+ All Categories
Home > Documents > DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management...

DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management...

Date post: 06-Aug-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
53
1 Thomas Stidsen DTU-Management / Operations Research Benders (once more ...) Thomas Stidsen [email protected] DTU-Management Technical University of Denmark
Transcript
Page 1: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

1Thomas Stidsen

DTU-Management / Operations Research

Benders (once more ...)Thomas Stidsen

[email protected]

DTU-Management

Technical University of Denmark

Page 2: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

2Thomas Stidsen

DTU-Management / Operations Research

OutlineThe algorithm

The assignment from last week

GAMS Implementation

Page 3: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

3Thomas Stidsen

DTU-Management / Operations Research

DefinitionsRBMP: Relaxed Benders Master Problem

BPSP: Benders Primal Sub-Problem: Thedirect formulation for finding the u values.

BDSP: Benders Dual Sub-Problem: Theoriginal problem with fixed y values

RGP: Ray Generation Problem

Page 4: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

4Thomas Stidsen

DTU-Management / Operations Research

But ...When we solve the BPSP ( the u problem) what if:

Problem solved: No problem (we add optimalitycut)

Problem infeasible: We have a solution which isinfeasible because of the y values. Hence weneed a feasibility cut based on an extreme ray.

Problem un-bounded: Original problemun-bounded !

Page 5: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

5Thomas Stidsen

DTU-Management / Operations Research

Benders AlorithmInitialize RBMP, RGP, BDSP/BPSPZLO = −∞, ZUP =∞, y, ǫwhile ZUP − ZLO > ǫ

Solve BDSP(y) or BPSP(y)getting uif feasible

update ZUP

Add Optimality constraintelse

Solve RGP(y) getting uAdd Feasibility constraint

Solve RBMP getting yupdate ZLO

endwhile

Page 6: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

6Thomas Stidsen

DTU-Management / Operations Research

ExampleMin:

z0 = 5x− 3y

s.t.:

x + 2y ≥ 4

2x− y ≥ 0

x− 3y ≥ −13

x ≥ 0

y ∈ {0, . . . , 10}

Optimal value: (x=2.5, y=5), z=-2.5

Page 7: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

7Thomas Stidsen

DTU-Management / Operations Research

Example 10.6: The B matrix

A =

2

6

6

4

1

2

1

3

7

7

5

B =

2

6

6

4

2

-1

-3

3

7

7

5

bT = [4, 0,−13]

cT = [5]

fT = [−3]

Page 8: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

8Thomas Stidsen

DTU-Management / Operations Research

The Optimality cutsThe optimality cuts we are looking for are:

z0 ≥ fTy + (ui)T (b−By) i = 1, . . . , q

Which becomes:z0 ≥ −3y + (ui)T ([4, 0,−13]T − [2,−1,−3]T y)

Hence, every time we find new optimality cut values,i.e. u values, we only have to plug them in, in the

above equation.

Page 9: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

9Thomas Stidsen

DTU-Management / Operations Research

ExampleMin:

z0 = 5x− 3y

s.t.:

x ≥ 4− 2y

2x ≥ 0 + y

x ≥ −13 + 3y

x ≥ 0

y ∈ {0, . . . , 10}

Optimal value: (x=2.5, y=5), z=-2.5

Page 10: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

10Thomas Stidsen

DTU-Management / Operations Research

1. Iteration: SubproblemMax:

z1 = (4− 2y)u1 + y · u2 + (−13 + 3y)u3

s.t.:

u1 + 2u2 + u3 ≤ 5

ui ≥ 0

Page 11: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

11Thomas Stidsen

DTU-Management / Operations Research

InititialisationInitial solution

y0 = 0.

Upper bound:UP0 =∞.

Lower bound:LO0 = −∞.

Page 12: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

12Thomas Stidsen

DTU-Management / Operations Research

Graphical BMP, initialisation101 Y

Z

Z

120

100

80

20

60

40

Page 13: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

13Thomas Stidsen

DTU-Management / Operations Research

1. Iteration: SubproblemMax:

z1 = 4u1 − 13u3

s.t.:

u1 + 2u2 + u3 ≤ 5

ui ≥ 0

Page 14: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

14Thomas Stidsen

DTU-Management / Operations Research

1. Iteration: SubproblemOptimal solution:

z1 = 20

u = (5, 0, 0)

Giving a new upper bound:UP1 = min{z1, UP0(=∞)} = 20. And arriving at thecut:

z0 ≥ −3y + (5, 0, 0)T ([4, 0,−13]T − [2,−1,−3]T y)

=

z0 ≥ −13y + 20

Page 15: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

15Thomas Stidsen

DTU-Management / Operations Research

1. Iteration: Benders Master ProblemMin:

z1

s.t.:

z1 ≥ 20− 13y

y ∈ {0, . . . , 10}

Page 16: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

16Thomas Stidsen

DTU-Management / Operations Research

1. Iteration: Benders Master ProblemOptimal solution

z1 = −110

y = 10

New lower bound:LO1 = max{z1, LO0(= −∞)} = −110.

Page 17: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

17Thomas Stidsen

DTU-Management / Operations Research

Graphical BMP, 1. iteration

Z >= 20 − 13y

Y

Z

Optimum

20

40

60

80

100

120

1

10

Page 18: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

18Thomas Stidsen

DTU-Management / Operations Research

2. iteration: Primal SubproblemMax:

z2 = −16u1 + 10u2 + 17u3 − 30

s.t.:

u1 + 2u2 + u3 ≤ 5

ui ≥ 0

Page 19: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

19Thomas Stidsen

DTU-Management / Operations Research

2. iteration: Primal SubproblemOptimal solution:

z2 = 55

u = (0, 0, 5)

New upper bound: UP2 = min{z2, UP1(= 20)} = 20.

Page 20: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

20Thomas Stidsen

DTU-Management / Operations Research

2. iteration: Benders Master ProblemMin:

z2

s.t.:

z2 ≥ 20− 13y

z2 ≥ −65 + 12y

y ∈ {0, . . . , 10}

Page 21: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

21Thomas Stidsen

DTU-Management / Operations Research

2. iteration: Benders Master ProblemOptimal solution:

z2 = −19

y = 3

New upper bound:LO2 = min{z2, LO1(−110)} = −19.

Page 22: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

22Thomas Stidsen

DTU-Management / Operations Research

Graphical BMP, 2. iteration

Optimum

Y

Z

20

40

60

80

100

120

1

10

Z >= 20 − 13y

Z >= −65 + 12y

Page 23: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

23Thomas Stidsen

DTU-Management / Operations Research

3. iteration: Primal SubproblemMax:

z3 = −2u1 + 3u2 − 4u3 − 9

s.t.:

u1 + 2u2 + u3 ≤ 5

ui ≥ 0

Page 24: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

24Thomas Stidsen

DTU-Management / Operations Research

3. iteration: Primal SubproblemOptimal solution:

z2 = −1.5

u = (0, 2.5, 0)

New upper bound:UP3 = min{z3, UP2(= 19)} = −2.5.

Page 25: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

25Thomas Stidsen

DTU-Management / Operations Research

3. iteration: Benders Master ProblemMin:

z3

s.t.:

z3 ≥ 20− 13y

z3 ≥ −65 + 12y

z3 ≥ −0.5y

y ∈ {0, . . . , 10}

Page 26: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

26Thomas Stidsen

DTU-Management / Operations Research

3. iteration: Benders Master ProblemOptimal solution:

z3 = −2.5

y = 5

Newlowerbound:LO3 = max{z1, LO3(= −19)} = −2.5.Now: LO3 = UP3

Page 27: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

27Thomas Stidsen

DTU-Management / Operations Research

Graphical BMP, 3. iteration

Z >= 20 − 13y

Y

Z

Optimum 20

40

60

80

100

120

1

10

Z >= −65 + 12y

Z >= −0.5y

Page 28: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

28Thomas Stidsen

DTU-Management / Operations Research

Exercise 10.1 (RKM)Several constraints are added without improvingbound (in case of minimization, non-increasing)why: Primal degeneracy: Possible to include newvariables into the simplex tableau without changingthe objective value (the new variables may stay atvalue zero). Dual degeneracy: If the current“solution” has several active constraints.

Page 29: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

29Thomas Stidsen

DTU-Management / Operations Research

Exercise 10.2 (RKM)If the Bender’s subproblem is infeasible what doesthat imply about the original problem ?

Original problem un-bounded ! Why ?

Bender’s Dual Sub-Problem is thenun-bounded.

Bender’s Dual Sub-Problem is a restrictedversion of the original problem meaning, hencethe original problem is also un-bounded.

Page 30: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

30Thomas Stidsen

DTU-Management / Operations Research

How did we get here ?

Original Problem

Full BendersMaster Problem

Project out x variables

Relaxed

Benders Problem

Benders DualSup−Problem

(Original Problem)

Ray GenerationProblem

Drop some (all ?) constraints

BendersSub−Problem

Page 31: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

31Thomas Stidsen

DTU-Management / Operations Research

Master Problem: LowerboundFarka’s lemma guarantees directcorrespondence between original problem andthe Full Benders Master Problem

The Relaxed Benders Master Problem willhence always give a lower bound ...

Page 32: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

32Thomas Stidsen

DTU-Management / Operations Research

Sub Problem: UpperboundBender’s dual problem is a restricted version ofthe original problem, hence a solution to thesub-problem is also a solution to the originalproblem

Page 33: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

33Thomas Stidsen

DTU-Management / Operations Research

The Benders Sub-problemMax:

fTy + (b−By)Tu

s.t.:

ATu ≤ c

u ≥ 0

Problem: If the objective is un-bounded, how to find

rays ?

Page 34: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

34Thomas Stidsen

DTU-Management / Operations Research

Extreme raysWe need to find the extreme rays in the cone{u|ATu ≤ 0, u ≥ 0}, such that a cut(ui)T (b−By) > 0 is found, see Proposition 10.3,hence:Max:

(b−By)Tu

s.t.:

ATu ≤ 0

0 ≤ u ≤ L

Page 35: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

35Thomas Stidsen

DTU-Management / Operations Research

Ray generation: An exampleMin:

2x1 + 6x2 + 2y1 + 3y2

s.t.:

−x1 + 2x2 + 3y1 − y2 ≥ 5

x1 − 3x2 + 2y1 + 2y2 ≥ 4

x1, x2 ≥ 0 y ∈ {0, 1, 2}

Page 36: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

36Thomas Stidsen

DTU-Management / Operations Research

Primal SubproblemMax:

u1 · [5− 3y1 + y2] + u2 · [4− 2y1 − 2y2]

s.t.:

−u1 + u2 ≤ 2

2u1 − 3u2 ≤ 6

u1, u2 ≥ 0

Page 37: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

37Thomas Stidsen

DTU-Management / Operations Research

Visually

����

����

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������

��������

��������

��������

����

����

u2=(0,2)

u3=(3,0)

(u1,u2)=(1,1)

u1=(0,0)

����

(u1,u2)=(3,2)

Page 38: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

38Thomas Stidsen

DTU-Management / Operations Research

Objectives for subproblem(5− 3y1 + y2, 4− 2y1 − 2y2), and y1, y2 ∈ {0, 1, 2}

(0, 0) : (5, 4)

(0, 1) : (6, 2)

(0, 2) : (7, 0)

(1, 0) : (2, 2)

(1, 1) : (3, 0)

(1, 2) : (4,−2)

(2, 0) : (−1, 0)

(2, 1) : (0,−2)

(2, 2) : (1,−4)

Page 39: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

39Thomas Stidsen

DTU-Management / Operations Research

Visually with possible objectives

(0,−2)

(3,0)

(7,0)

(4,−2)

(5,4)

(6,2)

(1,−4)

����

����

����

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

(−1,0)

(2,2)

Page 40: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

40Thomas Stidsen

DTU-Management / Operations Research

First iterationInitial guess for (y1, y2) = (1, 1):Max:

u1 · [5− 3y1 + y2] + u2 · [4− 2y1 − 2y2] = 3u1

s.t.:

−u1 + u2 ≤ 2

2u1 − 3u2 ≤ 6

u1, u2 ≥ 0

Page 41: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

41Thomas Stidsen

DTU-Management / Operations Research

Tabular LP form, first iterationB.V. u1 u2 d1 d2 R.S. UBZ -3 0 0 0 0d1 -1 1 1 0 2 no limitd2 2 -3 0 1 6 u1 ≤

6

2= 3 ← min

B.V.: Basic VariablesR.S.: Right hand side

Page 42: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

42Thomas Stidsen

DTU-Management / Operations Research

Tabular LP form, first iterationB.V. u1 u2 d1 d2 R.S. UBZ 0 -9

20 3

29

d1 0 -1

21 1

25 no limit

u1 1 -3

20 1

23 no limit

We can increase u2 as much as we like !!! Ok, sowhat is the extreme ray ?

Page 43: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

43Thomas Stidsen

DTU-Management / Operations Research

The simplex tableau as equations

−1

2u2 + d1 +

1

2d2 = 5

u1 −3

2u2 +

1

2d2 = 3

But when we use the simplex algorithm, we only

want to increase one variable at the time, and we

hence freeze the slack variable d2 = 0

Page 44: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

44Thomas Stidsen

DTU-Management / Operations Research

After the freezeu1 = 3 +

3

2u2

d1 = 5 +1

2u2

u2 =2

3u1 − 2

Page 45: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

45Thomas Stidsen

DTU-Management / Operations Research

To find extreme rays by problem modificationsOk, that’s all very nice, but what about usingcomputer codes for finding the rays ?

Page 46: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

46Thomas Stidsen

DTU-Management / Operations Research

Extreme RayThe extreme rays arises when our dual subproblemis unbounded:Max:

dummyz

s.t.:

dummyz = 0

fTy + (b−By)Tu = 1

ATu ≤ 0

u ≥ 0

What about the objective ???

Page 47: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

47Thomas Stidsen

DTU-Management / Operations Research

ModificationsZero right hand sides

Dummy objective (the objective does not matter!)

Fix value of objective function to 1

What solution will the simplex or dual-simplex solvefind ?

Page 48: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

48Thomas Stidsen

DTU-Management / Operations Research

ExampleA good example with the fixed chargeTransportation Problem ... see the ErwinKalvelagen note.

Page 49: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

49Thomas Stidsen

DTU-Management / Operations Research

The Fixed Charge Transportation problemMin: ∑

i,j

(fi,jyi,j + ci,jxi,j)

s.t.:∑

j

xi,j = si ∀i

i

xi,j = dj ∀j

xi,j ≤ Miyi,j ∀i, j

xi,j ≥ 0 yi,j ∈ {0, 1}

Page 50: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

50Thomas Stidsen

DTU-Management / Operations Research

Benders (primal) subproblemMax:

i

(−si)ui +∑

j

djvj +∑

i,j

(−Mi,jyi,j)wi,j

s.t.:

ui + vj − wi,j ≤ ci,j ∀i, j

ui, vj, wi,j ≥ 0

Page 51: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

51Thomas Stidsen

DTU-Management / Operations Research

Benders Master ProblemMin:

z

s.t.:

z ≥∑

i,j

fi,jyi,j +∑

i

(−si)uki +

j

djvkj

+∑

i,j

(−Mi,jwki,j)yi,j ∀k

0 ≥∑

i

(−si)uk′

i +∑

j

djvk′

j

+∑

i,j

(−Mi,jwk′

i,j)yi,j ∀k′

Page 52: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

52Thomas Stidsen

DTU-Management / Operations Research

Extreme raysWhat about the extreme rays ? How doesKalvelagen handle these ?

How does he detect an extreme ray ? He addsan artificial upper bound on the objective !

If the optimal objective value is significantly lessthan the upper bound, he assumes it to becorrect ...

If there is an extreme ray, he adds the dummyobjective adds the objective constraint and fixthe original objective value to 1 and solve theproblem ...

Page 53: DTU-Management Technical University of Denmark · 2011. 3. 10. · Thomas Stidsen 28 DTU-Management / Operations Research Exercise 10.1 (RKM) Several constraints are added without

53Thomas Stidsen

DTU-Management / Operations Research

Changed Benders SubproblemMax:

dummy

s.t.:

dummy = 0∑

i

(−si)ui +∑

j

djvj +∑

i,j

(−Mi,jyi,j)wi,j = 1

ui + vj − wi,j ≤ ci,j ∀i, j

ui, vj, wi,j ≥ 0


Recommended