+ All Categories
Home > Documents > Dynamic Strength of Materials

Dynamic Strength of Materials

Date post: 27-Dec-2016
Category:
Upload: vongoc
View: 235 times
Download: 2 times
Share this document with a friend
42
Center for Energetic Concepts Development D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G Dynamic Strength of Materials Ronald W. Armstrong Center for Energetic Concepts Development Department of Mechanical Engineering University of Maryland, College Park, MD 20742 Presentations for Masters Course in Shock Physics, Institute of Shock Physics, Imperial College, London March 24,25, 2011
Transcript
Page 1: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Dynamic Strength of Materials

Ronald W. Armstrong

Center for Energetic Concepts Development

Department of Mechanical Engineering

University of Maryland, College Park, MD 20742

Presentations for Masters Course in Shock Physics,

Institute of Shock Physics, Imperial College, LondonMarch 24,25, 2011

Page 2: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Crystal grains, dislocations, slip, polycrystal plasticity/ fracturing

Page 3: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

TOPICSI. Dislocation velocity-dependent mechanics

1. Thermal activation

2. Dislocation pile-ups

3. Combined consequences: σ = σ{(dε/dt), T, ℓ-1/2}

(i) Ductile-brittle transition/Charpy impact results

(ii) Plastic instability/shear banding

(iii) Taylor cylinder impact results

II. Dislocation generation vs. velocity mechanics

1. Shock front dislocation generations

2. Copper, ARMCO iron and tantalum results

3. Shockless isentropic compression experiments (ICEs)

Page 4: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Constitutive Equation RelationsThe total range for creep, slip, twinning and cleavage dynamics:

ε =ε{∆t, σ, D, T} → σ = σ{(dε/dt), T, ℓ-1/2}

1. Thermal activation - strain rate analysis, TASRA, (dε/dt) = (dε/dt){T, τTh}:

thus (∂τth/∂T)ln[dε/dt](∂T/∂ln[dε/dt])τTh (∂ln[dε/dt]/∂τTh)T = -1.0

and (dε/dt) = (dε/dt)0exp{-(G0 - ∫v*dτTh)/kBT}, with v* = A*b,

and v* = W0/τTh and τTh = τ - (τG + kSεℓ-1/2).

2. The Hall-Petch microstructural stress intensities, “k”s:

For a circular pile-up; n(τ – τ0ε) = m*τC and n = 2α(τ – τ0ε)ℓ/πGb

thus σ = mT[(τG + τTh) + (πm*GbτC/2α)1/2ℓ-1/2] = σ0ε + kεℓ-1/2

and kAl < kCu < kMg << kα-Fe with kε < ky.p. << kT ~ kC << KIC = σ(πc)1/2

with c and ℓ being analogous in comparison with the fracture mechanics KIC

Page 5: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

“Dynamic Strength of Materials” Bibliography1. A. Seeger, in “Dislocations and Mechanical Properties of Crystals”,

edited by J.C. Fisher, W.G. Johnston, R. Thomson, and T. Vreeland, Jr. (John

Wiley & Sons, Inc., N.Y., 1956) p. 243.

2. “Dislocation Dynamics”, edited by A.R. Rosenfield, G.T. Hahn, A.L.

Bement, Jr., and R.I. Jaffee (McGraw-Hill Book Co., N.Y., 1968).

3. R.W. Armstrong, in “Yield, Flow and Fracture of Polycrystals”, edited by

T.N. Baker (Appl. Sci. Publ., London, U.K., 1983) p. 1.

4. “Mechanics of Materials”, edited by M.A. Meyers, R.W. Armstrong, and

H.O.K. Kirchner (John Wiley & Sons, Inc., N.Y., 1999).

5. R.W. Armstrong and S.M. Walley, “High Strain Rate Properties of Metals and

Alloys”, Intern. Mater. Rev. 53, [3], 105-128 (2008).

6. R.W. Armstrong, W. Arnold, and F.J. Zerilli, “Dislocation mechanics of shock-

induced plasticity”, J. Appl. Phys., 105, 023511 (2009), 7 pp.

7. R.W. Armstrong, “Dislocation Viscoplasticity Aspects of Material Fracturing”, Eng.

Fract. Mech., 77, 1348-1359 (2010).

8. R.W. Armstrong, in “Mechanical Properties of Nanocrystalline Materials”,

edited by J.C.M. Li (Pan Stanford Publ., Singapore, 2011) Chap. 3, pp. 61-91, in print.

Page 6: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Zerilli-Armstrong Constitutive Equations

(dε/dt) = (1/m)ρbν

ν = ν0exp[-(G0 - ∫A*bdτTh)/kBT] and A*b = W0/τTh

Computational (Z-A) equations:

σ = σG + Bexp[-βT] +

B0[εr(1 – exp{-ε/εr})]1/2exp[-αT] +kεℓ-1/2

in which

(β,α) = (β0,α0) – (β1,α1)ln(dε/dt)

bcc case: α =α0 = α1= 0 fcc case: B = β = β0 = β1 = 0

F.J. Zerilli and R.W. Armstrong, J. Appl. Phys. 61, 1816-1825 (1987)

F.J. Zerilli and R.W. Armstrong, J. Appl. Phys. 68, 1580-1591 (1990)

F.J. Zerilli, Metall. Mater. Trans. A, 35A, 2547-2555 (2004)

Page 7: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Tensile ductile-brittle transition

σy = σC at T = TC = (1/β)[lnB – ln{(kC – ky) + (σC- σ0G)ℓ1/2} - lnℓ-1/2]R.W. Armstrong, Metall. Mater. Trans., 1, 1169-1176 (1970).

Page 8: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Impact

Page 9: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Charpy impact transition temperature

α’σy = σC at TC = (1/β)[lnα’B – ln{(kC – α’ky) + (σ0C – α’σ0G)ℓ1/2} - lnℓ-1/2]

R.W. Armstrong, Eng. Fract. Mech., 28, 529-538 (1987)

Page 10: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Tensile plastic instability: σ = dσ/dε

R.W. Armstrong and F.J. Zerilli, Mech. Mater., 17, 319-327 (1994)

Page 11: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

BCC vs. FCC plastic instability dependences

R.W. Armstrong and F.J. Zerilli, Mech. Mater., 17, 319-327 (1994)

Page 12: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Tantalum: σ = σ{(dε/dt), T, ℓ-1/2}

F.J. Zerilli and R.W. Armstrong. J. Appl. Phys., 68, 1580-1591 (1990)

Page 13: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Shear banding based on σ = Kεn and σ = dσ/dε;

from (dP/dℓ0) = 0 and raised to (d2P/dℓ02) = 0

Measurements from M.R. Staker, Acta Metall., 29, [4], 683-689 (1981)

Page 14: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Shear banding from a dislocation pile-up avalanche

R.W. Armstrong, C.S. Coffey, and W.L. Elban, Acta Metall., 30, 2111-2118 (1982)

Page 15: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Shear band susceptibility from the pile-up avalanche model

R.W. Armstrong and F.J. Zerilli, Mech. Mater., 17, 319-327 (1994)

Page 16: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Titanium: σ = σ{(dε/dt), T, ℓ-1/2}

F.J. Zerilli and R.W. Armstrong, Shock Compression of Condensed Matter – 1995,

edited by S.C. Schmidt and W.C. Tao (Amer. Inst. Phys., N.Y., 1996) CP 370, pp. 315-318

Page 17: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Isothermal and adiabatic stress strain curves for Ti6Al4V material

F.J. Zerilli and R.W. Armstrong, Shock Compression of Condensed Matter – 1995, edited by S.C. Schmidt and W.C. Tao (Amer. Inst. Phys., N.Y., 1996) pp. 315-318

Page 18: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Copper: σ = σ{(dε/dt), T, ℓ-1/2}

F.J. Zerilli and R.W. Armstrong, J. Appl. Phys., 61, 1816-1825 (1987);

see P.S. Follansbee and U.F. Kocks, Acta Metall., 36, 81-93 (1988).

Page 19: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Copper Taylor cylinder impact result

F.J. Zerilli and R.W. Armstrong, J. Appl. Phys., 61, 1816-1825 (1987)

Page 20: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Original Taylor cylinder test result on mild steel

W.E. Carrington and M.L.V. Gaylor, Proc. Roy. Soc. London A, 194A, 323-331 (1948)

Page 21: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

SHPB twinning measurements compared to Z-A slip calculations

R.W. Armstrong and F.J. Zerilli, J. Phys. Fr. Colloq., 49, [C3], 529-534 (1988)

Page 22: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Armco iron Taylor test involving twinning and slip

F.J. Zerilli and R.W. Armstrong, Shock Compression of Condensed Matter, edited by

S.C. Schmidt and N.C. Holmes (Elsevier Sci. Publ. B.V., N.Y., 1988) pp. 273-277.

Page 23: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Sequential twinning and slip in the Taylor cylinder impact test

J. B. McKirgan, “Microstructurally-based EPIC simulations of Taylor impact tests”, M.Sc. Thesis, University of Maryland, 1990

Page 24: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Model for a propagating shock frontσ = P{(1 – ν)/(2 – ν)} for one-dimensional strain

F.A. Bandak, D.H. Tsai, R.W. Armstrong and A.S. Douglas, Phys. Rev. B, 47, 11681-11687 (1993)

Page 25: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

MD model of shock-induced dislocation dipole structures

F.A. Bandak, R.W. Armstrong, and A.S. Douglas, Phys. Rev. B, 46, 3228-3235 (1992).

Page 26: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Model of 3-D post-shock deformation

F.A. Bandak, R.W. Armstrong, and A.S. Douglas, Phys. Rev. B, 46, 3228-3235 (1992)Analogy with “channeling” of deformation in post-deformation of neutron-irradiated materials

Page 27: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Transition from strain rate control by dislocation

velocity to control by dislocation generationFor dislocation velocity control:

(dε/dt) = (1/m)ρbν

σ = σG + Bexp[-βT] + B0[εr(1 – exp{-ε/εr})]1/2exp[-αT] +kεℓ-1/2

in which

(β,α) = (β0,α0) – (β1,α1)ln(dε/dt)

For dislocation generation control:

(dε/dt) = (1/m)b(dρ/dt)∆xd

for which, at limiting small value of v* ~ b3, and m = 2

σTh = (2G0G/v*) – (2kBT/v*) [ln{(dε/dt)0/(dε/dt)}]

R.W. Armstrong, W. Arnold, and F.J. Zerilli, Metall. Mater. Trans. A, 38A, 2605-2610 (2007)

Page 28: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

SHPB indication of dislocation generation

R.W. Armstrong, W. Arnold and F.J. Zerilli, Metall. Mater. Trans. A, 38A, 2605-2610 (2007)

Page 29: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Connection of Follansbee et al results with

Swegle and Grady shock measurements

R.W. Armstrong, W. Arnold, and F.J. Zerilli, Metall. Mater. Trans. A, 38A, 2605-2610 (2007).

Page 30: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Page 31: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

R.W. Armstrong, W. Arnold, and F. J. Zerilli, Metall. Mater. Trans. A, 38A, 2605-2610 (2007);

W. Arnold, Dynamisches Werkstoffverhalten von Armco-eisen bei Stosswellenbelastung, Fortschrittberichte VDI, 5, 247,VDI-Verlag GmbH, Duesseldorf, DE, 1992

Page 32: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Shocked Armco iron at different grain sizes and plastic strain rates

R.W. Armstrong, W. Arnold and F.J. Zerilli, J. appl. Phys., 105, 023511 (2009)

-Fe

STRAIN RATE (s-1

)

10-3 10-2 10-1 100 101 102 103 104 105 106 107 108

ST

RE

SS

(G

Pa)

0

1

2

3

4

5

6

7

8Swegle and Grady

Arnold - yield, 20

Arnold - flow, 20

Arnold - yield, 80

Arnold - flow, 80

Arnold - yield, 400

Arnold - flow, 400

Twin (20 )

Twin (80 )

Twin (400 )

ZA (20 )

ZA (80 )

ZA (400 )

DISLOCATION GEN

Page 33: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Tantalum

F.J. Zerilli and R.W. Armstrong, J. Appl. Phys., 68, 1580-1591 (1990)

TANTALUM

STRAIN RATE (s-1

)

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105

TR

UE

ST

RE

SS

(M

Pa

)

0

200

400

600

800

1000

HOGE & MUKHERJEE

ZERILLI & ARMSTRONG

TWIN, MURR, ET AL.

Page 34: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Tantalum Conventional and Shock Results

R.W. Armstrong, W. Arnold and F.J. Zerilli, Metall. Mater. Trans. A, 38A, 2605-2610 (2007)

TANTALUM

STRAIN RATE (s-1

)

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 106 107

TR

UE

ST

RE

SS

(M

Pa)

0

1000

2000

3000

4000

5000

6000

7000

HOGE & MUKHERJEE

ZERILLI & ARMSTRONG

TWIN, MURR, ET AL.

MEYERS

= 2U0/V0 + (1400 MPa)ln( / 0)

Page 35: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Ta single crystal/polycrystal SHPB results

D. Rittel, M.L. Silva, B. Poon and G. Ravichandran, Mech. Mater., 41, 1323-1329

(2009); R.W. Armstrong and F.J. Zerilli, J. Phys. D: Appl. Phys., 43, 492002 (2010)

Page 36: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Critical activation volumes, v*, under shock loading

Page 37: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Laser-shocked deformation of copper

W.J. Murphy et al., J. Phys.: Condens. Matter, 22, 065404 (2010); R.W.

Armstrong and F.J. Zerilli. J. Phys. D: Appl. Phys., 43, 492002 (2010)

Page 38: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

The strain and strain rate from combined

dislocation displacements and generations

The strain from displaced and generated dislocations

∆ε = (1/m)[ρNb∆xN + ∆ρGb∆xd +ρGb∆xd]

The strain rate is obtained then for the presumed time-

dependent parameters as

(dε/dt) = (1/m)[ρNbνN +(dρG/dt)b∆xd + ρGbνG]

with neglect of (dρN/dt). If it were assumed that νN = νG = ν*,

and ρN and ρG could be combined as ρT then

(dε/dt) = (1/m)[(dρG/dt)b∆xd + ρTbν*]

Page 39: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Shockless isentropic compression experiments (ICEs)

The resident dislocation density is required to “carry the load”,

and because ρN is low, νN is so high as to be controlled by “drag”!

σTh = {1 – [c(dε/dt)/β1σTh]-β1T }[Bexp(-βT)]

in which

c = c0m2β1/ρb2 and bτTH = c0ν.

At high (dε/dt):

σTh = (c0m2/ρb2)(dε/dt)

F.J. Zerilli and R.W. Armstrong, Acta Mater., 40, 1803-1808 (1992);

R.W. Armstrong, W. Arnold and F.J. Zerilli, J. Appl. Phys. 105, 023511 (2009)

Page 40: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Copper SHPB, Shock, and ICE results

H. Jarmakani et al., Mater. Sci. Eng. A, 463, 249 (2007);

R.W. Armstrong, W. Arnold and F.J. Zerilli, J. Appl. Phys., 105, 023511 (2009)

Page 41: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Drag-controlled shockless ICE results for copper

R.W. Armstrong, W. Arnold and F.J. Zerilli, J. Appl..Phys., 105, 023511 (2009)

Page 42: Dynamic Strength of Materials

Center for Energetic Concepts Development

D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G

A . J A M E S C L A R K S C H O O L O F E N G I N E E R I N G

Strength of Material DynamicsSUMMARY

1. An introduction has been given on a dislocation mechanics basis to coupling of

model thermal activation – strain rate analysis (TASRA) and grain size related,

dislocation pile-up, constitutive relations.

2. Attention was directed to the strain rate, temperature, and grain size dependencies

that are established for evaluations of such material strength properties as: (i)

conventional stress – strain; (ii) ductile-brittle transition; (iii) Charpy v-notch impact;

(iv) plastic instability; (v) shear banding; (vi) Taylor cylinder impact; (vii) shock; and,

(viii) shockless isentropic compression experiments (ICEs).

3. Beyond giving emphasis to the dislocation velocity and generation being thermally

activated processes at the crystal lattice scale, the fuller description involves key

features of (i) dislocation pile-up associated internal stress concentrations, (ii) relief

needed for dislocation generations at all lattice points along a propagating shock front;

and, (iii) trade-offs between dislocation density and velocity in distinguishing between

very different strength properties at comparable shock and shockless deformation rates.


Recommended