+ All Categories
Home > Documents > Dr. Jon Olson

Dr. Jon Olson

Date post: 14-Jan-2017
Category:
Upload: vuongdan
View: 225 times
Download: 0 times
Share this document with a friend
86
1 Shale Fracturing: The Geology And Technology That Sustained The Boom Welcome! The webinar will begin promptly at Noon (CST) Dr. Jon Olson Professor Chairman Petroleum and Geosystems Engineering Department The University of Texas at Austin Dr. MukulSharma Professor "Tex" Moncrief Chair Department of Petroleum and Geosystems Engineering The University of Texas at Austin Dr. Zoya Heidari Assistant Professor Department of Petroleum and Geosystems Engineering The University of Texas at Austin
Transcript
Page 1: Dr. Jon Olson

1

Shale  Fracturing:  The  Geology  And  Technology  That  Sustained  The  Boom

Welcome!The  webinar  will  begin  promptly  at  Noon  (CST)

Dr.  Jon  OlsonProfessor          ChairmanPetroleum  and  GeosystemsEngineering  DepartmentThe  University  of  Texas  at  Austin

Dr.  Mukul  SharmaProfessor          "Tex"  Moncrief ChairDepartment  of  Petroleum  and  Geosystems EngineeringThe  University  of  Texas  at  Austin

Dr.  Zoya HeidariAssistant  ProfessorDepartment  of  Petroleum  and  Geosystems EngineeringThe  University  of  Texas  at  Austin

Page 2: Dr. Jon Olson

2

Shale  Fracturing:  the  geology  and  technology  that  led  to  the  boom

Dr.  Jon  E.  OlsonChair  and  Professor

Petroleum  &  Geosystems  Engineering

Page 3: Dr. Jon Olson

3

Outline• why  is  fracturing  important• what  is  a  hydraulic  fracture• lessons  from  geology• fracture  mechanics  tests  in  the  lab• small-­‐scale  fluid  injection  experiments  to  demonstrated  hydraulic  fracture  complexity

Page 4: Dr. Jon Olson

4

2011 – horizontal well, 15 fracs

1996 – vertical well, single frac

Barnett  Shale:  Technology  Matters

without  fracturing

Dr.  Jon  Olson

Page 5: Dr. Jon Olson

5

US  Natural  Gas  Productionfrom  US  Energy  Information  Agency,  through  July  2015  

Dr.  Jon  Olson

Page 6: Dr. Jon Olson

6

What  is  a  hydraulic  fracture?

Page 7: Dr. Jon Olson

7

Rock  Failure  Modes:  dispelling  myths

unconfined compressive test

hydraulic  fracturing  in  acrylic

Dr.  Jon  Olson

Page 8: Dr. Jon Olson

8 from  slb.com

SHmax,maximum  horizontal  

stress

Shmin,minimum   horizontal  

stress

Gross  Fracture  geometry  is  systematic  &  predictable

Dr.  Jon  Olson

Page 9: Dr. Jon Olson

9

Hydraulic  Fracture  Geometry

Horizontal  well  with  multiple  transverse  fractures

Horizontal  well  with  longitudinal   fracture

Vertical  well  with  vertical  fracture

Page 10: Dr. Jon Olson

10

Lessons  on  fracture  propagation  and  interaction  

from  geology

Page 11: Dr. Jon Olson

11

Muddy  Gap,  WY

S∝H

thick  beds 11Jon  OlsonUT-­‐Austin,  FRAC

Systematic  natural  fractures

Page 12: Dr. Jon Olson

1212

Impact  of  lithology  on  fracture  growth

• natural  fracture  spacing  in  shales  often  closer  than  other  lithologies

• depends  strongly  on  mineral  make-­‐up  of  rock

• ductile  clay  layers  can  be  fracture  arrestors  within  more  brittle  shale  interbeds

Dr.  Jon  Olson

Page 13: Dr. Jon Olson

1313

Impact  of  lithology  on  fracture  growth

• natural  fracture  spacing  in  shales  often  closer  than  other  lithologies

• depends  strongly  on  mineral  make-­‐up  of  rock

• ductile  clay  layers  can  be  fracture  arrestors  within  more  brittle  shale  interbeds

Dr.  Jon  Olson

Page 14: Dr. Jon Olson

1414

Impact  of  lithology  on  fracture  growth

ductile claybarrier

Huron Shale, Ohio

fracture arrest

Page 15: Dr. Jon Olson

15

Fracture  Interaction  with  Bedding  Planes  

• siliceous  mudstone,  Miocene  Monterrey  Fm.

• vertical  quartz-­filled  fracture  selectively  propagates  across  gray  beds  (marly),  along    white  beds  (phosphatic)

1  cm

from  Portuguese  Bend,  Palos  Verdes,  CADr.  Jon  Olson

Page 16: Dr. Jon Olson

16

1  cm

from  Portuguese  Bend,  Palos  Verdes,  CA

• siliceous  mudstone,  Miocene  Monterrey  Fm.

• vertical  quartz-­filled  fracture  selectively  propagates  across  gray  beds  (marly),  along    white  beds  (phosphatic)

Fracture  Interaction  with  Bedding  Planes  

Dr.  Jon  Olson

Page 17: Dr. Jon Olson

17

Natural-­‐natural  fracture  interaction

Jon Olson, UT-Austin, FRAC

Miocene Monterey Formation, Palos Verdes, CA

Dr.  Jon  Olson

Page 18: Dr. Jon Olson

18

Diverting along the interface of thicker fracture

Natural-­‐natural  fracture  interaction

Jon Olson, UT-Austin, FRAC

Miocene Monterey Formation, Palos Verdes, CA

Dr.  Jon  Olson

Page 19: Dr. Jon Olson

19

Fracture crossing of thinner frac

Natural-­‐natural  fracture  interaction

Jon Olson, UT-Austin, FRAC

Page 20: Dr. Jon Olson

20

Natural-­‐natural  fracture  interaction

bedding  plane

Jon Olson, UT-Austin, FRAC

Miocene Monterey Formation, Palos Verdes, CA

Dr.  Jon  Olson

Page 21: Dr. Jon Olson

21

Natural-­‐natural  fracture  interaction

Miocene Monterey Formation, Palos Verdes, CA

bedding  plane

bedding-­‐parallel  vein

Jon Olson, UT-Austin, FRAC

Dr.  Jon  Olson

Page 22: Dr. Jon Olson

22

Natural-­‐natural  fracture  interactionMiocene Monterey Formation,

Palos Verdes, CA

bedding  plane

bedding-­‐parallel  vein

cross-­‐bed  vein  #1

Jon Olson, UT-Austin, FRAC

Dr.  Jon  Olson

Page 23: Dr. Jon Olson

23

Natural-­‐natural  fracture  interactionMiocene Monterey Formation,

Palos Verdes, CA

bedding  plane

bedding-­‐parallel  vein

cross-­‐bed  vein  #1

cross-­‐bed  vein  #2a

cross-­‐bed  vein  #2b

Jon Olson, UT-Austin, FRAC

Dr.  Jon  Olson

Page 24: Dr. Jon Olson

24Jon Olson, UT-Austin, FRAC

Natural-­‐natural  fracture  interaction

Miocene Monterey Formation, Palos Verdes, CA

bedding  plane

bedding-­‐parallel  vein

cross-­‐bed  vein  #1

cross-­‐bed  vein  #2a

cross-­‐bed  vein  #2b

Diverting along the interface of thicker fracture

Dr.  Jon  Olson

Page 25: Dr. Jon Olson

25

Natural-­‐natural  fracture  interactionMiocene Monterey Formation,

Palos Verdes, CA

bedding  plane

bedding-­‐parallel  vein

cross-­‐bed  vein  #1

cross-­‐bed  vein  #2a

cross-­‐bed  vein  #2b

Fracture crossing of thinner frac

Jon Olson, UT-Austin, FRAC

Page 26: Dr. Jon Olson

26

Natural  Fracture  Summary

• natural  veins  fluid-­‐driven  fractures  occurring  at  depth  (i.e.,  good  analogy  for  hy-­‐frac)

• bedding  planes  and  pre-­‐existing  veins  can  divert  fracture  propagation  (frictional  interfaces  would  do  same)

• vein  thickness  increases  chance  of  diverting  propagation

Dr.  Jon  Olson

Page 27: Dr. Jon Olson

27

Fracture  Mechanics  Testing  of  Cores  –

Marcellus  Shale

Page 28: Dr. Jon Olson

28

(a)

Marcellus  Core  Testing• test  vein  strength,  

fracture  interaction  with  Marcellus  Core

• saw  and  grind  samples  rather  than  plug  to  reduce  damage/breakage

• propagate  induced  fractures  using  Semi-­‐Circular  Bending  test

fromLee, Olson, Holder, Gale and Myers, 2015, JGRdoi:10.1002/2014JB011358

Page 29: Dr. Jon Olson

29

(a) (b)

(c)

(d)

• test  vein  strength,  fracture  interaction  with  Marcellus  Core

• saw  and  grind  samples  rather  than  plug  to  reduce  damage/breakage

• propagate  induced  fractures  using  Semi-­‐Circular  Bending  test

fromLee, Olson, Holder, Gale and Myers, 2015, JGRdoi:10.1002/2014JB011358

Marcellus  Core  Testing

Page 30: Dr. Jon Olson

30

(a) (b)

(c)

(d)

(e)

• test  vein  strength,  fracture  interaction  with  Marcellus  Core

• saw  and  grind  samples  rather  than  plug  to  reduce  damage/breakage

• propagate  induced  fractures  using  Semi-­‐Circular  Bending  test

fromLee, Olson, Holder, Gale and Myers, 2015, JGRdoi:10.1002/2014JB011358

Marcellus  Core  Testing

Page 31: Dr. Jon Olson

31

(a) (b)

(c)

(d)

(e)

• test  vein  strength,  fracture  interaction  with  Marcellus  Core

• saw  and  grind  samples  rather  than  plug  to  reduce  damage/breakage

• propagate  induced  fractures  using  Semi-­‐Circular  Bending  test

fromLee, Olson, Holder, Gale and Myers, 2015, JGRdoi:10.1002/2014JB011358

Marcellus  Core  Testing

Page 32: Dr. Jon Olson

32

(a) (b)

(c)

(d)

(e)

Marcellus  Core  Testing

fromLee, Olson, Holder, Gale and Myers, 2015, JGRdoi:10.1002/2014JB011358

• test  vein  strength,  fracture  interaction  with  Marcellus  Core

• saw  and  grind  samples  rather  than  plug  to  reduce  damage/breakage

• propagate  induced  fractures  using  Semi-­‐Circular  Bending  test

Page 33: Dr. Jon Olson

33

• sample  diameter  =  2-­‐4  in• vein  thickness  =  0.01-­‐0.075  in• failure  along  flaws  in  calcite  

vein-­‐fill  (fluid  inclusion  trails  and  cleavage)

Failure  Occurs  Within  the  Cement

failed  SCB  sample

thin  section  of  calcite  vein  fill

plane  polarized  light crossed  nicolsDr.  Jon  Olson

Page 34: Dr. Jon Olson

34

Multiple  Saw  Cuts  &  GrindingDiameter  =  2.5  inThickness   of  the  vein=  0.009  in

(a) (b)

(c) (d)

SCB  test  Resultscrossing  preferred  at  more  orthogonal  approach  angle

Page 35: Dr. Jon Olson

35

0.075  in 0.05  in

0.035  in 0.01  in

(a) (b)

(c) (d)

Impact  of  Vein  Thicknesscrossing  preferred  for  thinner  veins

Page 36: Dr. Jon Olson

36

Testing  summary

• demonstrated  that  well-­‐cemented  veins  can  provide  planes  of  weakness

• tests  at  varying  approach  angles  can  quantify  vein  strength• critical  energy  release  rate  of  veins  ~  ¼  shale  matrix  

• vein  toughness,  KIc,  was  estimated  to  be  higher  than  shale

• failure  depends  on  strength  and  stiffness  of  veinsKIC(vein)~0.8  MPa-­‐m1/2 KIC(shale)~0.5  MPa-­‐m1/2

Dr.  Jon  Olson

Page 37: Dr. Jon Olson

37

Small-­‐scale  Laboratory  Hydraulic  Fracture  

Experiments

Page 38: Dr. Jon Olson

38

Hydraulic  fracturing  in  fractured  reservoirs

Fisher  et  al  2004 Warpinski &  Teufel,  1987

Page 39: Dr. Jon Olson

39

Physical  Experiments:  Interaction  between  cemented  flaws  and  fluid  driven  cracks

Hydraulic  Injection  Tube  (Wellbore)

hydrostone =  gypsum-­based  cement39

Dr.  Jon  Olson

Page 40: Dr. Jon Olson

40

Natural  Fractures  (glass  slides)

Sh,max

Pour  Hydrostone Blocks  with  Embedded  Discontinuities

Sh,max Natural  Fractures  (glass  slides)

Dr.  Jon  Olson

Page 41: Dr. Jon Olson

41

Load  Frame  – apply  Svert,  SHmax,  Shmin

Flatjacks

Hydraulic  Injection  Tube  (wellbore)

Flatjack Pressure  Lines

Dr.  Jon  Olson

Page 42: Dr. Jon Olson

42

Uncovering  Hydraulic  Fractures

42Dr.  Jon  Olson

Page 43: Dr. Jon Olson

43

Complex  Interaction  – Oblique  Case

wellbore

natural  fracture

43Dr.  Jon  Olson

Page 44: Dr. Jon Olson

44

Complex  Fracture  propagation/interaction

Bahorich  et  al.,  SPE  190197

Page 45: Dr. Jon Olson

45

Complex  Fracture  propagation/interaction

Bahorich  et  al.,  SPE  190197

Page 46: Dr. Jon Olson

46

Complex  Fracture  propagation/interaction

diverts  along  natural  fracture

mixed  mode  I-­‐II  non-­‐planar  curving

Bahorich  et  al.,  SPE  190197

Page 47: Dr. Jon Olson

47

Complex  Fracture  propagation/interaction

part of fracture propagates under natural fracture

diverts  along  natural  fracture

mixed  mode  I-­‐II  non-­‐planar  curving

Bahorich  et  al.,  SPE  190197

Page 48: Dr. Jon Olson

48

Summary• shale  gas  has  made  energy  more  affordable  and  secure  in  the  United  States

• much  of  hydraulic  fracture  complexity  has  an  analogy  in  natural  fracture  examples

• one  key  to  complexity  is  the  interaction  of  hydraulic  fractures  with  natural  fractures

• laboratory  testing  can  be  used  to  quantify  pre-­‐existing  fracture  strengths  and  to  run  small-­‐scale  hydraulic  fracture  tests  to  illustrate  potential  geometries

Dr.  Jon  Olson

Page 49: Dr. Jon Olson

49

Acknowledgment:  FRAC  Consortium  Sponsors

http://www.beg.utexas.edu/frac

Page 50: Dr. Jon Olson

50

Page 51: Dr. Jon Olson

51

Well  Spacing,  Fracture  Spacing,  Sequencing    and  Fluid  Management  in  Pad  

Fractured  Horizontal  Wells

Mukul  M.  SharmaUniversity  of  Texas  at  Austin

Dr.  Mukul  Sharma

Page 52: Dr. Jon Olson

52

JIP  FACT  SHEETSponsors  for  2014-­‐15

•RPSEA / DOE: 2 projects for $2,400,000 for 2013-2016•The State of Texas pays faculty salaries.•Your funds are leveraged about 50:1

Other potential members that have expressed interest:• PTT• Petrobras•ONGC• Chesapeake

1. Air  Liquide2. Anadarko  Petroleum3. Aramco4. Baker  Hughes5. BHPBilliton6. BP7. Chief Oil  &  Gas8. Chevron9. ConocoPhillips10. Devon  Energy11. Eni12. Ferus13. FSTI  Inc.*14. Hess15. Linde16. Lubrizol*17. MeadWestVaco (MWV)

18. Nalco (Ecolabs Inc.)*19. Nexen Energy  ULC20. Noble  Energy*21. Oxy22. Pioneer23. PEMEX24. Praxair25. Range  Resources26. Sanchez  Oil  &  Gas*27. Schlumberger28. Shell29. Southwestern   Energy30. Statoil31. Talisman32. Unimin33. Weatherford34. Wintershall

Page 53: Dr. Jon Olson

53

The  People  Involved

Murtadha Al  Tammar Haotian WangPrateek Bhardwaj Chu-­‐Hsiang  WuMichael  Brothers Weiwei WuChris  Blyton Mingyuan YangEric C.  Bryant Shiting YiMichael  Carey Jason  YorkDeepen  Gala Peng  ZhangChang Min  Jung Junhao  ZhouHojung Jung Saud  Alquwizani*Emmanouil Karantinos Samarth  Agarwal*Ashish Kumar Saptaswa Basu*Dongkeun Lee Stephen A.  Bryant*Hisanao Ouchi Jameson  P.  Gips*Javid Shiriyev Jongsoo Hwang*Igor  Shovkun Eric  R.  Lehman*Kaustubh Shrivastava Lionel  Ribeiro*Jeffrey Stewart Roman  Shor*Sanjay  Surya Do  Shin*

Research  Staff:§ Yaniv Brick§ Philip  Cardiff§ Ajeetha Kamilla§ Jin  Lee§ Ripudaman Manchanda§ Anand S.  Nagoo§ Rodney  T.  Russell

Graduate  Students:

Page 54: Dr. Jon Olson

54

Top  Five  Ideas  Worth  Trying

1. Treat  fracture  design  as  a  multi-­frac,  multi-­well  problem.  This  will  provide  the  optimum,– Well  spacing,  fracture  spacing,  fracture  sequencing– Fracture  design

2. Liquids   lifting  through  entire  life  of  well– Wellbore  trajectory– Artificial  lift  design

3. Better  zipper  frac sequencing4. Improve  proppant  placement5. Refracturing

– New  methods  to  divert  fluids  during  refracturing– Better  candidate  selection

Dr.  Mukul  Sharma

Page 55: Dr. Jon Olson

55

Pad  Fracturing:  The  Big  PictureLearning  from  Experience

• There  is  no  general  consensus  on  most  recommendations   regarding  well  spacing,  proppants,  pumping  rates,  fluids,  flowback…….– Too  many  variables– Too  few  wells  and  too  little  data– Expensive  learning

• There  is  a real  and  significant  financial  benefit  to  accelerating  the  learning  process  (capital  efficiency).

• How  do  we  accomplish  this?– Learn  from  existing  wells   (data  analysis)– Physics  based  models– Combine  the  two  (iterate).

Dr.  Mukul  Sharma

Page 56: Dr. Jon Olson

56

Multiple  Non-­‐Planar  Fracture  PropagationFracture  Stage  with  4  Perforation  Clusters

Q

q1

q2

q3

q4

Page 57: Dr. Jon Olson

57

Signatures  of  Fracture  Complexity  /  Interference

Bakken

Barnett

Eagle  Ford

Fracture  Trajectory  vs.  Distance  from  Stage  1  (ft) Net  Closure   Pressure  vs.  Stage  Number

Ref:  Roussell and  Sharma,  2012,  ARMA  12-­‐633

Page 58: Dr. Jon Olson

58

Complex  Fracture  Networks

Ref:  Warpinski,  N.R.  et  al,  SPE  114173,  2008

In  addition  to  stress  shadowing,  fracture  complexity  also  arises  due  to:q Complex  rock  fabricq Natural  fracturesq Bedding  planesq Heterogeneity

q Stress  anisotropyq Shear  failure

Stress  interference,  natural  fractures,  heterogeneities,  pore  pressure  depletion,  rock  fabric  can  all  lead  to  fracture  complexity. Dr.  Mukul  Sharma

Page 59: Dr. Jon Olson

59

Bossier  TGS,  Anadarko  (Sharma  et  al.  2004)

Barnett  Shale,  Devon  

(Fisher  et  al.  2005)

Fracture  Complexity  is  a  Strong  Function  of  Rock  Fabric  and  Local  Stress  Contrast

Dr.  Mukul  Sharma

Page 60: Dr. Jon Olson

60

Effect  of  Rock  Fabric  and  Stress  Anisotropy

Ref:  SPE  173374-­‐ Arbitrary  Fracture  Propagation  in  Heterogeneous  Poroelastic  Formations  Using  a  Finite  Volume-­‐Based  Cohesive  Zone  Model    •    Eric  C.  Bryant,  M.  M.  Sharma,   2015.

Page 61: Dr. Jon Olson

61

We  Can  Control  Fracture  Complexity,  To  Some  Degree

Wellbore

Fracture  1

Stress  Reversal  Region

Reoriented  σhmaxdirection

Region  of  Low  Stress  Contrast

σhmax – σhmin(psi)

Wellbore

Stress  Reversal  Region

Decreasing  σhmin

away  from  the  fracture

σhmin(psi)

Fracture  1

σhmin is  increased  close  to  the  propped-­‐open  fracture  and  exceeds  the  original  σhmax value  causing  reorientation  of  the  σhmax direction.

Fractures  that  propagate  in  regions  of  low  stress  contrast  are  likely  to  show  more  fracture  complexity.

SPE  159899

Page 62: Dr. Jon Olson

62

Pad  Fracturing  Design  Workflow

3-­‐D  Fracture  Model:  Estimate  fracture  dimensions  /  

complexity

3-­‐D  Fracture  Interference  Model:  Estimate  number  of  fractures  per  

stage

3-­‐D  Reservoir  Model:Simulate  production,  reservoir  drainage  

and  NPV.

Parametric  Study:  Well  spacing,  fracture  spacing  and  fracture  dimensions.

Fracture  Design  Recommendations:  Sand  volume,  fracture  sequencing,  

fluids,  proppant  schedule.    

Page 63: Dr. Jon Olson

63

Estimating  Optimum  Well  Spacing  and  Fracture  Spacing  (Lf =  160  ft)

Dr.  Mukul  Sharma

Page 64: Dr. Jon Olson

64

• There  are  many  reasons  to  treat  the  fracture  design  problem  on  a  pad  scale  (a  multi-­‐well,  multi-­‐fracproblem):– Interference  between  fractures  – Fracture  complexity  /  reservoir  heterogeneity– Some  ability  to  control  fracture  complexity  

• Computing  pore  pressure,  stress  and  failure  maps  is  important  for:– Establishing  well  spacing  – Selecting  locations  for  infill  or  step-­‐out  wells  – Selecting  fracture  spacing  in  the  new  well– Fracture  designs  in  new  wells– The  feasibility  of  an  infill  well

Summary

Page 65: Dr. Jon Olson

65

Top  Five  Ideas  Worth  Trying

1. Treat  fracture  design  as  a  multi-­frac,  multi-­well  problem.  This  will  provide  the  optimum,– Well  spacing,  fracture  spacing,  fracture  sequencing– Fracture  design

2. Liquids   lifting  through  entire  life  of  well– Wellbore  trajectory– Artificial  lift  design

3. Better  zipper  frac sequencing4. Improve  proppant  placement5. Refracturing

– New  methods  to  divert  fluids  during  refracturing– Better  candidate  selection

Dr.  Mukul  Sharma

Page 66: Dr. Jon Olson

66

Wellbore  Liquids  Management

q Well  productivity  is  a  strong  function  of  wellbore  liquids  loading  and  wellbore  trajectory

q Every  unconventional  well  will  be  on  artificial  lift  for  90%  of  its  life.

q To  properly  manage  wellbore  fluids  we  must:

q Unload  liquids  from  fractures  and  the  wellbore

q Unload  liquids  from  the  reservoir  matrix

q Integrate  wellbore  models  with  reservoir  inflow

q Properly  design  and  manage  artificial  lift.

q Obtain  good  estimates  of  BHP  from  THP

Page 67: Dr. Jon Olson

67

How  Good  Are  Our  Wellbore  Models?

Cousins,  Denton  and  Hewitt  (1965)  – Exp.  #  49,  data  also  in  Table  12.1  of  Wallis’s  One  Dimensional  Flow  textbook

Dr.  Mukul  Sharma

Page 68: Dr. Jon Olson

68

Run  numbers  7.02  to  7.09  in  the  reference:  Hewitt,  G.  F.,  King,   I.,  Lovegrove,   P.  C.:  Holdup  and  pressure  drop  measurements  in  the  two-­‐phase  annular   flow  of  air-­‐water  mixtures,   UK  AERE  Report  R3764,   June  (1961)

Run  numbers  FHOPI-­‐46  to  FHOPI-­‐49  in  the  reference:  Crowley,   C.  J.,  Sam,  R.  G.,  Rothe,  P.  H.:  Investigation  of  two-­‐phase  flow  in  horizontal   and  inclined   pipes  at  large  pipe  size  and  high  gas  density,   Project  PR-­‐172-­‐507,   Pipeline  Research  Committee,  AGA,  February  (1986)

How  Good  Are  Our  Wellbore  Models?

Dr.  Mukul  Sharma

Page 69: Dr. Jon Olson

69

Owen,  D.  G.:  An  experimental  and  theoretical   analysis  of  equilibrium  annular   flows,  Ph.D.  Dissertation,   Dept.  of  Chem.  Eng.,  U.  of  Birmingham   (1986)

Also  available   from  Theofanous,  T.  G.,  Amarasooriya,  W.  H.:  Dataset  no.  1  -­‐pressure  drop  and  entrained  fraction   in  fully  developed  flow,  Multiphase  Sci.  and  Tech.,  v.  6,  part   1,  pp.  5-­‐13  (1992)

How  Good  Are  Our  Wellbore  Models?

Page 70: Dr. Jon Olson

70

Kumar,   N.:  Improvements  for  flow  correlations   for  gas  wells  experiencing  liquid  loading,   Soc.  of  Petroleum  Engineers,  Paper  No.  92049  (2005)

Chierici,   G.  L.,  Ciucci,   G.  M.,  Sclocchi,  G.:  Two-­‐phase  vertical   flow  in  oil  wells  -­‐prediction   of  pressure  drop,  Soc.  of  Petroleum  Engineers,  Paper  No.  4316,  August  (1974)

How  Good  Are  Our  Wellbore  Models?

Dr.  Mukul  Sharma

Page 71: Dr. Jon Olson

71

Slightly-­‐Inclined  Flow:  Horizontal  Wells

Ø In  long  laterals,  segmentation  is  important  because  of  the  need  to  Ø Capture  the  local  multiphase  

flow  developmentØ Different  wellbore  regions  and  

reservoir  zonesØDifferent  well  inflow  from  multiple  entry  points  with  productivity  indices  (PIs)

ØDifferent  lithologies,  rock  qualities,  stress  gradients

Ajayi et  al.:  Stimulation  Design  for  Unconventional   Resources,  Schlumberger  Oilfield  Review,  Summer  (2013)   Dr.  Mukul  Sharma

Page 72: Dr. Jon Olson

72

Toe-­‐Up  WellborePFF  Simulator

Dr.  Mukul  Sharma

Page 73: Dr. Jon Olson

73

Correct  trend  is  captured  for  both  pressure  and  gas  

holdup

Toe-­‐Up  Wellbore:  PFF  SimulatorComparison  with  Well  Data

Page 74: Dr. Jon Olson

74

Undulating  WellborePFF  Simulator

Dr.  Mukul  Sharma

Page 75: Dr. Jon Olson

75

Undulating  WellborePFF  Simulator

Page 76: Dr. Jon Olson

76

Liquids  Unloading

q Obtaining  good  estimates  of  BHP  from  THP

q Effect  of  wellbore  trajectory  on  well  productivityq Unloading  of  liquids  from  fractures  

q Integrating  wellbore  models  with  reservoir  inflow

q Unloading  of  liquids  from  the  reservoir  matrixq Design  of  artificial   lift.

Dr.  Mukul  Sharma

Page 77: Dr. Jon Olson

77

• Competing  forces  :  drawdown  vs.  gravity  vs.  capillary  

• Capillary  forces  inhibiting  flow  of  water

• Gravity  pulling  liquid  to  the  bottom  

• Turner’s  critical  velocity  for  vertical  gas  wells:  

• For  σ =  60  dynes/cm,  ρL=58  lb/ft3,  ρg =  3  lb/ft3,

Ucrit =  8.4  ft/s  !

Water  flowing  downward,  assisted  by  gravity  and  

drawdown

Water  flowing  upward  at  high  gas  rates  and  downward  at  

low  gas  rates

Loading  in  fracture??  High  Sw,  Low  gas  rel  perm

Liquid  Loading  Inside  Fracture

Dr.  Mukul  Sharma

Page 78: Dr. Jon Olson

78

Can  the  Gas  Lift  the  Liquid  in  the  Fracture?

Dr.  Mukul  Sharma

Page 79: Dr. Jon Olson

79

Integrating  Wellbore  Flow  with  Reservoir  Inflow

Ø To  model  the  impact  of  wellbore  trajectory  on  hydraulically-­‐fractured  horizontal  well  productivity  it  is  important  to  account  for  the  effect  of  water  unloading  in  the  wellbore  the  fracture  and  the  rock  matrix

Page 80: Dr. Jon Olson

80

Integrating  Wellbore  Flow  with  Reservoir  Inflow

Dr.  Mukul  Sharma

Page 81: Dr. Jon Olson

81

Liquids  Removal  Takes  Time

Property Value

Matrix Permeability 1 µD

Fracture  Permeability   2  D

Drawdown   2000  psi

Variation  of  water  saturation  inside  Fracture Variation  of  water  saturation  in  matrix  near  fracture

Page 82: Dr. Jon Olson

82

Water  and  Condensate  BlockingØ Water  /condensate  blocking  can  cause  a  severe  reduction  in  gas  and  condensate  relative  perms.

Ø Chemical  treatment  using  a  non-­ionic  fluorinated  surfactant  increases  gas  and  condensate  relative  permeability  by  a  factor  of  2.

Ø Proppant can  be  treated  as  well  to  improve  proppant-­pack  conductivity.

Ø 6  field  trials  conducted.  More  underway.

Page 83: Dr. Jon Olson

83

References• “Flow-­‐Through  Drying  of  Porous  Media”,  AIChE Journal,  July,  2006,  J.    

Mahadevan,  M.  M.  Sharma  and  Y.C.  Yortsos.• “Water  Removal  from  Porous  Media  by  Gas  Injection:  Experiments  and  

Simulation”  Transport  in  Porous  Media  Journal,  2007,  J.  Mahadevan,  M.  M.  Sharma,  and  Y.  Yortsos.

• “Evaporative  Clean-­‐up  of  Water-­‐Blocks  in  Gas  Wells”,  Journal  of  Petroleum  Technology,  pp 46-­‐68,  October  2005,  J.    Mahadevan,  M.  M.  Sharma  and  Y.C.  Yortsos.

• “Factors  Affecting    Clean-­‐up  of  Water  Blocks:  A  Laboratory  Investigation,”  SPE  Journal,  September  2005,    J.  Mahadevan,  M.M.  Sharma.

• “Evaporative  Clean-­‐up  of  Water-­‐Blocks  in  Gas  Wells”,  SPE  94215,  presented  at  the  2005  SPE  Production  and  Operations  Symposium  held  in  Oklahoma  City,  OK,  April  17-­‐19,  2005,  J.    Mahadevan and  M.M.  Sharma

• “Cleanup  of  Water  Blocks  in  Depleted  Low-­‐Permeability  Reservoirs”,  SPE  89837  presented  at  the  SPE  Annual  Technical  Conference  and  Exhibition,  Houston,  Texas,  26–29  September  2004,  B.  Parekh,  and  M.M.  Sharma.

Page 84: Dr. Jon Olson

84

Top  Five  Ideas  Worth  Trying

1. Treat  fracture  design  as  a  multi-­frac,  multi-­well  problem.  This  will  provide  the  optimum,– Well  spacing,  fracture  spacing,  fracture  sequencing– Fracture  design

2. Liquids   lifting  through  entire  life  of  well– Wellbore  trajectory– Artificial  lift  design

3. Better  zipper  frac sequencing4. Improve  proppant  placement5. Refracturing

– New  methods  to  divert  fluids  during  refracturing– Better  candidate  selection

Dr.  Mukul  Sharma

Page 85: Dr. Jon Olson

85

Shale  Fracturing:  The  Geology  And  Technology  That  Sustained  The  Boom

Q&APlease  enter  your  questions  in  the  chat  box  on  the  left.

Dr.  Jon  OlsonProfessor          ChairmanPetroleum  and  GeosystemsEngineering  DepartmentThe  University  of  Texas  at  Austin

Dr.  Mukul  SharmaProfessor          "Tex"  Moncrief ChairDepartment  of  Petroleum  and  Geosystems EngineeringThe  University  of  Texas  at  Austin

Dr.  Zoya HeidariAssistant  ProfessorDepartment  of  Petroleum  and  Geosystems EngineeringThe  University  of  Texas  at  Austin

Page 86: Dr. Jon Olson

86

Thank  you!To  receive  CEU  verification,  please  visit  the  link  below  and  complete  a  short  survey.  You  MUST  click  on  this  link  and  fill  out  the  information  now  to  be  eligible  for  CEU  verification  (only  takes  30  seconds).  

https://www.surveymonkey.com/r/6FFFRJYIf  you  did  not  already  pay  the  $25  fee  for  CEU  verification,  please  call  512-­‐232-­‐5199  or  512-­‐471-­‐3506  to  pay  the  fee  within  24  hours

Dr.  Jon  Olson:  [email protected]

Dr.  Mukul  Sharma:  [email protected]

Dr.  Zoya Heidari:  [email protected]

Comments?  [email protected]


Recommended