+ All Categories
Home > Documents > ECE 255 L5 Energy band diagramsV2 - nanoHUB/uploads/ECE... · Energy band diagrams Lundstrom: 2019...

ECE 255 L5 Energy band diagramsV2 - nanoHUB/uploads/ECE... · Energy band diagrams Lundstrom: 2019...

Date post: 03-Feb-2021
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
31
1 ECE 255: L5 Energy Band Diagrams Mark Lundstrom School of ECE Purdue University West Lafayette, IN USA Spring 2019 Purdue University Lundstrom: 2019
Transcript
  • 1

    ECE 255: L5

    Energy Band Diagrams

    Mark Lundstrom School of ECE

    Purdue University West Lafayette, IN USA

    Spring 2019 Purdue University

    Lundstrom: 2019

  • Energy band diagrams

    Lundstrom: 2019 2

    1)  Band bending and the electrostatic potential 2)  “Reading” an energy band diagram 3)  PN junctions 4)  Energy band diagram of a PN junction in equilibrium 5)  Forward bias and reverse bias 6)  The built-in potential

  • 3

    Energy band diagrams

    Lundstrom: 2019

    An energy band diagram is a plot of the bottom of the conduction band and the top of the valence band vs. position.

    Energy band diagrams are a powerful tool for understanding semiconductor devices because they provide qualitative solutions to the semiconductor equations.

  • 4

    Energy band diagrams

    https://www.pbs.org/wgbh/americanexperience/features/silicon-timeline-silicon/

  • 5

    Kroemer’s lemma of proven ignorance

    “Whenever I teach my semiconductor device physics course, one of the central messages I try to get across early is the importance of energy band diagrams. I often put this in the form of “Kroemer’s lemma of proven ignorance:

    If, in discussing a semiconductor problem, you cannot draw an Energy Band Diagram, this shows that you don’t know what you are talking about.”

    (Nobel Lecture, 2000)

    Lundstrom: 2019

  • 6

    Kroemer’s corollary

    If you can draw one, but don’t, then your audience won’t know what you are talking about.”

    (Nobel Lecture, 2000)

    Lundstrom: 2019

  • 7

    Band bending in an MOS structure

    x

    EC

    EV

    EI

    Lundstrom: 2019

    p = NA

    n = ni2 NA

    semiconductor

    SiO2 oxide

    metal gate

    +VG V = 0

    What happens when we apply a voltage to the gate?

  • Voltage and electron potential energy

    E = −qV

    +V

    Lundstrom: 2019 8

    A positive potential lowers the energy of an electron.

    -

  • Electrostatic potential vs. position

    x

    +VG

    V = 0

    V x( )

    Lundstrom: 2019 9

  • 10

    Electrostatic potential causes band bending

    x

    V = 0

    EPE = EC x( ) = EC +∞( )− qV x( )

    VG > 0

    Lundstrom: 2019

    ECB

    EVB

    EIB

    pB = NA

    nB = ni2 NA

    EC x( )

    EI x( )

    EV x( )

  • 11

    Electric field

    x

    V = 0

    EEC x( ) = EC +∞( )− qV x( )

    dEC x( )dx

    = −qdV x( )dx

    = qE

    VG > 0

    The electric field is proportional to the slope of EC

    ECB

    EVB

    EIB

    pB = NA

    nB = ni2 NA

  • 12

    Electric field

    x

    E

    The electric field is proportional to the slope of EC

    E = 1

    qdEC x( )dx

  • 13

    Electron concentration

    x

    V = 0

    En x( )∝ eqV x( ) kBT

    Lundstrom: 2019

    EVB

    EIB

    pB = NA

    nB = ni2 NA

    n x( ) = nBeqV x( ) kBT

    qV x( )ECB

  • 14

    Electron concentration

    x

    log10 n(x)

    Lundstrom: 2019

    nB = ni2 NA

    n x = 0( ) = ni2 NA( )× eqV x=0( ) kBT

    n x( ) = nBeqV x( ) kBT

  • 15

    Hole concentration

    x

    V = 0

    E p x( )∝ e−qV x( ) kBT

    VG > 0

    Lundstrom: 2019

    EVB

    EIB

    pB = NA

    nB = ni2 NA

    ECB

    p x( ) = pBe−qV x( ) kBT

    qV x( )

  • “depletion region”

    W

    16

    Electron and hole concentrations

    x

    log10 n(x)

    Lundstrom: 2019

    ni2

    NA× eqV x=0( ) kBT

    nB = ni2 NA

    NA × e−qV x=0( ) kBT

    NA

  • Summary: Band diagrams

    x

    EC

    EV

    EI

    E

    E ∝ dEC x( ) dx

    17 Lundstrom: 2019

    A band diagram Reading the band diagram

    V x( )∝−EC x( )

    log p x( )∝ EV x( )− EVB

    logn x( )∝ ECB − EC x( )

  • Another example: NP junction (equilibrium)

    Lundstrom: 2019 18

    N P

    pp ! NA

    ρ ! 0 nn ! ND

    ρ ! 0 pn ! ni

    2 ND np ! ni

    2 NA

    “majority carriers”

    “minority carriers”

  • NP junction (equilibrium)

    Lundstrom: 2019 19

    N P

    pp ! NA

    ρ ! 0 nn ! ND

    ρ ! 0

    depletion region xp−xn 0

    +

    -

    EVL > VR

    ρ < 0NA

    ρ > 0ND

    +

  • Voltage vs. position

    Lundstrom: 2019 20

    V x( )

    x

    N P

    xp−xn

    Vbi“built-in potential”

  • xp−xn

    Electron energy vs. position

    Lundstrom: 2019 21

    E

    x

    N

    P ΔE = qVbi

    EC x( )

    EV x( )EC

    EV

  • Electric field vs. position

    Lundstrom: 2019 22

    xN P xp−xn

    E

  • Carrier densities vs. position

    Lundstrom: 2019 23

    log10 n x( ), log10 p x( )

    xN P xp−xn

    pp = NA

    pn = ni2 ND

    nn = ND

    np = ni2 NA

    nn

  • Equilibrium energy band diagram

    Lundstrom: 2019 24

    EC

    x

    W

    E

    qVbi

    I = 0

    VA = 0

    PN

    −xn xp

    If we apply a + voltage to the P-side, what happens?

    EC

    N-side P-side

  • Where does the voltage drop?

    Lundstrom: 2019 25

    R1 R2 R3VA

    −V3 +−V2 +−V1 +

    R2 >> R1,R2

    V2 ≈ ?

  • W

    Forward bias à smaller energy barrier

    Lundstrom: 2019 26

    EC x( )

    x

    E

    −xn xp

    q Vbi −VA( )ΔE = qVA > 0

    •  Electric field decreases in magnitude •  Width of depletion region decreases

  • Reverse bias à larger energy barrier

    Lundstrom: 2019 27

    EC

    x

    W

    E

    −xn xp

    q Vbi −VA( )

    •  Electric field increases in magnitude •  Width of depletion region increases

    ΔE = q VA

    VA < 0

  • Equilibrium built-in potential

    Lundstrom: 2019 28

    EC

    xW

    E

    −xn xp

    EC

    N-side P-side

    n x( )∝ eqV x( ) kBT nn =ni2

    NAeqVbi kBT ND =

    ni2

    NAeqVbi kBT

    nn = ND np = ni2 NA

    qVbi = ?

  • Equilibrium built-in potential

    Lundstrom: 2019 29

    I = 0+Vbi −

    Vbi =kBTqln NAND

    ni2

    ⎛⎝⎜

    ⎞⎠⎟

  • Summary

    Energy band diagrams are a powerful tool for understanding the operation of semiconductor devices.

    30 Lundstrom: 2019

    To find the electrostatic potential vs. position, turn EC(x) upside down.

    To find the electric field vs. position, take the slope of EC(x).

    To find the carrier density vs. position, begin where it is know, and then exponentially increase or decrease according to the local electrostatic potential.

  • Energy band diagrams

    Lundstrom: 2019 31

    1)  Band bending and the electrostatic potential 2)  “Reading” an energy band diagram 3)  PN junctions 4)  Energy band diagram of a PN junction in equilibrium 5)  Forward bias and reverse bias 6)  The built-in potential


Recommended