I .Y9 4 r .C9 C3.67 4O.*l 36.25 30.m a .49 17.97 12-02 7.99 6.03 5.70 5.50 6.33 6.50 6.06 7.51 8.47

10.06 11.76 17.08 19.93 Ie.r(l 17.66 19.93 21.89 a . 1 3 26.76 27.91 31.01 33.74 34 .67 35.50 36.85 41.39 41.72 40.16 34.63 3'4 .4* 31.12

066. 870. 072. 872. 871. 870. 869. w. e!s. me. (hi!. L3. 828. 014. 807. 798. 190. 773. 766. 765. 760. 744. -2. 7 h . 715. 702. 683. w. 610. 438. Vi6. 136. 135. I n . I n . 135. 136. 141. Iro. 140. 140. 134. 135. l a . 110. 90. 67. 50. u3. 36. 33.

Page 63: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE 1-4. WIND STATISTICAL PARAMETERS

APRIL

srrtrm z K1

.OCT 1.00t 2.00D 5.000 9 ,000 5.000 6.000 7.000 8.000 9.000

10.000 11 .DO0 I2.000 13.000 1c.000 15.000 16.600 17.090 lP,.OOO 19.GCt 20.DCL' 81 .COO 2?. 000 23. COO .?'I. COO 25.000 ZG.CC0 27 .COO 28.000 a . 0 0 0 30. GOO Y .000 3 . 0 0 0 36.605 SB.000 so .ooo 42. COO 44. 000 46.000 48.000 50.000 K . O O O 5'I.ooo 56.000 58.000 60.000 62.000 64.000 66.000 6€4.000 70. COO

S.D. V MAN US w s HI s

3.15 3.88 3 . z 7 .a r .W 7.07 5.% 9.49 5.91 11.98 6.30 13.97 6.86 16.03 7.61 18.81 9.- 21.66 9.76 F . 7 b

1 l . n a . 2 0 12.m 31.50 13.63 3h.67 13.91 36.00 11.60 33.83 9.32 29.69 7.79 h . W 6.47 13.10 5.18 1 3 . X 3.96 8.02 3.C9 5.56 2.65 C -81 2.65 4 .86 2.40 * .76 2.75 5-51 2.81 5.05 2.83 5.90 3.09 6.39 3.02 6 . 9 3.23 7.91 3 . B 8.48 4 . 9 11.a 5 . 13.25 5.35 13.13 6.47 12.70 6.28 12.07 6 . 11.68 6.16 11.91 6.33 13.35 7.02 1b.19 6.61 1U.m 7.- 15.40 7.03 15.1b 7.- 14.91 8.29 15.16 9.30 17.w 8.98 10.41 9.89 19.21

11.30 17.09 10.50 19.37 13.06 2 2 . 9

S.O. n5 H r s 2.21 3.93 c.73 5 . m 7.02 8. k 8.98 9.m

10.81 12.03 13.26 1'8.03 lb.39 13.S2 12.m 9.98 8 .W 7 . a 6.07 * .e l 3.- 2.89 2.62 2.57 3.08 3.31 3.49 3.62 4.11 c.*7 5.00 6. I+ 7. I8 7 . n 7.31 7.22 6.99 7.37 7 . s 8.8, 8.87 9 . 9 8.W 8. :5 0. Y 9.91 9.38

10. I* 8.93 9.79

11.85

Page 64: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 65: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

StATloN z wn

.003 1 .ooo 2.000 3.000 4 .OOO 5.000 6.000 7.000 8.000 9.000

10.000 11 .ooo 12.000 13.000 14.000 lS.000 16.000 17.000 19.000 19.000 20.000 21 .ooo 22. OCO 23. OCO a. 000 25.000 26.oco n . o o o Z8.000 29.000 30.000 3z.000 39.000 %.OCO 38.0DO 90.000 92. OCO 94. C t O 46 030 be. 000 50.000 K . O O O .A. 000 56.000 58.000 60.000 62.000 6r.000 66.000 68.003 70.000

TABLE 1-6. WIND STATISTICAL PARAMETERS

cm c S.O. U

tlf s 2.m 4.95 5.09 r .97 5.0'4 5-22 5.51 5.90 6.65 7.83 9.21

10.66 11.87 12.68 11.81 9.89 7.38 5. N 4.07 3.58 3.49 3 . ~ 8 3.36 3.29 3.70 3.88 4.C6 4 . s 4.65 5.39 5.27 5.71 6.19 5.88 5.88 6.06 7.53 8.15 7.48 0.17 9.57 0.79 9.47

12.03 13.43 11.92 13.77 15. I I 20.09 20.79 19.22

JUNE

S.O. v Hf s

2.33 3.75 3.80 3.81 3 . b '4.03 4.41 4.83 5.71 6.77 8.07 9.%

1 0 . s 10.99 9.55 7 . I 6 5.06 3.73 3.0s 2 . s

' 2.49 2.45 2. I 0 I .* 2 . P 2 . a 2.21 2.76 2.46 3.0s 2 . H 3.75 3.69 4.03 4.69 4.- 5.00 5.so 5.30 6.6? 7.18 7.47 0 . a 9.70

10.61 1 0 . 9 13.90 15.03 15.30 17.57 18.05

S.D. U5 nfs 2.13 3 . s 3.65 3.61 3-62 3.68 3.% 4 . a 5.03 6.02 I . 1'4 8. n 9.23 9.86 9.00 7.03 4 . s 3.38 3.19 3.31 3.38 3.91 3.29 3.2s 3.63 3.01 r.00 c.45 b.56 5 . a 5. lc 5-58 3-91 5 . s 5.85 5.97 1.42 8 . m 7.48 7.83 9 . a 8 93 9.49

11.79 13.17 11.52 13.32 IV.!4 19.23 20.59 10.72

Page 66: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE 1-7. WIND STATISTICAL PARAMETERS

JULY

STAT lad z Kw

.033 f .030 2.030 3.000 4.000 5.000 6.000 7.000 8.000 9.000

10.000 11 .ooo 12.000 13.000 l4.000 15.000 16.000 17.000 10.000 19.000 20.030 21 .ooo 22.000 23.000 a. 000 a. 000 26.000 27.030 28.000 a. on0 30.050 K . O C O 3:*.000 %.OCO Y). C30 40.030 '92.009 4lc.000 46. COO 48.000 50.000 51.COO 54. 000 56.009 5a. 000 60.000 E2.000 69.000 66.060 68.000 70.000

Cm CANAKRAL S.D. U R1U.V)

Ills 2.30 -.0423 4.23 -.osr3 4.50 .07* 4.65 .0706 4.58 .ow0 4.46 .a145 4.40 .0477 4.56 .0904 5. i2 .I833 5.89 2670 6.- .YO1 7.92 .V7S 0.66 .3220 9.11 .2685 8.13 . a 2 0 6.38 .2751 4.59 .Y30 3.43 . a 6 1 3.02 .i343 2.60 .!Oh9 2.86 .2043 3.32 . 113 3.08 -.r)l07 2.90 - . i 184 3.04 -.I369 3.12 -.0471 3.50 .0090 4.13 -.OW 4.00 -.0951 4.79 -.ow 4 . -.!lo% 4.77 -.0798 5.07 -.I090 5.59 -.,-I21 5.99 . 0 5 3 5.29 -.OOl5 6 . -.I655 6.07 -.orso 7.90 .P i35 O.7b .2355 8.76 -.OM7 9.09 -.0007

10.X .OOG9 i2.03 ,1768 14.87 .0297 16.66 .lo15 25.35 .2682 30.04 .I992 29.55 .230F 28.18 -.0928 29.35 -.204l

S.D. rc5 nl s I .m 2 . e 3 01 3. IZ 3.09 2.92 2.83 2. 97 3.42 4.09 4.73 5.3s 5.79 6.21 5.95 9.89 3.81 3.23 2.95 I60 E.BI 3 . a 3.05 2.89 3.03 3.11 3.49 4. l I 3.97 4.75 4.m 4.03 5.06 4.49 5.46 5.23 6.06 6.01 7.45 8.6s 8.70 8.98

1 0 . a I I .5i? 14.97 19.09 22.37 26.07 a . 4 9 22.37 IY.22

Page 67: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

STATION z Kn

.003 1 .ooo 2.000 3.000 4 . 000 5.030 6.000 7.000 8.000 9.000

10.000 11 .ooo 12.000 13 000 14.000 15.000 16.000 17.000 10.000 19.000 20.003 El .no0 E2.000 23.000 a. 000 25.000 26.000 27.000 a. 000 29.003 10.003 Y .000 9 . 0 0 3 xi. no0 30.030 40.000 42.000 44. 000 46.009 40.000 50.000 52.000 5't.ooo 56.000 58.000 60.000 62.000 64.000 66.000 60.000 70.000

TABLE 1-8. WIND STATISTICAL PARAMETERS

CAPE C S.D. U

n/s 2.10 4.13 4.29 4.3s '4. 34 4.43 '4.51 4.66 5.01 5.57 6.45 7.65 0.37 8.64 7.68 5.91 4.17 3.16 3.16 2.11 2 .89 3.24 3.12 2.88 2.93 2.98 3.23 3.69 3.42 '4. 17 3.80 4.00 4.37 5.03 C.20 7.08 8.63 6.45 9.28

1 1.76 I4 .44 14.95 15.69 10.01 20.40 17.33 17.59 19.46 1 6 . 2 16.07 21.33

AUGUST

5.0. W nrs 1.79 2.76 2.83 2 . N 2 . w 3.10 3.11 3. I4 3.*2 3.94 '4.65 5-93 5.m 5.90 5 -30 4 . x 3.31 2.76 2.88 2 . w 2 . e 3.c- 3.11 2 , w 2.91 2 . s 3.20 3.69 3.-3 4 . :o 3 . m '4.w r . s 5-70 6 . I7 7.77 8.4'4 8.31 9.12

1 1 . a 1 3 . 3 13.92 l 4 . Z 1 5 . 9 17.m 15.47 11.31 1 2 . 9 1 z . n l3.c;W 15.40

. no. 1.07 775. 1 .05 m. 1 .OO 767. .9( 160.

1.08 7%. I .a 7%. I . = ns. 1.31 7%. 1.18 753. 1.08 749. 1.16 748. I .OC 746.

.8? 734.

.76 730.

.m 728. . 80 722.

.58 717. m . 0 6 717.

. I 8 701.

.05 6RI. -.01 676.

. I 0 669.

.01 660. -.07 655.

.03 6C7. -. 07 608. .os 5se. -05 5;6. - .07 401. . I 3 363.

-.03 101. -.oe 101. -.a 101. . I* 101. -. I7 10'4. -. 17 105. -.07 107. -. 12 107. -.39 106. - . I I 105.

.45 104.

.43 104.

.5? 100.

.66 BC.

.83 67. . % 47.

.69 39.

.35 3s. . ; 7 2'4.

.18 d l .

Page 68: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

StAlIoN z a

.003 1 .ooo 2. 000 3.000 4.000 5.000 6.000 1.000 0.000 9.000

10.000 11.000 12.000 13.000 14 .COO 15.000 16.000 17.000 10.000 19.000 2@. OG3 21 .goo a?. 000 23.000 a. oco z5.000 26.000 27.000 20. 000 a. 000 30.000 Y. 000 34.000 56.000 Y].OOC 40. 000 42.060 t.r.000 46.000 '4j.000 50.323 52.0( 0 54.900 56.900 58.000 60.000 6r2.000 64. 000 66.000 w .000 70.000

TABLE 1-9. WIND STATISTICAL PARAMETERS

C A E c S.O. u

UlS 2.-0 5 . a 5 , s 5.60 5 .78 5.91 6 .19 6 .53 7.03 1 -74 0.79

10.65 10.55 10.86 10.05 8.26 6.49 5.00 4 . n 3.66 3.64 3.61 3.32 3.20 3 . 9 3.56 3.03

64 4.72 5 . 8 5.55 6.75 7.79 0.46 9.36

10.68 1C.44 10.91 12.011 14.07 14.99 I4.L.6 13.75 12.36 I : . = 11.96 10.99 12.53 16.69 14.73 14.78

SEPTEMBER

S.D . V UtS

2.70 4.- b.49 9.39 *.b5 4.64 4.96 5.48 6.00 6.70 7.w 0 . n 9.59 9.92 9.01 6.83 4 . m 3.37 2.m 2.k3 2 22 d . 30 l .ro I .% 2.36 .?.a 2.21 2.92 2.46 3. I.? 2.55 3.70 3.46 b . 2 4 . Y 5.80 6:t4 6.23 6.72 7.61 7.41 7 . s 8.29 9.56 9 . r 3

10.13 I ! .73 12. I4

10.93 15.20 18.15

S.D. wS rls 2.b7 'I.00 'I. l l 4.05 4.19 " 13 4.15 4.32 4 . m 3.36 5.90 6.59 7.06 7.23 6.60 5.i7 4 . m 3.27 3.05 3.17 3.tdO 3.47 3 . a 3. lb 3.43 3.51 3.79 h.59 4 .M 5. IS 5.42 6 10 5.81 6.77 6.95 7.09 8.11 8.97 8.98 9.20 9 . 9

10.04 8.54 7 . 9 7 . C6 P.04 7.75 6.66

10.27 9 . e

1 l . n

Page 69: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TA3LE I- 10. WIND STATISTICAL PARAMETERS

OCTOBER

SIAlION 2 Kn

.053 1 .ooo 2.000 3.000 b.000 5.000 6.000 7.000 8.000 9.000

10.000 I I .OOO l2.000 13.000 I* .ooo 15.090 16.300 17.000 18.000 I9.COO 20 .ooo 21 .oco 22.000 23.000 i 3 . P O O

030 cT, .OOC 27.003 a. 000 a . 0 0 0 3U. 000 3z.000 PI.CS0 T6.c:o 38.300 $0.030 42.030 49.033 46.000 '40.000 50.000 5Z.OOC 9 020 56.000 re. a00 60.030 62.000 6L1 . C O O 66.000 68.000 70.0C10

S.D. 6 )us 2. SB 3.86 '4. 10 4.57 5.20 5.80 6.56 7.*3 8.60 9.90

11.15 12-06 12. 37 12.20 11.08 9. Y 7.c2 5.66 4-05 3.02 2.60 ?:I5 2.69 2. n 3. I7 3 . n 3 . e 3.23 3 . 9 9 .33 u.50 5-24 6.51 8.03 9.71

11.19 12.95 I*.% 17.05 10.-

*0 2 : . '6 21.0s 21.51 20.19 19.00 18.89 19.*6 17.10 15.10 20.76

rnl . '

m. m. m. m. 7%. n2. n2. P O . 767. 760. 758. 7%. 7%. -9. -2. rn. 723. 72%. 2 2 . 715. 703. 702. 6eb. 675. 666. 630. sn . 553. 450. 9'33. 99.

102. 103. 106. 107. 109. 113. 113. 113. 113. I IS. 112. 106. 92. 72. 51. 12. 3*. Y. 30.

Page 70: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE I- 1 1. WIND STATISTICAL PARAMETERS

NOVEMBER

StATlQ3 z m

-003 1.000 2. $30 3.C'O 4 .O?O 5 . COO 6.360 7. wo 8.000 9 . 0CO

10.000 l l .C30 I?. 000 13.01n 14 -550 IS-KO 16.000 17 -000 18.030 19.000 c'C .030 21 -003 22. OOC 23. J30 a. 000 25.000 m. 000 27.000 a. 000 a. 000 30.000 Y.000 34.090 46.000 38.C3C 40.000 '.2. OCG 41.070 46.030 48. OCO 50. CSO Y. 020 5%. 503 56.000 58.000 60.000 62.000 6'4.000 6G.030 €a. CCO 70.000

CAP€ CIHl l tRU. S.O. U R1U.V)

WS 2.- -.1*01 6.45 .On9 6 . - 1 0 0 ~ 7.18 .I**3 7 . .dB2 2 . a 8 8.98 .a&! 9.65 -2966

!0.51 .ZIV l l .*9 .34a !2.4* .S;S 13.0s -3867 13.17 .*GI9 12.77 .*076 1 1 . 3 -3972 10.21 - 3 ~ 4 0 0.60 .3;9r 7.33 . a 3 1 6.94 .I930 5.20 . lWa ' I -2081 4.e( .an 4.W -2166 5 . .I819 6.39 . l2Zi 7.03 .:6TI 7.60 .I805 8.48 .I229 9. l I .0767 9.63 -0183

10.07 -0'421 12.95 -.0280 1*.61 -.= I I S -.I157 14.58 -.turn 1*.C8 -0C83 I*.= . lXO I . .3575 14.57 -2031 I*.tS .&OC I*.% .362 15. . .ar% 1 6 . Y .IGW 6 . 3 220'5 17.51 .?I95 18.09 .I617 20.66 .Z'OCE a . 4 3 .ozor 18.15 .C?GI i'1.46 . 03cY 20.36 -.-?Xu

S.O. v I'/S

2.w 5 - a N.92 5.33 5-91 6.58 7 . w 8.39 9.-

10.- 11.69 13.04 I 3 .m 13.15 10.83 8.90 1-37 8-08 ' ( -95 3 . x 3. w .?.73 i'. 87 2 -68 3. I8 3 *o 3 . 9 *. W 9 . 4 3

*.\a 4.68 5. I.' 5.21 6.11 7.m 0.51 8.62 9.03 9-51

l1.Q.I 11.00 I1 w 12.29 I1 .U 13.70 13. I 5 15.6s 15.98 19.86 1e.m 19.70

m l . rn?. mz. 862. 861. 861. (162. me. 8%. m9. m3. 894. 833. 83. 816. 81 1. 805. 789. m. m. 771. 757. 753. tn. 724. 713. 689. 633. 615. 4%. *e. 112. 113. 113. 115. 118. l a . 122. 122. 122. 121. 119. I IS. I M . 97. 81. 55. 39. 33. a. a.

Page 71: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE 1-1 2. WIND STATISTICAL PARAMETERS

DECEMBER

SiAflrn z b n

.CO3 1.030 2.000 3.000 4.030 5.000 6. COO 7.000 8.000 9.000

10.000 11.000 I2.COO 13.000 I4.[M3 15.000 16.000 17.000 10.900 19.030 25.323 21 .Of0 22.3CO 23. OCO a - 090 B. COO m. cao 27.000 a . 0 0 0 29.000 30. C03 v. OCO 3*. SCO lb. 300 3U. 000 40. oil0 '4. ail0 44.000 46.220 so. 000 50.000 52 - CC3 9. CZJ 5G. 030 50. COO 6 0 . COO fX'.ooo 6* . COO 6G. 030 68. oil0 70. COO

UpE CANAKRU S.O. U R(U.VI

ws 2.79 - . a 7 2 6.81 -.0375 7.W .WO5 7.b9 .i!08 7.98 .I- 8.72 .+?I21 9.55 .2269

10.49 . a 2 1 11.68 .neo 12.85 -2901 13.70 .Zt(K N.16 . a 9 2 1'4.29 . a 3 1 13.53 .F40 i:.?9 .-- 10.4% 2765 8.- .an 7.74 . a 3 3 7 -2333 6.69 .PA 6.09 .=I6 5.96 -3'421 6.C7 -3328 6.38 .=7 7.C9 . a 5 8.61 .I832 9.33 .ow1

1 0 . a .0575 II.CO -.OIW 12.01 -.01m 13.21 -.033C iJ.93 .r-Y

12.61 .2*W lC.13 -.0*% 15.59 --.I957 5 . 3 -.W33 17.15 .m06 20.67 .F37 ZE.k3 - . I ' - S a.94 -.::.?1 2*.% .C237 =.a -.c606 %.I4 -.I119 27.31 -.0:33 26.77 .0818 . .I6C6 2 e . n . i t 3 29.32 .CGd *.re 2771 33.30 .P60 a . .YZO

5.0. v HIS

3.21 6 .m 5-71 6-22 6.- 7.- 8 . 2 9.13

10.01 l l .@a

12.16 13.12 13.88 12.w 11.71 9-27 8.10 6.93 5.89 4.71 3.74 3 . a 3.14 3.01 3.67 3.8, 3.94 4 . 8 4.03 5.51 5.% 6.97 7.01 7.30 8.98

10-35 11 .es I.?. PI 13.71 13.0. 12.93 I*.,?.? 13.33 1s.m 1 5 . ~ 7 16.57 I5 6? 15 00 i0 21.11 21.83

s.3. 6 )us 2 . a

5.39 6.63 1.60 0.43 9.28

I t . I6 I 1 . n 12.45 1,t.n Is.= I'J. I3 13.M 11-74 IP.32 8-61) 7-53 6-96 6. S 5-56 b.% 3.05 4.- 5.m 6.67 6.90 7-35 1.73 8. i l 8.68

10.61 1 I .Y 12-13 13.- I3.'40 13.81 15.80 I-.% I@.?+? 1 9 . a 19.06 19.51 a. 30 2 0 . 3 8 . 9 7 19 68 21 .PI ZZ.*.? 22-01 19.98

mz: -. m3 . nz. mz. 861. si!. 96z. 850. a. QY1. 839. 835. M. 019. 01'4. 006. 789. m5- 780. 766- 747. ' h l . 7 k . 726. 103. 6&. 628. 618. bes. %%. 111. 111. 113. 113. I IS. 119. l a . 120. I 16. 113. 110. 109. 106. 9 4 .

75 - 56. 53. '42. 32. 30:

Page 72: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE 1-1 3- WIND STATISTICAL

ANNUAL

s:ArloH z m

-003 1.000 2.090 3.000 * .a30 5.000 6.000 7.000 8.000 9.C23

10.000 11.003 lZ.r.00 13.000 l4.000 IC.000 1K.C:O 17.005 IB.C30 19. t50 m.c:o 21 -30; 22. c30 t3.C30 a. CIS 7>. tC3 2(: 010 27. COO =.coo a . o t c 37. LOO 3.2 CiTO 3%. OLO VB 0C3 S . 3 3 C '10. ,'3? 42.C!3 '14.000 -rG. OOC 98. C50 5 0 . 3 3 "L'. 030 '5- .9CO 55. CCO 5B.coo 61; C20 6r' C10 6r.CZO 66.COO 68.COO 73.500

U P E C S.O. U

W S 2-88 6.18 6.97 7.88 9.00

10.36 11 -82 1 3.38 1s. 10 16.8! IU.53 19.W 20.90 m.-B 19.39 17.*0 1 5 . Y 13.37 1 1.68 10.22 9-56 9-52 9.*7 9.53

1 0 . 2 11.16 1 1.99 13.m 14.C-3 15.48 16-71 19.70 21 .(h

23.33 cY.GZ 26.89 ~ 3 . 3 7 x .*7 34.96 46-92 38.32 33.73 43.38 *I . 10 Q2.13 42.53 C4.Y 95 .Y wr.76 4c.20 42 67

WVERIL R1U.V)

- . l a 1 -0734 . I sol? .!*I0 .I603 . IQX . 2 a 1 2619 .2%9 .27w .a64 .2710 . a 7 1 - 32518 -3%; -3762 -3696 .3*53 .Y29 .Y32 -2339 -0 569 -.a - .em7

-9483 -1161 . I83b - 2 6 9 . m 7 .-A . Y I O .a3 .2-3 ? . I X 3 .I936 .a39 .3335 .ml . a 7 ..a= 2175 .I693 . I S 5 .237iI .?7C'J .z934 . a 3 .I966 . "39 - . C277

-.075l

S.O. v nfs

3.0'4 5-30 5.09 5. % 5-81 6.36 7.00 7.81 9-77 9.85

1l.W 12.13 12.71 1 2 . a 10.56 8.70 7.15 5.85 C.01 3-75 3.01 2-70 E . A 2 . 9 2.97 2-97 3.01 3.*9 3.65 4.18 '4 .c2 5.21 5 . e 5.e3 6.81 7 . a 8. !O 8.86 9.43 9.76

10.01 10.70 ! I . : ? 11.85 I Z . 9 1 3 . a 14.41 14.76 15.60 17.W

5 I

9839. 9838. 8832. 9802. 9759. 974'4. 97'41. 9712. 9659. 9621. m. 9162. **I. 9355. 9280. 9229. 9155. 8993. 8963. 8 8 8 1 . 87W. 8603. 0546. 83%. 83CI. 8137. 7895. 71 10. -9. 9 6 0 . 51C6. 1 366. 1373. IZW. 1 393. 11.13. 1\31. I*59. 1*53. lW6. I*%. 141 1 . I me. 13:l. 1 171. 934. 639. 513. '435. 3=3. 3"6.

Page 73: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

N - I . ' d e

i=

Page 74: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 75: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 76: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

'ZE

'0

5

.65 -5h

'EL

"a

' CB

'a6 'E

OI

'(101 '(101 **I

:ho1 'SO

1

.%ol

.so1

'1

31

'0

01

' 101 ' 101 'G

s

' 'as ' G

C9 'ea

'6?L 'O

W

' XL

'S

U

'9%

'O

U

'CO

B

'hl8

'L

IB

'sa

'em *I*

'ha

'L

a

'SW

'S

CB

'W

'1

98

'a

'098 'LP

B

'L9

8

'89

8

'69

8

'ILB

'Ifa

'IL

B

' OU

.82

0s

'Oh

'SS

SL ' W

2

01

'M

I '6

Gl

'90

1

'Lo

1 '8

0 1

'Lot **I

I

'Sll

'El l

-01

1

'60

1

'01

1 '0

1 1

+&s .a

9

'96

9

'6z

L

' OU

' XIL

'W

' B

L

'OLL

' WQ

'hle 'L

lO

-E

a

'SB

. Ice 'h

a

' L'a

'S

'a

'S'a

'8

58

' 198 'cg)

'988 ' L9(r 'L

9e

'8

98

'be

e

'la

'ILB

'la

'K

L

'22

'O

E '6

s

'65

'C

L ' +a .%

'0

6

.so I

'ho

l 'C

OI

'(101 '(101 'so 1

'C

OI

'Lo

t '1

01

'0

01

'1

01

'1

01

.s& 'hC

S

'ss9 .6

9

.WL

'O

U

'a

'5%

' 9

9L

'

OU

' 5

08

'*I8

'L

I8

'SZ

B

'95

8

.Ice '*'a

' L

*B

'SC

8 'S !a 'M

' 190 'hw

'9

98

' L9

8

'L9

e

' 898 '6

98

'IL

B

' ILe

' IL

e

'911

dm

Ot'

IS'

91

' 1

0'-

S1

'- fo

e

LI'- Ma-

50

'- 1

0'

60

'- 6

1'

hl --

0s

' Ls ' h

oe

- Z

h.-.

I*'-

as-

L6

'- S

S'-

81

'-

60

'- so. II'

SI'

hi! 9

s'

sz. 82 ' S

2'

* ' S

O'

ha

'- L

1'-

80

'- 1

0'

Lh

' - S

O' 1-

Cl l-

LO

'I- 6

9'-

21

'-

80

'- 1

1'-

f0'-

11

'- II'

P '

a'

U '

u '

a nnrs

SO

O'

LS 00

' f9

30

' S

83

0'

ICIO

' 1210' O

h10' IL

10

' L

61

0'

L9

20

' L

f SO'

OC

hO'

OLS

3' U

LO

' 6

01

' 161 I

' 81)hl' IfO

2.

QL

12

' W

ieZ' W

L2

' LO

OS

' Ih

IS'

flSS

' f L

Bf '

OO

f h'

9L

IS'

SIS

9'

h9

i 8'

CB

II'I 0

00

8' 1

0

66

1'2

O

L0

8'2

0

6fS

'f O

WL

'S

08c&'

h

OS

LS'S

O

BLO ' 9

O

f l8'h

0

20

0' S

O

hL9.E

C8

f6'f

OL

'2'h

0

hL

S.h

C

OLL'h

0s hh

' s O

Z6h.9

05

02

' 8

00

20

' I I

~~~~~s 1 0

00

s' I2

OO

L0' I2

su1

0

a .a.s

56

80

' W

'I

LB

II' 0

2'1

@

SI'

ee. O

Bb

l' 2

3'

tlLQ

'

10' *o

f E '

ho

e-

80

2h

' s

?' -

h9

Ei'

II'

thm

' k?

' 1 - 6

fL0

' 0

6' -

05

11

'1

02

.1-

OG

25'l 21

OQ

'a'1 1

0'-

06

6f.E

9

1'-

0151'S

LL

'- O

SC

l 'C

L2

' 0

01

6'5

0

s'-

oG

ef'L

ssa-

01

6'6

h

O'

0025 SI

6s

' O

O(3

'81

0

1'-

OO

Sf'!E

8

0'-

OO

'6'Y

h0

'- 0

01

8'6

2

90

'- 009c7"hS

E

l'- 03W

.Oh

01

'- 0

3rrE

'Lh

8

3'-

00

f8'5

4

11

'- 0

06

'59

f0

'- C

OI2

'0L

2

1'

OO

U'S

6

12

' 0

00

L'lll

hs

. 0

00

9'fS

I 6

2'

00

06

'LC

I 2

2'

CO

M'+

BI

K'

03

0f'S

12

S

O'

OO

OL

'69

IS

'- 0

00

0'b

W

60

' ooae.ltr

22

. O

JOc"(lLE

10

' 0

00

6'?

2h

0

2'-

OO

OG

'L'Lh 1

4'-

00

34

'LZ

S

29

'- d

oo

~~

~~

ts

9

~1

.- O

OO

S'S

S9

0-i'- 0

00

9'*2

L

hi"

- 0

00

5'2

08

E

l'- 0

00

(;'80

0

62

'- 0001 'G

O6

95

'. 0300'G

601 L

h'-

00

00

'20

Zl

19

'- 0

00

0'1

02

1

19

'- S

UIO

o uv)c

i n

3m

E3

.8

W>'JI

f rr'6 61 'G

B

i 'd

Ei'L

9

h.S

2

5.5

3

.5

2

h'S

lo

's

2S

'S

&'E

C

L'h

L

6.h

M

'C

O5

'h

LE

'C

9h

',h

OB"!

65

'2

L6

'2

hs

'2

OL'Z

fC

'E

E5

.2

05

.2

8E

'E

25

.2

B*'?

L

9'8

(6

.2

Q'E

0

1'2

S

'2

8

9'2

E

O'S

2

0's

2

9.2

1

9'2

9

8'2

L

6'2

'6

'2

89

'2

95

'2

'6'2

9

4'2

2

L.2

5

6'2

O

O'E

%

"I

25

.- X 0

33

1 '0'5

I 1

.81

2

61 'LC'.?

90

'Lft

G'

f XY

%'I52

tf '4?;2

89

'6'2

m

':W

W'5

'2

6O

'LW

*.e

w

Lh

'61

V

6c'O5z

21 '5

92

9

9'0

92

2

h.W

X' 1

11

=

-9'12 f

8'l

e

65

' Lf Z

S

5'S

f2

SO

' If8

ZO

'MZ

06 ' 922 hLS

h.?Z 5

s.22

2

hh' O

Z8 0

2'8

12

2

6'4

12

8

: .f I2

28

'60

2

E2 ' 9

02

&

'SO

2 6

h'S

02

S

O'S

OE

L

9 ' LO

? fO

'Ol2

Q

i'f IZ

EL

'LIZ

8

6'f2

2

L2' If2

68'6E2

82 '9'2

B

h'5

r2

61 '0%'

S8

'9r2

='EL.? hO

'6LZ

9L

'fW

Y.8

02

f 1 'f6

2

22

'ZL

' 2 0h3

1 NT34

XC

3'

fS1

0'

f 903'

LLCC

' 3

31

0'

9: 1

0'

Sf 10

' &

lo' 6

81

0'

Of2

3'

0620 ' f hZO

' ChO

. hhS

0 ' IO

LO'

0600 ' M

OI'

91 hl '

6h

31

' 2h6 1 ' 9'30Z

' m

z.? ' 68'12' IL

*. 8

L8

2'

ILOC

' r t

rr

I*%

' h96Z

- W

*h'

ISE

S'

(654'

'a*'

SL

W' I

IOU

' I 2

10

L.I

ax

'?

0*E

&'2

&

23

'2

61

81

's 5O

Cf 'f

G

9hZ'S

6

1S

S'f

15

9Z

.i h

l*.C'S

h

9L

2.i

2CJL2'f

AG

LZ'E

h

6S

'i IL

'e'f

ILh

h'h

h

8Ih

.h

0.I d

'0's

'3 jd

V3

OK

O'

000 ' CL

S

LLO'

00

0'8

3

NO

I'

O

CO

99 585 I

' iO

O'h

9

9x

1 '

OC

O'a

G

IY'

OC

0'03 5

O

OO

'a5 9hO

h' O

CO 34

ElZ

' 0

00

'6

SO

L9' 0

00

'K

60218' 000 'C

S

Lh

CI'I

00

0'8

h

18

15

'1

00

0'9

h

hh

a.1

0

00

'*5

a

00

0'2

9

%S

O'E

O

OO

'O*

rsec'r 00o.e-i

a5

l2'S

0

00

'9s

tIG8

'9

00

0'Y

6

LfI'R

0

00

'X

08

52

'21

O

OO

'OZ

C6

hl'h

l 0

00

'62

0

06

f.91

0

00

'82

0220 '6

1

OO

O'L2

OE31 '2

2

00

0'9

?

CS

IL'K

000'S

.Z

OhC

h'6.2 O

OO

'h2 G€%'

hf

020 'E2

U

f98

'05

O

C0'22

OLC

4'Lh O

JO' 1.2

oa

gl's

0

00

-02

O

h1 1'9

9

00

0'6

1

O1:O

'eL 0

00

'81

0

60

l'Z6

0

00

'LI

OO

Z0'8O

l 000

91 O

CO

E'B

.?I 0

30

'51

0

0'6

'Cil

OC

O'C

l C

C5

1'L

LI

OO

O"1

OO

%'LO

Z 0

00

'21

O

Orn' 1 e

0

00

' 11

C

Oc'B

' OW

0

33

'01

C

OL

5'h

X

00

0'6

0

04

h'iL

f O

CO

'B

00

'6' LZ

* 0

00

'L

00

19

'68

5

00

0'9

O

Oc%

'S~&

0

00

's

OC

'Xa'O

E9

00

0'h

0

02

.f IL

000'C

CC

r)'ho

e

00

0'2

0

30

*'90

6

00

0'1

00;d'LIO

I CO

O'

00

00

'81

01

00

0'

M

WA d

P

.VZi4

.? O

*,U*L

- F

;011*15

Page 77: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 78: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 79: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

SYA

TIO

N - 7\1

79'+

0 z

WA

N

P

Kn

m

.02

0

10

17

.60

00

.O

n3

10

17

.30

00

1

.00

0

90

8.2

10

0

2.0

00

0C

0.38

00

3.0

00

7

17

.E5

00

4

.00

0

63

5.4

70

0

5.0

30

%

1.?;

35

6.0

00

49

* .9

?00

7

.00

0

434

.ZO

O0

8.0

00

Y

IO.O

+OO

9

.03

0

33

1.9

50

0

13

.00

3

29

7.9

00

0

II.O

C0

h0

.93

00

1

2.0

30

21

3.4'

00

13

.03

0

183.

:?C

O

l*.0

00

15

5.05

400

15

.03

0

IY.2

L)O

O

16.G

CO

1

11

.98

00

1

7.0

30

9

4.8

95

0

18

.0?0

0

J.4

33

0

19

030

m

.sr0

3

20

.00

0

58

.31

30

1'

1.00

0 *9

.RC

i'O

22

.00

0

42

.61

00

2

3.0

00

3

6.5

15

0

~3

.03

0

31 .

BO

K

.OO

O

26

.90

40

2

6.0

00

2

3.1

37

0

27

.03

0

19

.93

00

cW

.000

1

7.!

84

0

Z9.

000

IS.W

50

3

0.0

00

1 2

.00

90

Y

.OJ0

9

.53

61

7

4.0

00

7

.16

%

36

.00

0

5.4

36

7

38

.03

0

4.1

36

5

45

.03

0

3.16

07

L.2

.030

2

.43

20

4

4.0

00

I.

B;9

+

46

.03

0

! .4

%3

re

.00

0

1.1

33

3

50

.C3

0

.-09

9

.03

0

.68

39

54

CO

O

.5'?94

S6

.0;3

.S

O79

'A

530

.31

92

6C

.CSO

.2

Zc2

W

.00

0

,17

99

6

v.0

30

.I

S-6

6

6.0

30

.C

?9!

68

.03

0

.07

37

7

0.C

33

.W

O

TA

BL

E 1

1-7.

TH

ER

MO

DY

NA

M lC

ST

AT

IST

ICA

L P

AR

AM

ET

ER

S

JUL

Y

CA

FE

CA

N

S.D

. P

nB

2

.43

60

2

. rlc

n

2.2

28

5

2.3

68

7

I .Q

58

1

.04

97

1

,69

60

1

.61

80

1 . Y

i94

1 .%

LC

9 1

.49

w

I. 4

676

I .4

92

3

1 .9

2%

1

.*I7

0

1 .a

65

!

.I0

08

.W

69

. -5

7 .6

45

0

.Eel

.46

40

.4

04

2

.B%

.30

57

. n

oo

.2

35

5

. a99

. I84

7

.I6

70

.I

54

l .I

37

7

. I40

3

.I2

85

.0

96

6

.m1

0

.07

36

.O

W9

.w9

3

.@I3

.

OF

I . 0

28

5

. G.3

2 . O

ZG6

.01

75

.!

I153

.0

12

3

.01

01

. c

;92

. OC

*9

.01;

-L)

.03

43

KW

T

DtG

K

a9.a

2

33

.18

a3.86

20

7.0

8

.?a?

. 22

27

6.5

0

no. sa

Z6

5.1

0

E5

0.8

9

m. n

a5

. 'Y

237

46

Z

L3

. 44

221

.44

2

13

.97

x

9.

m

20

9.7

6

a* .a

20

5.4

l 2

07

.63

2

lO.4

4

21

3.R

c'

lG.0

3

21

6.1

8

22

0. I

4 2

22

. C3

22

3.8

3

22

5 5

2 2

27

.15

2

29

.66

2

30

. I9

2

31

.71

2

35

.70

2

39

.80

h

4 .Z

2 2

49

.48

-.

.. LA'.

. l-

Z9

.19

2

53

.20

a5. %

cX

7.1

9

85

.78

8

3.1

9

t6C

.E

a7.59

a.

61

zC

;3.5

9 a

s. 14

2

37

. a

23

3.8

3

?23

.26

21

6.';6

S.D

. T

DEG

K

3. I

6

3.1

7

:. 16

I.

I4

I. I4

I

.i'2

I .m

1

.35

1 .P

4 I

.5l

1.7

5

1 .=

1 .E

l 1

.72

1

.71

i .S

2

.15

2

.20

2

.11

2

.93

1 .X

1

.63

1

.63

1

.46

1

.51

1

-66

1

.65

1

.69

1

.87

1

.66

2

.08

1

.86

3

.50

3

.00

1'

.70

3.9

1

.5i

4.6

6

5 7

1 4

.56

'4

.E4

4.w

5

. *

6.2

3

6. I2

3 8

.5?

9

. IC

9

.5:

I0

.E

9.7

7

14

.61

16

.'+7

WE

NT

l€

AU

B

GfK

3 .3

4

1173

.0C

00

.34

1

17

2.0

00

0

..?I

1069

.OC

OO

.I

4

973.

2C00

.

-.2

8

8w

.7C

00

-.

07

79

8.6C

OO

.0

2

720.

3CO

O

.05

6

48

8CO

O

-.0

5

58

3.6

00

0

-.2-

# 5

24

. LC

00

-.I6

4

70

.5C

09

-.

I7

42

2.

ICO

O

-.2

0

31

8 O

COO

-.

11

336.

5CO

C

.I2

~

.~

OO

.2

3

261.

ICO

O

. IS

.Zt5

.OC

00

-.0

1

191

.OCO

O

-.Y

l6

l.O

C0

0

-.4

9

155.

1C00

-.

33

11

3.3C

OO

- .3

9

95

.22

00

3

0')

. EO

O

-.2

3

68.@

130

-.32

57

.79

00

-.

03

4

9.1

50

0

-.I1

41

.8bO

O

-.0

6

33.7

*00

-.0

7

30

.57

03

-.

K

26.1

E00

- .

06

2

2.4

r00

-.

I7

19

.2€

00

.5

5

l4.1

10

0

.30

I0

.43

00

.I

3

7.7

59

0

.a

5.

m

2%

L?

. 330C

-.3

1

3.c?

1E

-.36

k.*B

8O

.68

1

.Kg

0

-.2

2

1 ..

*79C

-

I. 1

540

-.n

.9

~5

r?

-.3

5

.7c7

3

-.1

5

.%I8

.C

6 .*

?M

.12

.3

1t7

.1

5

.ZB

O

5 .I

S8

5

.77

. :5

03

.0

9

.I1

58

.6

1 . OE

t75

189.

'rn

. tac.

m.

7e

c .

m.

7*.

m.

79

3.

793.

7

m.

78

%.

78

3.

703.

m?.

782.

78

2.

w.

-ml.

7

01

. 70 .

78

1.

779.

7

19

. m

. rn.

nz .

1

72

. 7

65

. 765.

76

3.

765.

757.

757.

7%

. m

. w

.

'h*.

-5.

-3.

-2.

74

2.

7%

. 7k.

7B

. 70

5.

669.

889.

676.

676.

67

3.

67

3.

676.

67

6.

65z.

e.

61

3.

61

3.

9s

. 58s.

'I%

.

47

6.

'4'46.

44

6.

100.

s?.

99.

89

. Q

I. 89.

QI.

e9.

98.

89.

98

. 89.

100.

90.

OIi.

8

9.

99

. 8

9.

96.

89.

96.

87

. 96.

s.

96.

06

. 0

9.

79.

77

. 6

7.

Y3.

4

0.

31

. 27.

Z?.

19.

20.

19.

q5.

I*.

Page 80: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

'El

.el -2

2

'a

.fh

'65

'5

9

"4.

. hL .h

L

'SL

'9

L

'a .

'9L

'9

L

' U

'9

L

'LL

'6

L

'08

' W

h

'f h

h

'Sh

s ' 9

15

'6

.3

'2FB 'S

* -9

- '6

W

' Ua

"6.

' I IL

"6

1L

'O

U

' WL

't3L

'%1 'O

w.

'9Y

. ' L

Y

'OU

' 1

!x 'C

U

' su '9u

-0u

'a

'LU

.Su

'W

'S

U

'6%

'I1

'61

.e

' If .h

h

'W

'9L

' 'a 'W

'5

8

'98

' la

'9

8

' m

' m

'10

. !B

.sa ' 88 '68 '8

Zh

.fh

h

'S*

'9L

S

'629

'25

9

'Sh

9

'9119 '8

C9

'U

9

-a

9

'IIL

'6lL

' W

L

'9z

L

.6zL

'9

EL

'O

Y

'9hL

'LY

' ISL

.%L

' %L

'85

L

'29

L

'SU

'W

' GLL ' GLL '6

9L

'21

'6

1

-2.2 .w

'h

t

'65

'S

9

'hL

"a

' Y

' G

L '9

L

'BL

'9L

'9

L

'LL

'Q

L

' LL

'6

L

-08

'0

2s

-f h

h

'SG

' 9LC

'6a

'&9

-3

l9

'9h

9

'6S

9

'51

9

'-9

'IIL

'61

L

'OE

L ' 9

zL

'W

L

'%L

'Ow. '9

hL

'L

hL

-0

%

'1sL

'E

CL

'5%

' 9% 'B

SL

'B

L

.fU

'SL

L

'UL

' su

'69

L

40. r.[r ' If .- 2

0'1

9

i' C

L '

02

. roe- L

I '

ff.

SL -

69'

fh*

Y'

60

'- .?d' 2

2'

22

' 6

2-

91 '

1.1 '-

PO

' 2

0'

60

' 1

4'

a'

L2' em

a-

am

a

t- ho '

81

' 8

1'

91

' 2

1.-

06

'- h

9' I-

sf.1

- 6

.-

9L

'- *h

e-

92

'- 9f.-

a*-

%.-

fh.-

6z.- 0

1'-

SO

'- 5

1'-

91

'-

99

00

' V

.00' G

503' 0

00

0'

20

:o-

52

10

. 2

L1

0'

GO

r'0' h

f.20

' L

90

' s'?fo- LdhO

' O%

O' 50'30' =

Lo' f8

60

' f9

C1

' tE

*l.

Of8

I' le

e'

1%1'

aft'

Y 6.2'

h60E '

hlh

f' 0

16

f' %

9*'

0s

15

' 1

51

9'

SIL

L'

9968'

08

1l'I

09

05

' I

05

33

'2

Of h

9'2

O

L01 'S

01116.2 O

eE2'2

09

86

' 1

OC

,fI'E

OO

Z9'2

00

F6

' 2

08

90

2

00

46

' 2

OlG

f 'f

OG

85

'f 02'19'E

O

LOB

' f 0

03

6'f

06

9h

' C

CO

hl'f l

O

OC

l'El

fW10

Q

-0.5

CW

3' G

O'-

5-1

I ' *;'-

CB

',I '

L1

' r6

l' Y

'

I

L3

'- ~

9a

'

93

'- C

61

h'

9.2.- S

CC

G'

21

.- fb

rn'

20

' €E

BB

' 8

3'-

Ch

fl'l 5

1'-

CeG

*'l W'-

OIG

8'l

Oh.-

CS

BC

'Z

90

'- C

fQ

'f

LZ

' C

9r'E.h

LI'

6ze

L.G

*o'-

CB

Y'L

0

1'

03

4'1

'01

9

i' O

Oll'h

l 2

6'

C3

Y.6

1

02

' C

0'-'1'.?2 f2

. C

00

1'9

2

21

' O

CE

'Of

40

' G

OaL'S

f 9f.-

CO

F5

'lh

LI'-

CC

f2'6

h

51

'- 0

08

0'L

S

62

'- 0

09

1'8

9

fin

-

oc

as

.ce

6

0.-

OO

Ef'%

L

l.- C

oos'f 11 f0

'- C

OO

E'Y

I 1

1'-

C03S

.;51 4

0'

C3

09

'16

1

h3

' 00O

h'E-Z

2 Z

Z'

CO

Oi"192

LS

' C

03

6'L

F2

f2

' 0

00

2'9

Ef

Z?

' C

C0

9'L

Lf

91

' 0

03

2)'Iz

c

01

' C

OO

O'C

LC

63

'- C

CO

G'T

K 52'-

0036'Za;

21

'- ,

C0

03

.8h

9

21

'- 0

00

2'6

1L

h

0'

00

01

'LO

L

SO

' 0

00

0'1

ee

L

I'- 0

00

9'1

L6

If'-

0

00

0'8

90

1

Sf' -

CO

OO

'fL11 '-S

' 3

03

3'f~

l l S

t' fW

3

OM

U

I 143%

t?'c

ll u

> ?

I 1

9'0

1

10

'01

?

a-0

1

K'

L

BL

'9

'x'9

Lcf

9

61 '4

W'S

K

'S

f6

'f L

4'f

fL'h

5

9'6

h

h'h

6

5'f

69

's

,

L9

.S

BL

' : f0

'Z

63' 1

f6

' 1 A

'I

L5

' 1

L5

' I

I-l.1

1'9.1 1

9' 1

39' 1 53' 1

88' 1 8

6' :

41 '2

42'2

06

' 1 O

L' 1 2

L'I

00

'1

LL' I fL

* I

5.1'1 a'?'

l 0

2. I

92' 1

1.2 I

01

'1

10

'1

66

' L

I 'f L

1 'f

N 930

1 '0's

10

'- C

l ' 0

2'

6L

' I

fh'

L9

' 0'3. C

5'

r, h

C5

' L

S'

IL'

28

' E

L'

89

' h

5.

65

' ts

. 3

5'

Oh'

20

'- '13. L

O'-

01

' h

.' 0

2'

01

' G

I' 2

2.

I h'

fh*

sa . E

l' LO

' 1

0'

f0.

12

' 8

0'

90

'- O

f.- L

2'-

a'-

92

'- h

2'-

f2'-

92

'- h

E'-

If'-

L

C'-

6C

'- IS

'- &

' -

41-93 '

r.-.n.

9c.CO '

29

10

. G

3X

O

'

LO

!OV

O

slo

' C 1

10

' t.320 ' h

e$

'

hc

d3

'

6hEO

' 9

2.9

' L

fC-4

' 6C

C10'

Ct3LO

' E

L00 ' 1401 ' 1921 ' 1151 '

00'11 '

SLC

tl * h0-1 . 0'351 '

98

1Z

' 9

-e

. E

,32

' IIIt'

01G.i'

CO

OC

. I K

*'

fO!S

' 6

Lffi'

OO

M'

9.3

8 '

e5

II)'I 6

1Y

'I L

fl3.I

LX

h' I

GS

LC' 1

L

'-Oh

' l

1 b8

h' l

f'1IS

'l J

16

4'1

O

ZOL' I

L

fLL

.1

Lt

d.

l 0

07

3'2

%

f'? 2

If I'l.2

0C

IL9 2

zo

n.2

&

(

d

'@'S

'3

Wr

5

0h

50

' O

CC

-OL

Ir,!.O' CO

O 'I!?

OS

SI'

CO

OU

8

hf I '

OO

O.'v9

h6

LI'

OC

0'2

9

S%

Z'

OO

O'C

9 IL

CE

' 0

00

'05

6

0C

h'

OO

O'X

6

01

s' 000

h'; Q

d%

' O

Oi)'&

02

%'

00

0'C

S

00

11

'1

OO

O~

Ch

61

fh'l

00

3'9

h

66

M.1

O

OO

'hh 2

00

0'2

C

Zk'l

.E

OC

0~

04

I G

E6

3'h

O

OO

'BE

5

9tZ

.5

00

3's

C

24

1'L

0

00

'%

OL

ffi.6

00

0'X

0

19

L'Z

l C

?J'SE

O

iLL

'CI

00

3'6

2

Off I'L

I C

CJ'B

2

O!R

8'6

1

OC

3'LZ

om

o.ra

o

oo

.sr

Of5

8'9

.?

00

0'Y

O

Ce2'15

OG

O'h2

Om

h'9

f 0

00

'fc'

3fG

5'2

h

00

0'2

2

C'x

L'rjh

0

00

' 1.2 0

6Z

.05

0

30

'02

m

h

5

35

91

'89

0

00

'61

O

SE

G'08

90

0'0

1

01

SC

l'h6

0

03

'LI

00

Z:'2

ll 0

00

'91

O

OIh

'Zf1

0

00

'51

O

Oh1'951

CO

O'hl

OO

q'T

RI

OC

G.51

00

11

"11

2

OC

O'2I

OCE 1 '6Y

0

00

' 1 1

O

OW

i'Le? 0

00

'31

0

06

h' 1

fE

00

0'6

O

O'Q

'OB

E

0CO

.B

00

11

"Lfh

0

00

'L

OD

LZ'h6C

0

00

'9

03

L6

'C%

0

03

"G

OO

GO

'St9

CC

3'h

0

02

1'L

IL

CC

J'E

00

89

'LC

B

00

0'2

0

02

'1'L

06

0

00

'1

00

0E

'91

01

C

OO

' 0

00

9'3

19

1 000'

84

W

A d MU

Z 3

Cb

lY - N

OllVlS

Page 81: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 82: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

ST4T

lOhl

- 7u734C

7 -

i-E&

-i P

m

m

.O

CO

IO

lJ.Q

C0

3

.05

3

13

1'l.

30

00

I.0

OC

9C

5.Z

IOO

2

.03

0

83

4.5

20

0

3.0

3

7713

.553

0 4.

CC

O

63

i.3

70

0

5. C

X

-557

. !3

33

6.0

0C

493.5

3JO

7

.53

0

Q33.3

100

8.0

00

3

76

.14

00

9

.03

3

Y7

.51

00

LO

. 300

r3

u. C

OO0

11

.00

0

2-5

3'1

3

1Z

.000

21

0.r

x'b

J 13

300

Id

,.Z',C

3 1

4.0

30

19

3 '.W

O

15.0

CO

2C

17C

2 l~

.OC

O

.I,

..?C

3

I7

000

93

.11

20

1

0.0

00

7

8.7

03

0

'.I '9

.C3

3

66

e2

0

~n

20.0

CO

5

6.9

10

0

21 .O

OC

48

.54

00

2

2.0

00

4

l .4

76

0

Z'1.

OCO

35.9320

i3.0

00

30.4

1Z

3

a.9

00

~

.1

OC

O

i6.0

CO

Z

Z.u

?JO

2

7. '

I00

I 2. c

TZ

0 i'

8.0

33

1

6.6

38

0

Z'9

.530

1

4.3

08

0

30.O

CO

1

2.3

90

Y

.00

0

3.2

10

3

-.OC

O

6.9

16

5

Ji.O

C0

5.71

f2

30

.00

0

3 %

*i

49

.00

0

3.C

lGS

'.

IS0

2.S

I7iJ

44

.300

1 .X68

ti

:

I .m

77

40

23

0 1

.07

83

5

3.0

20

.&C5

52

CCO

<-.5* 3

St.

fOO

.%

el

Y5.

CC

3 .3935

%.C

00

.XY

*

63

:3

P .Z

?x'3

W

. z2G

.I

75

2

C3

.OZ

ti

, I LY

E6

C00

.C&

€43.

000

.u\O

7O.O

aO

.L'5

51

TA

BL

E 1

1-10

. T

HE

RM

OD

YN

AM

IC S

TA

TIS

TIC

AL

PA

RA

ME

TE

RS

OC

TO

BE

R

KA

N T

PEG

K

23

6.c

':

ra5.96

F3

0.2

3

20

5. n

m

c .7

5

27

5. '

-6

cx

3 6*

a3 '3

c3

.5?

4

c-9.

68

a,?.

39

23*

95

22

7.5

7

220

.50

2

:'.

. !S

Z

fC- '*

ZO

*. r

T

22

2.s

a?.

n

a*.

97

23

0.6

3

21 I

.el

21'.

.20

2

16

.40

2

18

.41

?

23

.9,

22

2.1

1

2Z3

81

22's

. 39

22

6.

22

0. ?

2

22

9.

:O 233 8

5 2

37

.92

i

3l

.63

aG. I7

a..

10

a7. -XI

263 0

0 XBG

G3

'X7

. -3

m7

.'*

3

ax 4

3

s3

.5:

-351

.31

Z7

.91

~

34

.41

a

7.w

. +I

.6

Z

35.1

6

23. b?

Zc5

.41

5.0

. 1

WEW

T

MU D

[X

j K

5

11

3

. U?

-.7

2

1185.0

330

3.3

3

- .72

I IP

5.0C

110

Z.'

4

-.6

S

lUC

i0.0

030

2.

a

-.71

978.*

000

2.

s

-.so

~

7.B

OU

O

2.0

3

-.I

0

796.

6CB

O

2. 1

0 -.

TA

71

8.F

A30

2

Sf3

- .*O

6'*

8.?

C:J

J 2

.59

-.

33

58

3.'

S'l

3

2.W

-.a

5.3

.XC

O

3.0

3

- .I0

*7

C. 2

01:3

2

.-

-.C

8 42

0.7C

OO

2

.68

- .0

9

37

5. *t30

2.2

3

-.2

1

332.6

230

2.C

3

.C?

~Y

3.2

C0

0

7.1

9

.I0

*0

00

2.5

3

.3*

?.'2

.10!

:0

2.6

0

.a 1

89.W

CO

2

.83

.0

6

163.

3CU

O

2.

3

.3I

133.

9GO

O

2.2

5

.OZ

11

1.1

00

0

2.0

2

.OB

9

3.6

~0

0

I .S

-.0

5

70.0

j:'O

I .m

-.

13

6

6.~

10

0

1.

h

- 5

6.6

30

3

I .B

r -.

St

48

.58

30

1

.98

.

40 .*

uo

I .9

7

4

34.9

000

2. 19

-.h

2

9.8

30

0

2.2

9

4

25

.51

00

2

.43

.

21

.%2

0

2.*

2

. 1

8.7

30

0

5.0

6

I.

13.7

'400

4 .%

.2

3

IO.IC

:13

5.C

2

.47

7

.53

~~

0

3.4

4

-.D

l 5

.6C

:o

6

07

-.5

1

4.1

87

0

6.0

5

-.I3

3.1

3:O

5

.63

.a

2.

m

5.6

9

-.8

5

1.0

17

0

5.9

( .

I .k

c33

6

.a

-1

.16

1.C

950

6. h

-.3

3

.WjW

6. E

% - .6

3

.67cB

3

7 c

T

-.5

6

.53

3

0 50

-.3

9

.*O

W

tl 81

-.

:2

.1

0 1

6.6

2

.32

.ri?

+-4

9

.23

.a

,I%

'i'

9.1

1

- .5

0

. 1*0

0 1

0.W

.6

0

.I1

48

I1

.T:

.65

.W! S

.O.

0

Grn

3

17

.96

00

1

0.5

+3

0

ll

.r?

O

8.8

tiiO

7

.16

70

6

. OZO

O

5.3

~e

u

s.(r

*co

* .

5700

* .*630

*.I

34

0

3.7

05

0

3.4

17

0

3.5

27

0

4.1

21

0

4 .5

?10

b.5

2

2

b.0

2 ',

3 .=

Ti

2.3

65

0

I .60

bC

1.1

72

0

.91

57

.7

YI

.5980

.SO

7

.47

a

.40

77

.3

7w

.X

I0

. a77

. -32

0

.i.m

.P

IT1

'

.I7

13

.I

47

9

. .I

22

1

.0039

.06

35

.X

i72

.0

*70

. 0 359

.om

. oa

t5

.0210

.Ol7

3

.01*

0 .0

10

8

-01

22

.OC

M

.00

5 l

.OO

W

.03

7

Zi.

-0

2

77

5.

.66

M.

.76

Tn

. . I6

7

75

. -. I

5

m.

-. 03

77

'4.

-.0

7

771.

- 10

772.

-. 27

mi?.

-.4

6

76

5.

-.7

5

75

5.

-.9

7

75

9.

-.e

l 7

59

. -.

50

f

f.

-.

39

7%

. -.

16

7'49

. .o

o -4

. .1

6

73

0.

-1s

7a.

.17

7a

.

. IC

723.

-06

69S

. -.

06

€91 .

.03

685

-. 0'4

663.

.01

67

3.

. I1

65

2.

-.O

J 6

01

. . 00

m

. .I

6

512.

.I0

5

03

. - .6

7

76.

.37

n

. .a

77

. I

.CO

8

0.

. se

ei?.

I7

02

. .a

9'4.

.so

8

5.

-. 10

854.

.a

9'4.

-.

37

9'

4.

-59

8

3.

.6'4

62.

. m

73

. .3

9

67.

.%

46

. .6

1

33.

.47

a.

-. n

a.

-.4

7

a.

la.

m.

m.

m.

rIs.

m.

m.

n3

.

nz.

77

2.

x5.

XS

. 75

9.

'159

. 7s7.

7s

.

749.

*'I.

73

0.

72@

, 7

26

. 7

23

. 6m

. 69r.

m

5.

683.

61

3.

69

.

60

1.

r*. 5.2

. 3

03

. 7

6.

77.

77

. 0

0.

32.

02

. .

04

.

85.

85

. B

*: 9'

4.

83.

ei!.

73.

67

. 96.

33.

a.

a.

a.

Page 83: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 84: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 85: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

S7A;i;N

- %73

*?

z X

AU

P

un

.%

030

1017

*C

OO

.C

G3

1017

ZO

O0

!.O

C3

9CS

.I?C

9 ?.

CC

3 80*.97t9

3.CE2

7:3,

59;3

4

r-.

, b3

1.L3

:3

5.2

::

Y.b.

E!:3

6

?C

3 $

99

LC

3

f 903

*B

, 16

00

R.O

CG

37

*.W

CO

9

.CtO

Y

G.2

10

0

10 G

O9

?9

2.6

30

0

I I .c

?3

a

).e

10

0

!Z.CIZ

;,3 2?

CO

;S

C

30

173

5'20

;'.

.L3?

1%

' 37

30

15

CC3

12

9.3

*00

i€

CO

G

10

9.5

35

0

I7.C

3C

W.7

73

0

[email protected]

CO

7

85

3Z

O

!9.0

33

66

.C-I

I0

i'C

.C

OO

5

6.6

3C

~3

2

1.0

33

r0

.27

50

7

2. 0

30

* ! .2

27

0

?S.C

OO

3

5.2

16

0

?* .

GJO

30

.21

10

P5

.00

0

K.9

?5

?

;6. C

OO

E

Z.X

C3

Z

7.03

0 1

9. I

SGO

<*

.!!I0

16

.43

55

i'

9 G

OO

I*

.?IX

l 5

3.0

00

1i

!.i'7

*0

32

.03

0

9.1

31

8

-.C

OO

6

.67

1*

3C.0

00

5.

lZ7

38

.C30

3

.92

7

*C

C30

S

.C?S

I L

a'. 6

72

?

, L':7

-*

.?G

O

1 .l!

319

*G.C

JO

1.s

:tw

CJ

O

I. CC

91

5C

C30

.@*W

3' C

?3

.€5

%

5-

t.13

.51

10

5:

. r:J

. J'

.? 2

'.s,P

CO

.!''-a

~3

.

?S

D

,23

40

&-

.CO

O

.I7

73

G

r C

33

. 13-

2 rl

.ro

o

.c.I

#~

(.'

a C

PO

.07

* 3

73

c:

3 .0

5*7

WB

sP

90

2s.

8B

E 1.

98

6 3.

9

86

5.

MI.

98

1 3

. 9

79

0.

97

83

. 0

75

9.

8729

. 9

69

3.

9675

. %

%?.

96

25

. WY.

95

%.

91

73

. en

. s

ar4

. K

ID.

PI?

Q.

9n

27

. 8

65

1.

MI.

wz

2.

w1

9.

0i3

3.

01

06

. 7

39

9.

71

9.

59

24

. 5

81

8.

1077

. 1

08

0.

la7

7.

1081

. lo

*. 10

97.

IOO

A.

lo*.

13

07.

1076

. I w

. 10

-3.

I O??

. 9

50

. 8

-0.

63

3.

42

8

PS

. 2&

?.

Pi*

.

90

23

. -3

. -3

. -A

. M

I.

08

13

. 97

90.

07

00

. 97

59.

'472

9.

Ot9

S.

x75.

96s.

szo

. -9

. EE .

*73.

cFn.

92m.

IYIO

. 9

1a

. so

n.

8651

. ff

~5

l.

ma

. &

19

. R

13

3.

01

06

. 75

'. .

71

'3.

59

94

. 5

01

8.

11

03

. 11

87.

1109

. I>

*.

1214

. 12

1'4.

1 !9

7.

IlU54

. I 15

1.

1130

. I IU

7,

I In.

IIZ

O.

l c49

. %

%.

69

?.

*a.

355.

P

h ,

h2

.

9023

. -3

. 98

63.

41

65

. a

nl

.

9013

. 9E

O.

9feO.

97

59

. 9

72

9.

-3. sn.

96s.

WO

.

-9.

$594

. 4

#7

3.

ma

. w

.

WI..

91

29

. cm7.

-1.

-1.

8-3

2.

8rI

Q.

83

ZJ.

8

10

6.

7-3

9.

71'2

. 5

9 34

. '50

10.

1072

. 10

7*.

1077

. lc

el.

low

. 10

97.

1 3'1.

IQk.

1067

. 10

71.

I#*.

1045

. 1 a'?. VJO

* m

o.

6g

. 4

27

. hc?.

&V

I.

27

5.

Page 86: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE 111-1. MOISTURE RELATED STATISTICAL PP.RAMETERS

Kn . do0 .003 1.030 2.000 3. COO *.m 5.000 6.000 7. OCO 8.0CO 9.000 IC.OC0 11.000 12.000 13.0CO 14. COO I5.COO 16.C03 17.060 IQ.Co0 19.000 20.000 ZI .COO .?? . 000 23.CCO c'* . COJ 3 L'30 &. COC 27. coil ZB.CO0 t3.C50 30.630

- 747940 v*POR P

rC*N rs I'r.414 I*. 1'41 9.035 5.64 1 3.231 1.991 1.1* .7R . *27 .a9 .I13 .0*7 . oa .OW .Off> .003 .ow

99.943 9 9 . 9 99.999 99.- 99.959 Y3.999 99.999 99.3% 93.e93 93.959 93.93'3 99.333 53.999 59.999 5 3 . m

JANUARY

S.O. OPT

OEG K 6.61 6.% 9.22 9.62 8.93 0.56 0.37 8. IZ 7.92 7.%2 6.79 '4.97 4.10 3.50 3.9 3.13 c . n 99.99 99.99 99.99 99.99 89.99 99.99 99.,39 99.99 m.99 99.93 99.99 99.93 99.99 B.99 94.99

m. Is. m6. m6. 8%. 093. 093. mi?. em. 885. 883. 881. 87%. m. 072. Em. 86D. 857. 838. BTI. 010. nn. -7. 736. 7.3. 518. 703. 6m. w3. 602. 480. cm .

Page 87: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

WM .COO .OD3

1 .GO3 Z . C30 3 COO c . CCC 5 .203 6 CZO 7 .030 O.OG0 9. OCO

10.:00 11 .COO 12.903 13.CGO !b :,o 15.9:3 16.:BD I7.t'CC 18.063 19.C00 c3 . CCF 21 .GOO t . 000 c^J 03C r a . CJO ca. C20 a. cco 27. LOO 29. COO c-5: CCnO 3C. CCC

TABLE 111-2. MOISTURE RELATED STATISTICAI. PARAhlETERS

FEBRUARY cm CIEU\rRIL

S.O. vp *XU V P

Page 88: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE 111-3. MOISTURE RELATED ST-ATISTICAL PARAMETERS

STATION z

m . 000 -003

I .coo 2.000 3.000 r -000 5.000 6.000 7.030 8.000 9.000 10.000 1 1 .ooo 12.000 13.000 I* .ooo 15.030 16.600 17.030 18.000 19.000 23.023 21 .OOU 2'. 000 23. COO a. 000 25.000 26.000 27.000 28.003 z9.000 30.300

OK CWKRAL S.D. VP m VP TV

MAN CCG K m.03 a1 -78 287.20 282.e n e . IC a2.w 265.91 a9.26 LV.55 h .*e 238.00 230.9 223.83 218.R 21'4 .n 21 1 .n at.= a * . m 203.18 z 3 . m a5. c9 208.68 21 1.86 214 .E 216.81 218.75 220.54 #?&'.'+I 2a4.0( 226.CI 228. P( 230.3

MARCH

S.D. DPT

DCO K 5.6'4 5.8s 'i.'Fc 9 . 9 6. 'Fc 0.32 8.03 8.10 7.98 7.95 6.~6 5 . 3 *.I0 3.W 3.51 3 . 9 94.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99

YbW WT

-.91 -.m -1.16 - .st -.I3 -.to -. Ii? -.22 -.*Z -.s3 -.* -.30 -.% -.55 -.72 -.60

999.99 m.99 999.99 999.99 999.99 939.99 999.99 999.99 999.99 999.99 999.99 999.99 999.99 939.39 %9.99 999.93

tn. 812. mi!. 8%. m. 873. 873. 872. 071. 869. 861. E47. en. 89.. m?. -8. es. -1. Bh. 01'4. 805. m. 7%. m. 741. 7s. 733. 718. 699. 630. 510. 500.

Page 89: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE 111-4. MOISTURE RELATED STATISTICAL PARAMETERS

Kn . 000 .003

1.000 2.000 3.003 \ -030 5.000 6.000 7.000 9.000 9.000

10.000 I I .OCO 12.0on 13 030 1'4 .ooo 15.000 IC.OG0 17.000 19.000 19.000 20.000 21 .COO 22.000 23.0CO a .ooo 25.000 Pi. 002 2 7 . GOO a. 01)O a. OOG 30.030

TV S.O. OEG Y * .99 9.w 3 . a 3.1C 2 . e 2.60 2 .m 2.63 2.75 3.00 3.0s 2.98 2.61 2.62 3.02 3.03 2.68 2.94 2.70 3.04 2.93 2.67 2.90 2.42 2.39 2.*0 P.93 2.53 2.73 2 . w 2.57 2 . w

S.O. O P T

DCG K *.n '4.33 6.05 0.75 0.39 8.19 0.Sl 0.W 8 . I9 7.w 6.W b.06 4 . y 3.53 3.56 3.01 5. I 8

99.99 a.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 93.99 99.99 99.99 99.99 99.99

7s. 8 f l . @7l. 8 7 1 . 869. em. a 7 . 067. 866. 06't. 8G1. 0%. 053. -3. 047. &* . 041. 039. 023. 017. 01'4. em. 770. 766. m. ls. 750. 729. 6%. cn. S B . WS.

Page 90: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE 111-5. MOISTURE RELATED STATISTICAL PARAMETERS

- 7*7P+G VkWR P

NAN Is ?2. *%ti ??.a6 13.742 0 c a 4.918 2.593 I .5c3

.eel

. 986

.271

. l a

.05l

. 020

.038

. OOr -003 .002

99.9'39 99.- 93.939 99.999 99.999 99.933 99.9% 93.- 93.993 99. '3-23 m.m3 9.999 99.991 s.999 99.999

C A K cAN*\ruAL S.D. VP W U VP

m 3.582 -.47 3.760 -.SO 3.37'4 - . s t 3.010 -. 30 2.!W .30 I .%23 . gu

.9%0 -92

.592 1.08 -320 .98 .I71 -05 . oeo .93 .027 .a? .010 .-ti .003 .53 .002 .58 -001 .3d .001 -.40

99.9'39 m . 9 9 99.939 W3.B 59.999 999.99 99.999 m.99 93.5% 999.99 99.939 999.93 99.m m.99 93.9'33 9% 99 93.999 m 3 99.999 933.9'3 93.939 9:?--.99 99.999 999.33 99.999 w.99 99.999 999.99 99.999 999.99

MAY

TV S.D. CfG K 3.87 3.m 2.37 2.03 1 .% 2.w 2 . 14 2 . a 2.33 2.51 2 . 9 2.57 2.30 2.a 2.62 3.11 2 .83 2.W .?.a 2 . 9 2.42 2.20 1.95 1 .& I .72 I .03 I .01 I .TI 1 .a 1 .eo 1-93 1 .&

YYW OPT

-.go -.99

-1.39 - 1.23 --56 -.38 -.W - . 23 -.n -.59 -.e -.36 - . s 9 -.El - .73 -.w

- 1 .a 999.99 m . 9 9 999.99 m.99 939.99 999.99 939.99 939.99 m.99 999.99 93'3.89 939.99 999.39 999.99 999.99

Page 91: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

K!l .030 .033

1 .ooo 2.OCO 3.003 * . o x 5. OCO 6.030 7.COO 8. OCO 9.0CO 10.030 1 1 .COO 12.030 13.G00 1s ,000 15.020 16.000 17.000 18.000 19.003 20. 000 21 .ooo 22. 000 E3.000 a ,000 cY.000 x.000 27.030 28. C30 r?3.030 30.063

TABLE III-6. MOISTURE RELATED STATISTICAL PARAMETERS

JUNE

t v n- &V R G K 301 .a 331.11 m.3 m.33 m. 39 ns.*i P C . 63 264.5'3 a. 19 a1 .%I a* .El 23tj. *9 2 a . CE 220.61 213.e xe. I* zcu .% a3.87 a*. 35 a 6 . n a9.61 212.79 215.5'3 218.a 220.18 i'Z2.16 223.93 ?,'5 61 227. %? ?-3.03 230.62 232.a

t V S.D. 3EG K 3.C7 3.09 1.59 1 .*6 I .*5 I .w 1 .= 1.71 I .e? 2. o5 2 . a 2.35 2.a 2.15 2.08 2.39 2.60 2.% 2.9 2.s 2.13 I .&? 1.67 1 .s 1 .*3 1.66 1.57 I.% 1.86 I .67 1.86 I .m

NQlS 1.C

m. no. 767. 7%. -0. 676. 6'42. SS?. m. 565. 564. '412. 372. 569. 231. 116.

7 . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

Page 92: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE In-7. MOISTURE RELATED STATISTIC.' L TARAMETERS

JULY

m . 000 .003

1 .ooo 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000

10.000 11 .ooo 12.000 13.000 14.UOO 15.000 16.003 17.000 18.000 19.000 23.000 21.003 z'2.000 23. tC3 ~ 3 . t 2 3 z5.OOJ 26.030 n. 000 a. C33 a. COO 33.000

DEWY T KrJI

M G K m.%? 2%. W 288.61 281.07 273.69 267.02 mo. Ir a 3 . s h 7 . 1 6 ~ 5 . 0 2 233.02 z n . 13 2 1 7 . ~ 9 210.07 203.33 :97.6.? 933.99 999.99 999.99 993.99 999.93 m. 99 939.99 939.39 999.33 999. w 999.99 939.99 993.99 999.39 999. !a 999.99

S.D. CPT SXEU OPT

Page 93: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE 111-8. MOISTURE RELATED STATISTICAL PARAMETERS

m .090 . oil3

1 .030 2.000 3 000 * silo 5.000 6.000 7.000 0 . DOC 9.000

10.C30 11 .370 I2.030 13.030 I * .OOO 15.003 16. COO 17.030 10.000 19.000 20.030 21 .oco 22.000 23. OCu a. CC3 cY. 030 26.030 27.330 Ei .073 .?S 039 30.033

7479CO VAPiU P

WAN HI

27.716 27.7W 10.299 I 1 .?:T 7.130 '4.473 2.fcV 1 .%a .866 .*55 .PI5 .007 .C% .013 .003 . CO2

99.939 99.9'39 99.999 99.999 99.939 93.w w.9- Cf9.m 9 Y W w.s39 9.3393 99.YT.I 99 . 9? 993 99.9'3'3 99.993

CAPE CANALTPk S.O. vP <%Ed iP

AUGUST

1 v S.O. n c r

3.30 3.30 1.07 1 .m I. I Z I .2ir 1.32 1 . x 1 . n

* I . % ' 1.85 1.91 1 .Br 1-72 I .70 1.90 2 . n 2. I 5 1.98 1 .m 1.65 1.60 1.61 I .*I I .*I I .57 1.57 I .6'? 1.93 I .M 2.03 1 .la

KLBT T KU4

OCii W ~YJ. 87 295.81 m. I 5 m . 0 1 Prn.87 ?Go. 18 XI .*'I a . i ? 3 .a7.*3 a o . 3 4 233.06 2 a . 9 4 217.52 210.10 203.35 19). 10 ws.n 999.93 999.99 99'3.99 999.91 993.93 999.93 999.43 999.9) 999.93 999. Y 3 999.9) 999. 43 999.9) W . 9 J 999.9)

S.D. P T

E C K I .5 I 1.51 1.96 2.89 3.83 5 . a 3.99 6.87 6.77 7.03 6.36 3.*? Q.00 3.K 3.35 3. I 6

99.99 99.99 99.99 99.99 99.99 99.39 99.99 99.99 99.99 99.99 99.99 99.99 ia.99 99.99 33.99 99.99

X 7 ) . m. 773. m. 773. 762. 7%. 7%. 7%. -3. XI. 750. 7'47. 7'46. n o . 736. 7a. 7 8 . 720. 719. 711. 694. 675. 6%. 6'46. 6*5. 652. 6A. 576. 545. '443. *a.

Page 94: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE 111-9. MOISTURE RELATED STATISTICAL PARAMETERS

Kn .ooo .003

1 .ooo 2.000 3.000 4. 030 5.550 6. GO9 7.000

- 8.000 9. COO 10.000 11.:00 12.COO 13.000 1'4.000 15.000 ;6.000 17.000 I8.COO 19.COO 23.000 21 .ooo 22.OCO 2J.COO 2'4. c10 K . O C O 26. OOC 27. COO 20. C33 a.030 30.000

i V MAN

U G '< 301.51 301 .'46 295.20 239.00 a3. 42 a7.62 ~11 .m XS.81 as. n 2K.66 h5.4'4 237.60 2.?? 59 221.73 21'4.33 208.W 203.78 202.30 a 3 . a Z36.28 89.57 212.55 215.21 217.27 219 21 ,??1.01 222.74 z*. m 225.99 Z''7.4'i 228.92 233.4'4

SEPTEM EZR

T V % t W T V S.D. K C K 3. 12 -.oe 3.13 - .07 1.31 - .a 1 .a -.I3 :.a .00 1.5 . I2 I .m -.I5 ; .M - . ( 3 5

I .% -.1b 1.73 -.a 1.99 - .e2 2.03 -.00 I 93 -21 1 ee .3'4 1.65 .49 : .w .a 1.99 .21 2.38 .05 2.63 -.22 2 . a -.I3 1-79 .01 1 .56 -.13 1 .w -.or I .'45 -.13 1.40 -.lo 1.67 .Or? 1 .& -.08 1.61 -.02 1 .w .3I 1 . - -.03 2.00 . I0 1.94 ' .ox

Ewr T WAN

CCC K 295.47 2%. (tr

zw.m 201 .b? 274.35 267.10 260.30 a3. 38 ?!6.66 239.95 232.66 2a. 33 218.32 21 1.02 20* .ro 197.96 999.9) 939.99 939.0) m . 9 9 999.99 999 99 939.99 9% 99 999 n 999 99 939 99 939 99 339 99 999x3 999 9.3 933.99

WM CPT

-.99 -a96 -1.42 -1.65 -1.37 -.90 -.78 -.51 -.53 -.51 -.64 -.65 -. 10 -. 13 - .*2 -. ?7

999.99 5899.99 993.99 999.- 999.99 999.99 999.99 959.99 Y39 b 99 93999 999.99 9FvJ.99 999.93 999 39 999.e 'P- 3

Page 95: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 96: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE 111-1 1. MOISTURE RELATED STATIS7ICAL PARP.ME'I'ERS

STATION - z

Kn . 000 . On3

1 .ooo 2.000 3.000 4.000 5.000 6.000 7.060 8.0C3 9.000

10.000 11.000 12.000 13.000 14. 000 15.000 16.000 I ? . 000 19.000 19.000 20. CCI! 21 . C O O 2.?.000 23.030 a. 000 25.200 26.309 Z7.000 a . c w 2s 000 30.000

t 7479cO v m P

MAN n3

18.165 I0.COO 1 2 . 3 2 6.765 3.701( 2.106 1.307

. 7 w

.+5a

. zr&

. l a

. C53

.02l

. GC9

.034

.002

. O C I 9'3.999 99.959 99.9- 99939 9'3.933 99 993 99.993 99.3% n w 955 999 W . 9 W 99 929 99 .999 92.999 99.999

C A P f CMiALTPk 5.0. VP SKEW VP TV

KAN CCG ti 294 .a a. 17 a 9 . 1 5 294 .% a 3 . a -7b. n K8.66 262. I2 a5. Y 240.19 - 3 3 . 6 4 233.W 2 a . 49 218.T .?l.?.b5 207.73 204. n a ? . m XI .65 a 3 . w 236.48 ZC9.72 2 l z . r e Z14.93 217.08 21?. 1 l 229 Ti 21'2. 55 ? F . 19 i'Z5.63 227.10 220.61

NOVEMBER

OEKPT T KAN

DEG K 288.50 2S8.37 262.21 272.31 r'6*.01 257.36 ??I . .?I 245.57 p 9 . w 23? 31 2 ~ 1 . 2 220.65 213.51 207. ?3 201.57 155.48 1 9 2 . S 399.99 993.99 999.99 999 99 999.99 999 39 W9.99 399 Fl 999 99 993. $3 9a?.r; 99 i.99 =A> 99 993. lr? 993.99

S.D. DPT

OEG K 5.02 4.95 t . 5 7 0.99 0 . 7 1 8.3 0 . CB 1.97 7.Si 7.56 7. I0 5.02 4.10 3.+4 3.63 * .07 I , I

*.Y9 99.99 :9.= '3' 99 s.99 99.39 99.99 99.99 99 99 %.% 99.99 99.99 99.99 z.99 39.99

Page 97: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

'&?s '*G 'Q9 'LVD ' &?L 'KL 'fU 'LY ' IU -f9l -we '118 .a- .If8 *%'a '6.8 "a '9SB 'D98 '098 -wia -098 '61)8 .-. c-8 'LLb 'SL8 'SLB "iL8 'us .'a 'us 'h9L

66'6j6 66 ' G-6 6GW a'(* CJj'if&

G6'C-6 66-rib 66'- 66 fib &ti4 €A3666 6b-Lt6 C-6 Ojg

66'- 66.W 09. 95' '6' 6L- 50- I 99' I 60'1 91 ' 1 IK' I ff -1 81'1 86' 'st..

li. KT- 11'- fie-

a'. MlXS ?fir3Ir?rl

666.66 b66'66 cc&'C6 €&6'bG 666'tX 6X.M €Jh' GG tcc ' (6 6iA.a w.66 6L6 66 WI6'66 =ti6 €&G-66 6-,6 ' 66 ZOO' f 00' *33' 830' om- 050 ' 611' Le- '3%' cU - LQ- I 590'2 LLC'L LIB'S 812'01 169'%i 110'51

81 Eiw ZI

d bI)d*A 0-rrL -

Page 98: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

'TABLE 111-13. MOISTURE RELATED STATISTICAL PARAMETERS

K:: .23@ .OJ3

1 .3:3 2.000 3.000 4. COO 5.CGO 6.006 7.500 8.000 9.C00 10.OJO 1 1 .ooo 12.000 13.000 !*.CJ3 I5.OCO 16.0C3 17.3iO 1e.oco 19.000 20. OCO 21 .:30 i'z C^9 23 CtO % c:3 Z 5 033 m.cso 17.090 a. 200 a. GOO 30 . COO

-730 v m P

*t*N re

20.900 ZC. 3% 13.~66 a. 927 * . 7 Y 2 .SJ2 I .no I .C33 .577 .358 .I50 . ilC3 .ox .Ol l .005 .003 .COE

99.999 99.999 99.939 99.993 99 9 3 99.9% 99.999 99.399 9? 433 99.33') 3.3 939 99.9% n.929 39 939 m.999

CIPC CANAITRI- S.D. W Yth; \F

ANNUAL

S.O. WT

OEG Y 6.27 6.W 1-56 9. IZ 9.10 9.06 9.05 8.83 0.~6 7 . 8 9 7.19 5.70 * .68 3.81 3.e 3.711 3.59

99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 39.94 w.99 99.99 99.99 99.99 99.99

Page 99: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE IV-1. HYDROSTATIC MODEL ATMOSPHERE

STAT ION z Kn .030 .003

I .oco Z.CO0 3. OJO 4. c20 5.000 6.050 7.000 8.COO 9 C30 10.030 1 1 .OD0 12.000 13.000 lr.000 15.001 1E.030 17.000 18.000 19.000 20 . 000 21 .oco 22.000 23.330 ca . 000 a.0:o 26. COO 27.003 tB.009 Z.CO0 3C 000 2.003 'A. 000 36.000 38.320 90.030 42.000 94.030 96. COO 48.030 50.030 Y .COO 9.033 56.9;o 58 000 69.030 62.C03 6'*. COO 66. CtO 68.033 73.300

JANUARY

Page 100: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE IV-2. HYDROSTATIC MODEL ATMOSPHERE

STAT ICU z Kn .ooo .003

1 .ooo 2.000 3.000 S .OZJ 5. COO 6.C30 7. OCO 8.000 9.000 10.000 1 1 .ooo 12.030 13.WJO 1*.000 15.000 16.000 17.000 13.001 19.i30 c'3. OCO 21. aoo 22. 200 23.000 a.000 a. 000 c'6.000 2:. OCO a. 030 a.000 33. OCO L'.OOO *.303 36. CCO 36.003 40. COO W. 330 b*. 023 46.000 48.005 53.023 Y.3CO C54.3G3 56. OCO 58. OCO 5C. 000 6z.033 6* . C33 66 000 68.000 70.000

FEBRUARY

- R19r0 C A ~ ~ n u r ~ t s * ~ Q O . HY. P 0

KW ~0 C. n3 .OOO 1018.0030 I2?7.C333 .003 1017.7CCO 1227.OCCO .998 904.0100 11o*.coio 1.996 831.*800 992.9300 2.99~ 709.ZSCO F33.30(33 3.592 W6.Xt3 03*.8C:C1 s.983 551.57C3 12c.eCCO 5.- Sb.3ZCO 65?.rZOCO 6.90; Q23.9030 505.3330 7.910 363.6300 5'5.6600 8.9n Y1.0300 *7O.*OCO 9.969 ~ . & c o stg.ro:o 10.- 239.C800 371.5XO 1 1 .%O 225.0820 L'b.3CXl 12.394 175.3600 tOu.lOS0 13.948 1~9.5300 L%~.GOCO lC.94 127.1305 213.70CO 15.936 107.7800 lB%.IOOO 16.929 91 .a10 157.0330 17.922 77.lZbO lX.70?3 ta.915 65.~173 I I I . O J ~ O 19.937 55.4100 %y.7700 20.400 S7.1375 77.7000 21 .=I SO. 1070 65.5103 2 2 . ~ 1 ~*.VIO 55.r600 2 3 6 3 29.3510 s7.0i00 t3.865 2.i.1335 39.'fiOO 25 055 Zl.%70 3b.0200 8.6'46 18.4950 a.9600 27.035 15.8370 ,?.t.3:0 a.0.3 I3.GR'O i'I.0730 29.819 l l .N16 I8.CSOO 31.792 8.3JYl 13.CC?0 33.760 6.6L?l 9.G3CP R . B S 5 . 5 7.1353 37.717 3.9316 5.3050 59.690 2.*12 3.9830 41.661 ?.a16 3.0070 '83.631 1.%Y 2.Z970 45.600 I .nts I .:e7o k7.KB 1.0655 1.39*0 b9.539 .a287 1.coe0 51 .SO0 .W30 .=TI 53.46r .hWS . W E 55.~Z7 .PK7 .5159 5 7 . m .+303 .4010 59.39 7 . 3 ! a 5, ,300 .l7G5 .-*3 6 3 . ~ 3 .IS8 .I- . .10Z2 .IW' 67.178 -0765 .I185 69.IY .0%0 .Om3

Page 101: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE IV-3. HYDROSTATIC MODEL ATMOSPHERE

MARCH

L UH . 000 .033

1 .ooo 2.000 3.000 4 . 000 5.000 6.000 7 -000 0.000 9.000 !O.OOO 1 1 .ooo I2.f.1 13.00' 1'4 .ooo 15.000 16.0CO 17.000 :0.000 19.009 20.000 21 .oon 22 .ooo 23.000 a.000 a. 000 26.030 27. COO LEI. 000 a. 000 3P. 020 32.000 *. 030 36.030 38.030 40.030 b2.000 4'4 .030 '6. GO0 *a. 000 50. OCO -. 300 9.000 56.000 SO. 003 60.000 62.000 m.000 a. 000 68.000 70.000

74f9ro CAPE CANAi t A M O E O . H T . P 3

~n m cln3 .OOO 1017.7000 1215.COOO .003 1017.4000 1215.0000 .99B 904.6100 1037.C300 1.9% 002.6200 968.63CO 2.9W 710.nOO 896.2000 3.992 620.0COO 003.5000 4.989 553.3330 729.9200 5.985 486.0300 653. ICOO 6 . W rn.c.900 5S.9000 7.9m 371 .I400 5m.7000 0.974 F(2.4100 471.9000 9.969 2;R.WjOO 4Zl .\COO 10.9GS F0.0900 373.70C0 1 1 .%O 205.8700 320.4000 12.954 175.9700 205.7000 13.940 150.0~00 a7.kOOO 14.942 127.5'100 213.93~0 15.936 108.2100 104.0300 16.923 91.6310 157.1003 17.92 77.5350 '33.0003 10.913 65.6770 111.33CO 19.937 55.7~^,0 93.CUGO 50.900 47.CCS0 70.OvC3 ;I .a31 40.coa0 ~CJ.C?~CO 22.083 B.6060 55.6100 23.074 Z9.&?33 47.l0CO a.065 25.3920 40.1100 5 s 21.mo 34.I*CO X.6'46 10.7310 rY.C330 ~ 7 . 0 3 ~ 16.1210 a.eIcD 2fl.C", 13.WtO 21.ZOCO a.elu 1i.ce.4 IB.I:O~ 31.793 0.97% 13.1803 33.76e 6.- 9.7340 35.743 5.1- 7.1885 37.717 3.9139 5.3870 39.690 3.03E( b.0970 b1.661 2.3!51 3.0670 43.631 1.1321 2.3-53 C5.600 1.39C9 1.0253 C7.568 1.0809 l.*010 49.59, .&03 1.0913 51.500 .Fa .05J7 53.464 .M66 .G65I 55.4.3 .33= 5177 57.388 .3338 .b345 5'3.349 .Z3*3 .31C5 61.308 .:a01 .a73 63.cX6 .I377 .I937 65.222 . I049 .I92 67.178 .0703 .I193 69.1s .OS&? P -g-

Page 102: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE IV-4. HYDROSTATIC MODEL ATMOSPHERE

APRII

StATIW Z W . CC3 .003 1. C30 ?. 900 3.COb * .ooo 5.03 6.ZCO 7. OCO A C30 9.c:'a 10.0?.0 1 1 .ooo 12.000 13.000 1*.000 !5.OCO 16.000 17.C20 18.030 19.000 PO. OCO 21.000 2'?.000 ?3. COO 20.053 L ~ . C J O cY COG 27. OCO a.o;o .3. bCO 30.030 32.oco nc . oco SG.CC0 58.030 40. 000 r?. O:O 44. OCO *G cco 48.000 50 000 5i.COO s4.000 rA. 053 5a.000 6J.OGO C.?. 000 6L1.000 66.OCO 68.000 70.000

Page 103: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE IV-5. HYDROSTATIC MODEL ATMOSPHERE

MAY

STATION z Kn .ooo .003

1 .ooo 2.00C 3.000 4 .000 5.000 6.COO 7.000 0.000 9.000

10.000 11 .ooo 12.000 13.000 14. 000 15.000 16.000 17.000 10.00b 19.000 20.000 21 .ooo 22.000 23.000 24.300 z5.000 26.000 27.1300 28.010 29.000 30.000 32.000 34.000 36.0t0 38.000 40 .ooo 42.000 44.000 46.000 48.000 50.000 ~ . O O O 54.090 rY5. OCO 58.000 60.000 W . 000 64.000 66.000

. 68.000 70.000

- -790 C E CANAKRK C E O . H f . P 0

101 fS GlU3 .OOO 10:6.WCO 1186.0C09 .003 1916.3COO 1186.00CO .998 905.0100 1079.0C30

1.996 805.1300 959.5031 9.9% 713.9100 886.3COO 3.992 631.4600 003.9C00 C.989 557.0300 722.6G00 5.9e5 403.9300 651.3000 6.982 r a . = o o se6.osoo 7.978 375.2300 K6.4030 8.979 Y6.4900 472.5000 9.969 ZE2.0000 423.2000

10.965 133.7800 377.2COO 11.960 209.1200 334.0030 12.954 178.G000 292.7000 13 .94 152.0600 K2.7000 14.942 129.2200 2:6.9000 15.936 109.6605 185.5COC 16.329 W.9720 157.9300 17.922 70.0180 133.5000 10.915 66.9153 111.7000 19.907 %.SO0 93.6ZOO 20.900 40.5890 70.7200 21.891 41 - 5 4 0 66.5100 22 .@83 35.5030 56.3300 23.874 3 3 . ~ 5 0 r7.9coo 2 4 . ~ ~ 5 x.zro ro.8100 2i.855 22.C560U 34.8000 26.846 19.4330 29.7400 27.039 16.7600 K . ~ ~ O O a . 0 6 14.~720 21 .OCGO a . e w 12.51 19 10.7~00 31 .72 9.3929 13.6900 33.763 7.0904 10.17CO 34.7~3 5 . ~ 9 3 7 . v - t o 37.7;7 4.lC4B 5.64RO 39.690 3.1523 4.2350 41.661 2.4343 3.2160 43.631 1.8876 2 9530 45.600 1.4635 1.8920 47.568 1.1451 1.4650 49.534 .Wl 1.1440 51.500 .6972 .0?37 53.469 . 5 2 6 .7072 55.427 .c213 .55ur 5 7 . m .E61 .4354 59.349 . a 1 4 .3413 61.308 .I931 .2665 63.2% ,1475 .ZOlk 65.2Z.2 .I115 .I653 67.178 .Of334 .I= 69.132 .0616 .0987

Page 104: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE IV-6. HYDROSTATIC MODEL ATMOSPHERE

JUNE

STATION z lo4 . 000 .003

1 .ooc Z.COC 3.000 * .ooo 5.000 6.000 7.000 0.COO 9.000 IC.CO0 1 1 .ooo 12.C30 13.000 1*.000 15.0CG 16.000 17.000 10.CJO 19.000 20.000 21 .coo 22. CCO 23. COG a. CCO 25.000 z-6.000 n. 009 c'8.030 c's. COO 33. COO s-.:3c -24 .COG 36.000 39.330 sc. C3C 42. OCO ** . OOC 4G.COO 48. 000 53. L';o 5'. csi7 =.+ .COO '5. CGC ra. 000 60.030 G.CO0 6c.000 66. cco W.050 70. OGO

%%NO C*PC C W \ F 9 U Q O . Mr. P J

K.. re GI K3 .OOO 1316.0CJO 1175.CSOO .C03 1015.7000 1175.0COJ .990 906.liCO 1071.GCCO 1.996 006.1200 973.0303 2.9% 715.3700 002.5003 3 . W 633.F00 73d. 1000 4.909 559.M00 719.7C00 5 . m W2.2050 6*8.2003 6.- 4Y.1700 93.1003 7.970 37R.1530 Y3.ti000 0.9% 329.6523 470.2;OO 9.96.9 a. 1600 421 .::Jo 10.9G5 37.?200 377.C230 11.960 212.4900 335.5COO 12.9% I0l.7iCO 2X.3030 13.*0 I9.IXO0 FX3.9323 lS.012 131.2320 223. ICOJ 111.936 111.1500 183.93CJ * r - ."7 . a +.la0 160.5333 17.2V.2 79.m0 15'4.7CC3 10.913 67.18CJO 112.7COO 19.907 57.73GO 9r.S300 20.900 49.2800 7S.6:OO 21.891 42.1530 67.3633 22.883 36.1200 57.15C9 23.074 3C .9330 40.cCC3 a .865 26.b30 41.4330 25.0511 22.9070 53.3700 i5.Br6 19.7290 30.2390 27.035 17.0110 Z5 8'00 28.8.3 IC.G&O ??.ltrOJ a 01% Ii?.GO% 19.0?33 31.7W 5.5103 I3.WG*l 33.766 7.1670 IC 2303 35.Tc3 5.4313 7.Ct093 37.717 r.ls3I 5.7351 39.690 3.1713 4.T29J 41 .661 2.4939 3.C~30 43.631 l.e??S 2.430 '6.600 l .by00 1.9GVO 47.Y.8 5 I.b77C 4 9 . 5 .W18 1.15% 51.5CO .6'73* .9CWx' 3 . .3379 16 55.4n .*I58 .5?,92 57.3iW . Y S E .4372 5'3.349 5 ,305 61.308 .I874 .ZF5J 6 3 . a .1421 .z70 65.222 . IC59 .It07 67.178 .C7% . I & * 69.13Z .fie3 .Om

Page 105: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE IV-7. HYDROSTATIC MODEL ATMOSPHERE

JULY

STATlm z KW .ooo . OC3

1.004 2.000 3.000 b. 000 5.000 6.000 7.000 0.000 9.000

l o . 000 11 .ooo 12.000 13.900 14.000 15.000 16.CCO 17.000 10.000 19.090 20.000 21 .ooo 22.000 23.300 24.000 25.030 26.000 27.000 a. 000 29.0CJ 30.000 32.000 Fc .030 36.000 3e. 000 40. coo 42.000 44. OCO b6.000 49. 000 50.300 52. oco 5'*.",0 56.C30 r%3. 000 60.000 &'.COO 6 ' I . O t O 65.000 65.000 70.000

Page 106: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE IV-8. HYDROSTATIC MODEL ATMOSPHERE

AUGUST

Sf A t lO( z Kn . 000 .003

l .ooo 2.COO 3.900 u . 000 5.000 6.000 7.900 8.000 9.COO

10.030 l1.000 12.000 13.000 lr.000 15.000 16.000 17.000 lR.000 19.001 20.000 21 .ooo 22.000 23.000 a . 0 0 0 a . 0 0 0 26.003 a. coo rW. 003 a . i l 0 9 33.000 .v. DO0 T4.000 36.000 30.330 43.000 *2 030 rtr ,000 46.090 40 3CO 5:. 000 K . O O O 54.000 Ii6. cco W.CC0 63.000 -2. G O O 64. COO 66.000 68.000 70. OCO

CAPE C W K P A L P 0 m ttnf

1016.ECOO 1173.C000 1016.E30 1173.0000 907. E G O 1067.0330 007.E03 971.3530 7i6.8'31 090.710C 6 3 .m33 7%.0COO X0.8000 710.9COO 5*.E130 647.7CJO 433.9900 502.7000 300.C030 Y3.50JO 331.5300 570.0010 i?W.C330 421 .X30 -9.0709 317.5020 z l r . n 2 o 3s . sooo 103.3630 Z97.9CJO I56.1*00 261 .2OCO 152.4tJO 225.5000 112.1800 191.7000 %.oIro 1 6 1 . 5 ~ 0 0 80.5360 Is.*330 CB.5120 113.C300 58.3700 95.+*CO 49.8310 8JS5*CO 52.6160 68.2GCO 36.5300 57.9550 31 .SO50 59.2600 26.8)30 *I.%CO 23.1130 35.0100 19.0950 30.6103 17.1r40 ~ 2 ~ 3 0 14.70t30 22.4630 12.7692 19.EOO Q . Y J ~ ~ 14.D9DO 7.1856 10.~tr3o 5 . r303 7.7460 \.. ITt7 5.5733 3.1491 4.3310 2.4170 3.cT73 5 7 2.4670 1 .4*97 1.09bO 1.1211 1.*610

.mil7 1.1370

. 6 3 7 .a i r1

.Y38 .6915

.*051 .%I0 3 .423I I .=;T, . I & O .*'A . I ~ O I .?CIS .I059 ,1555 .07* . 1 z r . b590 .OW3

Page 107: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE IV-9. HYDROSTATIC MODEL ATMOSPHERE

L w .030 .033

1.300 2.000 3.000 '4.000 5.000 6.000 7.000 0.000 9.000

10.000 11 .ooo 12.000 13.000 1'4.000 15.000 16.000 17.000 10.000 19.030 PO. 000 21 .ooo 22.000 23.000 a. 000 25.000 c%. 000 n. ooo cm. 000 29.c;o 30. oco 32.000 w.000 36.030 30.030 40.030 42.000 '44.000 46.000 48.000 so. 000 Y.OOO 54.000 5G.000 YI.CO0 63.000 62.030 6*. 030 66.003 68.000

. 70.000

SEPTEMBER

Page 108: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE IV-1 0. HYDROSTATIC MOT'. L ATMOSPHERE

OCTOBER

STAT10( z Kn .ooo .003

I .COO 2.000 3.CJO 4.090 5.OCJ 6.000 7.000 8 COO 9.000 10.000 11.030 1z.000 13.000 I4 .oco 15.000 16 COO 17.COO 10.CCO 19.000 20. 020 el. 000 Pi'.COO 23. COO a. 000 a. coo ,a. COO n.coo 28.cou a. 000 30.CCO =.coo T'+.coo 36. COO 38.030 so. 000 42. C30 44 .coo 46.000 ~,B.:c9 so. COO W.093 *.COO 56. COO 5e.000 60.000 62.000 64.000 66.000 (58.000 70.000

Page 109: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE 1V-11. H'i'DROSTATIC MOL'EL AmOSPHERE

STATION I m . on0 .003

I .COO Z.CO3 3.000 C.OC0 !5.000 6.005 7.000 0.OGO 9.000 10.000 I 1 .ooo 12.000 l3.OCO 14 .ooo 15.000 16.COO 17.OCO 10.000 13.000 tJ.OOO 21 .ooo 22.000 23.000 a. 000 a. 000 2'6.050 a. coo a. 000 a.oc0 39.OC3 32.053 *.0tO 36.000 98.093 40.000 45.000 ** . OCO '46.000 *8. 003 53. cco '52. ooc 9.000 s6.0CO 58.0c9 60.000 e. COO &.OCO $6.000 68. OCO 70.000

NOVEMBER

- r i m 0 Q O . HT.

u.. .COO .OC3 .na

1 . s 2.994 3.992 s .ses 3.- 6.52 7.970 8.97'4 9.959 10.9Gs 11.9fiO !.?.95'4 13.9.a 14 .*2 i5.936 16.- 17.:-E 10.915 19.907 2S.9CO 21.991 22.083 23.0- L% .855 a.055 26.w5 27 .03S a.&5 ~3.8i* 31.7W 33.763 35.7'43 37.717 39.590 41.661 43.631 45.600 '47.w r9.53'0 51.5CO 53.46'4 55.4~7 57.388 59.343 61.330 63.?66 65.22' 67.178 G9.1V

CAP€ C l l ; . ; L ? U P 0 e C l Y 3

1018.Z350 1?06.0;03 IJl'1.KGO lc'35.0C10 9C5.8093 109:.CCC3 834.t830 9 s .7COO 712.85CO 86E-.?2G3 630.'40C 799.3300 556.1700 721 .EOCO *?Q. IOCO 652 .&I30 *i8 .WOO ',E..?09C 37'4 .C';OO $125.9000 kT.9703 471.9500 m. xoo *?z. 1303 &3.*505 37G.IC2O 208.8900 '33.0590 Ii8.42iJ 232.6530 151.7820 25'. .5COO I?a.fiOC 219.4300 100.9300 187.6390 W.0785 159.1C03 77.8670 133.6300 65.9030 ll1.3000 56.Mj30 93.1300 b7.370 70 WOO 40.363 66.0400 34 .t13?0 55.90C0 23.W30 '4?.@?30 -3.5710 '40.3230 I Y O 3't.Y>00 I0.Bb70 2 9 . V J O 16.2330 ZS.Ot00 13.910 21 .by00 1 . ~ 3 10.J700 8.W7Z 13.~300 6.5533 9.9-21 5.=Mi 7.3550 3 . W S 5.'1~933 2.9.50 *.OCsO 2 . 2 8 3.0500 I.>%-' 2.3100 I .R73 1.7700 l.t559 1.3710 .W19 1.0700 .6W3 .a385 .*956 .6573 .SJD . s : x . a 0 .4C05 .2Z79 .3112 .I750 .a30 .I330 .I887 .lo16 .1r77 .07t6 .I 1r9 .057? .C087

Page 110: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE IV-12. HYDROSTATIC MODEL AThIOSPHERF

DECEMBER

L 101 .MO .CJ3

1 .ooo 2.030 3.030 *.092 5 . 0 2 1 6 . C O 7 . WO 9.000 9.033

10.000 11.000 12.000 13.COO 1N.030 15.500 16.030 17.000 16.030 19.000 20. C J G Z l .OCO Z'Z.603 r'3.CJO a. coo CY 009 Z6.020 t7.C30 a. 0:o 29.SCO 30. OCO Y.0CC *.0:3 .%.CJ3 30 010 *O . 000 cz . 020 **.COO *6 - 001 *8.@23 .3.C30 .i'.OCO 9 . 0 0 0 56. C i O W . 030 60 . tSO 6 i . 000 e..c:o €4. cC 3 b t . 0 2 3 70.093

Page 111: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

TABLE IV-13. HYDROSTATIC MODEL ATMCISP!iERE

srArrOr z DI -000 - a 3

1 .ooO Z-W#) 3-COO r . oco 5.023 6.000 -. 000 O . m 9 . m ;o.m 1 1 . m lZ.013 13.090 1*.mo lS.3CO IS.(WO 17.000 10.010 19.000 23.000 21.000 Z.? - oil0 23.WO a . c c 3 -3.333 rX -390 n . 0 0 0 a . 9 0 0 23. OCO 33. C30 L'.OGO I-. 3-0 35. I X O 39.030 sc. 030 *? -030 **.OC3 '4.050 * a . OJ3 5 3 . CCC w 0 3 h.O;O 55. OCO 9 C30 03.000 e. 030 C* .030 S.330 63.0'0 1: 000

ANNUAL

'1*mo CUK C A . A \ ~ ~ C CEO. nt. r o

m m c - 3 - - .000 IOl7.Sm9 1; - -. . .003 1017.lC:0 I 1 L.2; .93e 9m.7?:: : ...

1.w- 80*.6',. WC....,.. I.?+ 113.25tt -.SO09 3.992 s3o.m;o e=a.mor, W . W 5 s * K O 721.9003 5.995 *W3.b700 ~ . S O O O 6 . W W9.1640 Y15.0000 7.978 3lb.gOO 53 . *003 0.m Y6.3300 *71.3000 9.s9 a2.1800 *21.1000

1 o . w a 3 . m m . e m 11.960 m . n c o 332.~033 12.- 178.9523 Z91.3001 1 3 . 9 4 t Y -100 Z53.=30 I*.*? lZ9.sECO 2:8 9CCO 15.936 109.6633 18:-CCCO 16.529 9E.lV30 159.00CJ 17.W.? 78.5360 133.9COO 10.915 66.6621) 112.0000 19.941 X*.6770 93.3203 KI.#)o se.3030 78 .800 21.891 bt . a 1 0 66.5639 2c'.BB3 35.- % . m O 23.6% 3:?PJ S-1.-3 2c.=5 i5.9370 *0 .300 CV2.iO5 22.2830 P . l a 0 6 19 1630 M.6200 Z7.035 lG.?JiO ?S.VCO a.Bn 1* .zno 21.€100 Z9.8:b IZ .aC3 18.%00 31.- 9.1- !3.f5ClO 33.- 6.9117 10.01C0 3 5 . 3 3 S.ZL?97 7.-,-2a ~ 7 . 7 1 7 3 . n a t S . S Y ~ O 39.E- 3.&?8 * . lCOO

S1.%1 2.ss Ir.lZZ0 S3.631 1.0157 2 . 3 7 4 SS.600 1.V105 I.&= SY.*M 1.- I . s ~ e o b 9 . 5 5 . e l I. lOt3 51 5CG .=39 .BCbZ 53.*& .51S1 .6%3 55.*71 .)9118 . M 3 5 7 . m .scm .* IS1 59.Sc'J . z n 1 .YJ* 6I.3C0 . I810 . c w 6 3 . W -1386 .I919 6'..?22 .1h8 .I%? 67.170 .07& .IZG* : .-I .w10

rv OC5 *

225.- 2958: . . . 57 : e

.Y. E .61

ma.% ai?. I 0 M . 5 6 h 6 . e hl .ZZ 233.9 2ca. I 0 219.31 213 70 a9 33 m.9r c'23.87 Z03. k i?* . *3 237.36 2 1 0 . 9 213.- 215.92 217.99 213.97 221 0: 223 53 2 5 . 3 6 2E7.07 z a . * 2M.W 235. I* :?* 35 a* .2 l 3 3 'A a>.m rns.bl ms 16 a57.Y a0.k r n 7 . H i t 5 . 6 8 u 3 . c a a3 92 iL57 89 --.a a9.7- 2-1.- 235:J zc- * 2.9.33

Page 112: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

APPENDIX A

EXAMPLES O F WIND STATISTICS FOR CAPE CANAVERAL FLORIDA

Appendix A gives w m e examples of graphical displays of wind statistics that can be derived from the sra:istical parameters presented in Table I. These illustrations should aid the user of the RRA in understand~ng the functional relatioriships of the probability wind models and, thus, develop an appre- ciation of the powerful properties of the Sivariate normal probability distribution function.

All illustrations for this Appendix are derived from the five wind component s t a t i s t i d parameters from Table 1. i for Jmuary and Table 1.6 fol- July for eight selected altitudes. These selected altitudes are 4, 11, 20, 30, 40, 50, 60, and 70 km

1. Wind Speed (Figures A-1 through A-4)

The five wind components from Table I are used as inputs t o the generalized Rayleigh probability density function, equation (29). and then integrated as indicated by equation (30) to obtain the prob- ability distribution function for wind speed. The derived dirtribution functions for wind speed are shown in Figures .4-1 through A 4 on the normal probability scale.

2. Frequency of Wind . Direction (Figures A-5 through A-20)

The derived frequencies for wind direction shown in Figures A-5 through A-20 were obtained using the five wind component parameters from Tables 1.1 and 1.6 as input values in equation (35). The limits of integration (performed numerically) are over the 22.5degree interval for each of the 16 compass points. These p p h s give the percentage frequency that the wind will blow from the direction intervals.

3. Mean k i n d Components and 80th Interpercentile Range of Wind Components (Flgures A-21 through - c 3 6 ) .-

The wind component means with respect t o any orthogonal axes are obtained by using the zonal and meridional mean wind components in equations (44) and (45). These component means form the circle shown in Figures A-2 through A-36. Further, the zonal and meridional wind component variances and correlation coefficients are used in equations (46) and (471 to obtain the variances with respect t o any orthogonal axes. These rotated component variances and the rutated component means are used in equation (8) to obtain the 80th interperceniile range of wind components and are then illustrated in Figures A-2 l through A-36.

4. Probability Ellipses (Figures A-37 through A-5 2)

Using the five wind component parameters from Tables 1.1 and 1.6 and p = 0.50, p = 0.95, and p = 0.99 as input values to equation (13). the wind probability ellipses shown in Figures A-37 through A-52 were obtained by computer graphics. The statistical inferences are, for example, that 50 percent of' tne wind vectors lie within the smaller ellipse and 99 percent of the wind vectors lie within the outer ellipse. These probability ellipses are illustrated using the standard meteorologic~l coordinate system explaiiied in Chapter I.B. 1 .

105

Page 113: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

5. Conditional Wind S p d Given the Wind Direction (Fyures A-53 through A-68) -..--

Ihe five wind component parameters from Table 1.1 and Table 1.6 are used to evaluate the con- di!.ioria. probability distribution function, equation (41). Interpolations of thc conditional function are made t : obtain the 5th. 15th. 50th (median), 85th. 95th, and 99th conditional percentile ralues of wind s x e d given the wind directions are as shown in Figures A-53 through A-68. The conditional mean u ind speed given the wind direction is obtained from equation (40). The conditional mode (most prob- aLk) w! xd speed given the wind direction is obtained from equation (38). The conditional mean wind speed and the conditional wind speed modal value given the wind dimtion are also shown in these f i r e r , . For some fyures, the conditional wind speed values are invalid for the given wind direction near 270 degrees (from the west). This is caused by the lack of computational precision in evaluating equa- tio1.s (40) and (41) when the arguments for the Gaussian probability distribution bave large negative valius. i-e., when the coefficients (b/a) become less than -4 in these equations.

This appendix contains only a few of the many options in presenting wind statistics illustrations.

Page 114: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 115: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 116: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 117: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

0 0.1

1

2

5

10

20

30

40

50

60

70

80

90

96

98

99

Figu

re A

-4.

Ray

leig

h PDF

of wind

spee

d, C

ape

Can

aver

al, J

uly.

AL

TIT

UD

E =

- - - -

Page 118: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

YlFO OlWCCf ION

Figure A - 5

Page 119: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e A-6

Page 120: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 121: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

YlHD OIRCC110(

F i g u r e A-8

Page 122: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 123: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 124: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Figure A - 1 1

Page 125: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 126: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e A - 1 3

Page 127: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

W l r O OIACC7Ied

Figure A - 1 4

Page 128: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e A - 1 5

Page 129: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e A - 1 6

Page 130: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Figure A-17

Page 131: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

UlrO 3 1 K C T 1 0 1

F i g u r e A - 1 S

Page 132: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e A - 1 9

Page 133: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e A-20

Page 134: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F igure A-21

Page 135: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e A-22

Page 136: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e A. 23

Page 137: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Figure A-24

Page 138: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

U1.W S t A T 1 ~ 3 5 rOlTM-M. u T I w - * O m

Figure A - 2 5

Page 139: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e A-26

Page 140: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

u ~ r g STAT:OHKX IIOITWJUI. u~~ttxz-tm m

Figu re A-27

Page 141: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e A-28

Page 142: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e 4-29

Page 143: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e A-30

Page 144: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e A-31

Page 145: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Figure A-32

Page 146: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F igure A-33

Page 147: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e A-34

Page 148: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 149: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Figure A-36

Page 150: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F igu re A-37

Page 151: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 152: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Figure A-39

Page 153: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

UIH) S T A T I O M f C K)o(rJIH. *I.Tl=-#) W!

Figure A - 3 C

Page 154: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Figure A - 4 1

Page 155: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Figure A-42

Page 156: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e A-43

Page 157: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e A-44

Page 158: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e A - 4 5

Page 159: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e A-46

Page 160: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Y l l O STATION@CSC A L T I T U Y - 2 0 KPI

F i g u r e A-47

Page 161: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Figure A-48

Page 162: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Fiqure 4-49

Page 163: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

H I M STATlON.((SC nrwM-AL. ALllTWE-50 Kn

F i g u r e A-50

Page 164: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e A-51

Page 165: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

utm mOAslun mi-

Figure A-5:

Page 166: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 167: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Figure A-54

Page 168: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 169: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 170: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 171: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e A-53

Page 172: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e A - 5 ?

Page 173: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 174: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e A-61

Page 175: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 176: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e A-63

I

Page 177: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

C ( M I T I ( H I L WItO Y f C D 31iCH M I L ? C J I R C T l ( H

Figure A - 6 4

Page 178: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e A-65

Page 179: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 180: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 181: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

CCN)ITImAA * I 1 0 S K C O OlHrr ulm OlrCCtlOI

Figure A-69

Page 182: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

APPENDIX B

RANGE SPECIFIC INFORMATION AND THERMODYNAhlIC QUANTITIES FOR CAPE CANAVEML FLORIDA

1. Range Specific Information

To prevent furthcr character size reduction for Tables I through IV certain range specific informa- tion has been omitted. This important information is given in Table B- l .

TABLE El

H E A D E ~ P E C O R D 6-st I M H E A D E R R L C O P D 32 - 70 r e --- --

f A l ) L t YUpfJtR --,-.- L---L---C--,~--L,-~ @ T A B L E k U p e E & ------------------p CL ----- --- .. . .. C A T A S o U c C E l l=CA~sAV,2=Ubc7Al- - - - - - - - - - - C

1 D A T A S C L F c t I l - c A T 5 A V .Z=LGC-;I----------- CALL LL TT;KS--------------------- -------XRR

2 C A L L ~ t T T E k s - - - - - - u - - - - - - - ~ - - b - - - - XMR

u M 0 ~:~H~€R--------------------------+~Q?~QO,I()(@ RuMQCR-- ------c----r-

* 1 7------4 7s 94, I TUOE --------------------'------ 28.20 ~ r r x ~ u r -----r------------r,-,-----rrr . . - . il 28 28. - ... - u I I ) C : T I O k (N Or) s)----------c----~"---N , Q I R E C T ~ G N sJ-------c--------,-----M LONGITUDE- - - - - - - - - - - ------------ p--- € 0 33 LO~~:T~LC------------------------------- D I R E C T I O N ( E C F L ) -.-----------~L-------M

. ' ' : ~ 8 3 s ' D I R E C T I C k (L O F L)'---L---------r-----..

E L E W A T I O I I h IETCRz--------------+--- -=I? 3 c ~ f A T I C t : 1)r M C T C f i s----.---------- ------ 3 S T A R T F i R i O D O F P E C O R O 1-0-VCl-r - - - - - - - - - . 157 STAi .1 P E R I O C OF R E C O R D (no-YP)------------ AS 7 E ~ D PERIOD OF RECORD (PO-VR-I----------- 1279 F h G F i G i O O C f P r C C r P O I q 0 - Y K - I-------------- 1 2 7 9 NO. OF T l n E a I w o o r s IL, I OR 2)----------- - I NO. OF TIN[: k l h D O b S f L 1 1 Ofi 21-----*-rL S T A R T T i a E u I N O O Y r l !uR-nl rZ)- - -0-- - - - - -

1 . 1220 S T A R T T I n E b XMCOU r l IMQ-W~ZI ----------- G?oC

E ~ o T X H E . I ( J O O ~ ~ 8 l---------'------r---- . 1800 E ~ D TIRE .IYDOLC r :----------. -----------; LO S T A R 1 1 1 p ~ ~ I N C O ~ s2--------------L----- 0 s l l ; f i ~ ~ I ~ C O ~ a2 -------------as--------

E N D U I N D O b #2--------------------- 0 0 7 1 p ~ u I a D 0 r #f---------------------

D A T E Gf RRA----------------------.------ 0

, . . )(O!DATE OF p~~- i -L - - -k - , - - - --+--..---..------ .. 8 6 0 ALTI TUDE R A ~ G E ' OF PRA LOU -LEVEL IKMJ-----~--- ~ ' ~ L T I T U C L R A I G L O F P R A L C Y C t V t L I K r ) - - - - - 3C A L T I T U D E R A I - G E O F R R A H I G d L E V E L I K u l - - - - - 30 ~ L T I T U O L R A k G E O F F R A H I G H L E V t L l K M l - - - - - - 1C S T A k C A R t O C V I A T I o t i O r T H f R O C Y h A ? I C LIM11S:b.O S l A k C A K G D E V I A T I O N OF T H E A C D Y h A U I C L I U I T S - t . 0 M I N O LInITS--------r------,-------h-----b mu W I I L L IMITS- - - - - - - - - - - - - * t ----- ----- .O

2. Thermodynamic Quantities

This section presents examples of further computations and graphicd rlisplays of pressure, density, and virtual temperature statistics that can be derived from the data given in Tiibler 'I, 111, and IV. No attempt is made to present complete nor exhaustive i l ' i~str~tions that can be n~;.le LO aid in visualizing the relationships that car, be made frqm the data in Tables I1 and IV. The choices are those which a i d d the committee to v e r i f y the reasonatleness of tht t-bulations.

2.1 b4onthly Means from the Annual Mean

The hydrostatic model values in Table IV are used to compute the monthly mean differences relative to the annual mean values of pressure, density, and virtual temperzture expresszd in percent and the monthly mean difference in virtual temperature for the annual mean virtual tempereture e:.pressed in deqees K. Examples of these four statistics are given in Tablc B-2 for ;anuary anti Table B-3 fo. Juiy. Graphical displays of r ' e four statistics contained in Tables B 2 and B-3 are shown in Figures 3-1 through B8. b.50 the relativc differences between the monthly mean values from Table IV-I !tirough IV-12 for all ~nooth:, from !he annual mean value: {Table IV-13) are i1i:lstrated in Figure B-5 tor pressure, i r ~ Figure E l 0 for density, and in Figure B11 f . r virtual temperature. Tllr monthly mean virtual temperature diiferences from the an .!la1 mean virtlial tenipersture for all months is given m Figure B-13,. The simple

Page 183: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

sum of the monthly mean differences from the annual mean values of these quantities is not zero. This is because the annual mean statistical parameters are computed (see Section C of text) by weighting the monthly means by the number of observations in each month.

2.2 Coefficients of Vax'ation and Derived Correlation Coefficients

The coefficient of variation, CV, is defrned by the standard deviation with respect to the mean

divided by the mean. The coefficients of variation for pressure, CVP, and density, CVD, were com-

puted using the standard deviations from Tabk I1 and the hydrostatic mean values from Table IV. The .:oefficien& of variation for t empen tw uses t~kc standard deviztiocs of v1r2lal temperature from Table 111 to the altitude where virtrtai temperature exists. Above this altitirde the stand- ard deviations of temperature are from Table 11. The mean values for virtual temper- ature to the altitude where it oxists and temperatures above :his altitude are taken from Table IV. No distinction is made in the table headjzgs in Table B-4 (Jan) and Table B-5 (Julv) and all related figures between virraal temperature and temperature.

From the coefficients of variat:on for pressure, ead temperature (virtual tem- perature to the altitude where it exists), the correlation coefficients between these quantities are deriv,:d using Buell's method (see reference in text). The equations for these derived c~rrelation coefficients are:

' f i e correlation coefficients i l l tables B-4 and B-5 are derived from the above equations.

A test for the validity of the derived correlatian coefficients is that all three of t' following inequalities be satisfied.

Page 184: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

In these examples (Tables E4 and &5) the numerical values from equation (B4) are all negative, hence, the derived correlaiion test is considered valid. The rare exceptions to this test for several RRAs occur at the extreme highest altitudes where sample sizes for the statistical sample are small.

The statistical parameters from Table B 4 (Jan~ary) and Table B 5 (July) are illustrated in Figures 8 1 4 t t~ough B-16.

For a l l months t h e CVP v a l u e s a r e shown i n F igure B-17, t h e CVD v a l u e s a r e

shown i n F igure B-18, and C,,T v a l u e s a r e shown i n F igure B-19. I f t h e absc;.ssa on t h e f i g u r e s f o r t h e c o e f f i c i e n t of v a r i a t i o n is m u l t i p l i e d by 100, t h e s e f i g u r e s would show t h e percentage of 'he random d i s p e r s i o n of t h e s e q u a n t i t i e s o v e r t h e month wi tn r e s p e c t t o t h e monthly mearl f o r t h e s e thermodynamic q u a n t i t i e s .

The derived correlation coefficients for all morlths are illustrated in the following figures:

a) Figure B-20 gives r(P,D).

b) Figure B 2 1 gives r(P,T).

C) Figure B-22 gives r(T,D).

Page 185: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Table 8-2

.GOO -003

1 -030 2.090 3.000 4.000 5.030 6.000 7 .G00 8.000 9.030 10.000 l l .oso 12.0CI) 13.000 I4 .GG3 15.0CO :6.OCO 17.03 19 PO0 19.000 ZC . CCO 21 .Q30 22.000 23 COO 2r .ooo a.000 2s. T.70 27. ,;O Zd.OO0 Z9. OiO 30.000 ~ . O O O 3'4.030 36 023 :*. 3 0 't!I.ooo 42. 000 44. 000 *6. ti33 i 8 .Z?J 50.rC3 52.C?3 % .'I30 X . GOO 56. GOO GC .000 6l? -000 Gi.CO3 66.003 69. CC3 '3.000

Page 186: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Table B-3

STAT [OW am0 )(OSfW 7 m T A S IN g c P C n T m A T l K TO

. W O

.003 I .CGO 2.m 3.000 4.020 s. 000 6. COO ?.GOO 8.000 9.COO 10.COO l l .C30 12.cMO 13.000 14.000 IS.OOJ 16.CaO l7.POO 18.000 19.COO 20. COJ 31 .ooo 22.000 23. COO 2*.C'oo n 003 m. ooo Tr . COO 28.003 a.000 32. CZO v.000 3.i)JO 36.030 36. OCO 40 .GOC b? .!loo r4.000 Q6.CSO 4B.U30 50.1J00 Y.OC0 r%. tI50 x.000 W. COO 60.000 62.000 t' . COO €6.080 Gd.030 70.000

Page 187: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

K L T A PCRCCNI RELATIVE 10 W*L W S S W

Figure B-1

Page 188: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

R c T A PERCENT KLATlvE TO A F M J U M M l T Y

F i g u r e B-2

Page 189: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Figure 0 - 3

Page 190: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Figure 5-4

Page 191: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F igure B-5

Page 192: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

KLTA KKC*IT FKLAT!VL: tn w u a N s l r r

F igure 8-6

Page 193: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

aLtr TZRC*;: w ~ h r I V ~ 13 ~PEUIL ttwcm~m

Figure 8-1

Page 194: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Figure 0-8

Page 195: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Figure B-9

Page 196: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Figure B-10

Page 197: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 198: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Figure 8-12

Page 199: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

CVT

.oae

.0218

.0171

.0133 ,0122 . O l h . 0 1 a . O l B ,0131 -013s . o l n .0133 .0133 .0154 .0167 .o~n .0123 .OIY .01% .0176 .0172 ,0159 .01*9 .Ol45 . O l d .01*3 . O I ~ S .Olb? .Ol'*b .0150 .01% .a155 .Oc'* 3 .02,24 . Oc-3 . ozn . om . 0 3 6 .0*8 .OZ30 .CZ19 . 0221 . OZY .03C5 .02- .03S9 .OK9 . o r n ,0569 .O52l .a660 . or&

Table 8-4

#rD

-.0031 -. 0031 -.om1 -.ow -. OCW -.0110 -.or= -.01*1 -.Ol5'4 -.016l -.0165 -.0160 -.013\( -.0111 -.Coo( -.om -.n- - .om0 -. oo'ts -.om0 -. Off39 - . OON -.ow -.0110 -.01.?6 -.01*3 - . o l e - .Oil3 -.0179 -.Ole9 -.0140 -.0198 - .0?37 - . orm7 -.0&3 - . c235 -.021s - . o x 1 - .0230 -.oln - . o a 7 -.Oi'16 -.o-%I -. 03%' - . O B I - . OseE - .0508 -. 0- - .0&7 -.om0 -.ow -.0817

Page 200: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

. CCO

. C,O 3 1.030 2 coo 3.CSO * GOO 5 . COO G cog 7.000 8 . OCO 9.060

10.000 I I .OCO IZ.CO0 I 3 C:C 1S.r.30 15.CC0 16.CLO 17 C C O 19. COO 19.CI)O ZO. con 21 .GO9 22 C C C 23.c:c a.CO3

COO a. C S 21. CO'J t?0 5?0 FB.COJ 30. roo 32 COO 3* cco VI (('13 W C33 4O.(r3G 42.OOE cl* ,600 *6.CCS '-3 033 5'3 C30 5' C?O 9. GOO %.COO 'A GPO 60. CCO L' 000 & C30 I%. C10 68.003 70. C90

.0110

.0111

. O O * l

. o c n

.03'.0

.00*5 . Cob9

.0353 02% . OOtA .eon . CJBI .0081 .0370 . CDB3 .0393 . O I m .01m .GI03 . O x B .0083 ,0076 .oc-n . OCG7 .!l:59 .OD76

me- . u . l . i

. O O h

. ooe?

.0073 - 0 3 m .o:m .Ol'+B . O l * . 0 l r 3 . 0 1 '27 .0170 .O lW .OE17 . 0 1 s .0170 .01& .0222 . 0 2 n . O-X7 .0315 .0363 . 0 390 . G v . 3 .O*E3 . CG% .07fX

Table 2-5

-.ooi?3 -. o w 3 -.0019 -. owj - . o m - . O W -.0030 -. 0333 - .o*o - . OOIC -. 0060 - .0075 -.ow0 - . o m - . OC90 - .0072 -. 0040 - . O B I - . ow7 - .OMS - .Om9 -.om* -.or>! - . o m 0 -.0053 - 0059 -.01x3 - . o m - . oom - .01)77 - .Om7 - . o m - . o l e -.CIS7 -.0160 -.Ol75 - .OIW -.0193 - .OX0 -.01* -.W17 - . o n 6 - . o m - .0?10 - .0*2 -. 0382 - .O'#L' - . Or83 - . cum - . o n 1 - .07?0 -.ow

Page 201: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e 6-1 3

Page 202: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

Figure 8-14

Page 203: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

f i g u r e B-15

Page 204: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

RIP.31- I R I P 11. Z Rlt.01- 3

Figure 8-16

Page 205: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 206: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 207: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

cvt

ZOO

Page 208: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 209: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...
Page 210: DOCUMENT 361-83 CAPE CANAVERAL, FLORIDA RANGE REFE9ENCE ...

F i g u r e R-22


Recommended