+ All Categories
Home > Documents > ECE 453 Wireless Communication Systems Amplifiers

ECE 453 Wireless Communication Systems Amplifiers

Date post: 01-Jan-2022
Category:
Upload: others
View: 7 times
Download: 0 times
Share this document with a friend
34
ECE 453 – Jose SchuttAine 1 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected] ECE 453 Wireless Communication Systems Amplifiers
Transcript
Page 1: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 1

Jose E. Schutt-AineElectrical & Computer Engineering

University of [email protected]

ECE 453Wireless Communication Systems

Amplifiers

Page 2: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 2

• Definitions– Used to increase the amplitude of an input signal to a

desired level– This is a fundamental signal processing function– Must be linear (free of distortion) – Shape of signal

preserved

Amplifiers

( ) ( ),o iv t Av t where A is the voltage gain

vi(t) vo(t)AMP

: ov

i

vVoltage Gain Av

( ) :( )

Lp

I

Load Power PPower Gain AInput Power P

Page 3: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 3

Amplifiers

1 1 2 2DCP V I V I

100L

DC

P Power EfficiencyP

Since output associated with the signal is larger than the input signal, power must come from DC supply

DC I L dissipatedP P P P

Page 4: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 4

• Bipolar Junction Transistor (BJT)– First Introduced in 1948 (Bell labs)– Consists of 2 pn junctions– Has three terminals: emitter, base, collector

Bipolar Junction Transistor

4

Page 5: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 5

BJT – Modes of Operation

Mode EBJ CBJ

Cutoff Reverse Reverse

Forw. Active Forward Reverse

Rev. Active Reverse Forward

Saturation Forward Forward

5

Page 6: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 6

B

C

E

Structure of BJT’s

Collector surrounds emitter region electrons will be collected

6

Page 7: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 7

PNP

NPN

BJT Transistor Polarities

Page 8: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 8

Ebers-Moll Model

NPN Transistor

// 1 1BC TBE T v Vv V SC S

R

Ii I e e

// 1 1BC TBE T v Vv VSE S

F

Ii e I e

// 1 1BC TBE T v Vv VS SB

F R

I Ii e e

1F

FF

1

RR

R

Describes BJT operation in all of its possible modes

8

Page 9: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 9

Biasing Bipolar Transistors

Page 10: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 10

Biasing of Amp

( ) ( )I QI IV t V v t

Bias will provide quiescent points for input and output about which variations will take place. Bias maintain amplifier in active region.

( ) ( )o QO oV t V v t

( ) ( )o v Iv t A v to

vI at Q

dvAdv

Amplifier characteristics are determined by bias point

Page 11: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 11

Small-Signal Model

• What is a small-signal incremental model?

– Equivalent circuit that only accounts for signal level fluctuations about the DC bias operating points

– Fluctuations are assumed to be small enough so as not to drive the devices out of the proper range of operation

– Assumed to be linear

– Derives from superposition principle

Page 12: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 12

2. Emitter Bias

BJT Bias

Provides good stability with respect to changes in with temperature

12

Thevenin Equivalent

Page 13: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 13

BJT Emitter Bias

th th B BE E EE R I V R I

1E B C BI I I I

( 1)th BE

B BQth E

E VI IR R

2

1 2th CC

RE VR R

1 21 2

1 2th

R RR R RR R

13

Thevenin Equivalent

1th BE th B E BE V R I R I

Page 14: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 14

Hybrid- Incremental Model for BJTs

r: input resistance looking into the baserx: parasitic series resistance looking into base – ohmic base resistancegm: BJT transconductancero=rce: output collector resistance related to the Early effect

Page 15: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 15

Hybrid- Parameters

tanC

C Cm

BE TI cons t

i Igv V

:b

vr is defined as ri

mb

g vSince i

m

then rg

A Ace o

C B

V Vr r

I I

is associated with the Early effectce or r

1 er r

me

gr

mg r

Can show that

1 1m

e

gr r

Page 16: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 16

Common Emitter (CE) Amplifier

Bias: Choose R1 & R2 to set VBVE is then set. Choose RE to set IE~IC. Quiescent point of Vout will be determined by RC. Emitter is an AC short.

Page 17: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 17

Incremental Model for CE Amplifier

1 2BR R R

Hybrid- model (ignoring rx)

iin B

i

vR R ri

B inSometimes R r and R r

r

E

ro

+

-

gmv

vout

RCvin

C

RB

Rsig

+v

-

RL

B

+

vi

-

ii io

Page 18: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 18

B o C Lo m sig

B sig

R r r R Rv g v

R r R

iv v o m o C Lv g v r R R

ov m o C L

i

vA g r R Rv

gain from base to collector

, sigB i

sig

v rand if R r v

r R

sig in sig B

iin sig B sig

v R v R rv

R R R r R

CE Amplifier

Page 19: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 19

Open-circuit voltage gain:

vo m o CA g r R In most cases o C vo m Cr R A g R

B

v m o C LB sig

R rG g r R R

R r R

o C Lv

sig

r R RG

r R

and for the case where BR r

CE Amplifier

Page 20: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 20

Output Impedance

out C oR R r

,o C out CIf r R R R

Lv vo

L o

Rfrom which A AR R

It can be seen that if Rsig >> r, the gain will be highly dependent on . This is not good because of variations

,sig v m C L oIf R r G g R R r

CE Amplifier

Page 21: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 21

1o m E m E

vv g v R v g Rr r

Emitter Follower (Common Collector)

1in B b o E m B

vv v R i v v v R g Rr r

Incremental modelcircuit

Page 22: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 22

Emitter follower has unity voltage gain

11

11 1

m Em Eo

in m E BBm E

g Rg r Rrv

v g r R r RRg Rr r

Emitter Follower

Using mg r

1

11

Eo

in E B

Rvv R r R

11 Bin E m

Rv v R gr r

Page 23: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 23

1in B Er r R R

Emitter Follower – Input Impedance

1 / 1//

B E minin

b

v R r R g rvri v r

Page 24: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 24

Emitter Follower – Output Impedance

oB

B

vir R

o o o m o oo m

E B E B B

v v v g r v vi g vR r R R r R r R

1 1 1( 1)m

o o o B EE B B E B

gi v v r R RR r R r R R r R

Page 25: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 25

Using mg r

/ ( 1)( 1) / ( 1)

E B E Boout

o B E E B

R r R R r Rv Ri r R R R r R

/ ( 1)out E BR R r R

' '( 1)( 1) 1

EMB out E

E

rRA and R Rr R

Output Impedance (cont’)

If we neglect RB

Page 26: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 26

Common Base Configuration

Page 27: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 27

,i o m C m i Cv v v g v R g v R

o Cm C

i e

v RVoltage gain g Rv r

11o m m

i im

i g v g vCurrent gaini i

g vr

out CR R 1inrr

Common Base Configuration

Page 28: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 28

m Cg R

CR

1r

/( 1)ER r

1Er R

1m Cg R

r

CR

CE CB EF

Avo

Rin

Rout

BJT Topologies - Summary

Page 29: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 29

Feedback – Basic Concept

Page 30: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 30

1. The closed-loop transfer function is a function of frequency

2. The manner in which the loop gain varies with frequency determines the stability or instability of the feedback amplifier

3. The frequency at which the phase of the transfer function is equal to 180o will be unstable if the magnitude is greater than unity

Feedback and Frequency Dependence

Page 31: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 31

1 ( )f

A sA s

A s s

Feedback and Stability

When loop gain A(j)(j) has 180o phase, we have positive feedback

1 ( )f

A jA j

A j j

Page 32: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 32

Nyquist Plot

- Radial distance is |A|- Angle is phase of - Intersects negative real axis at 180

Page 33: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 33

Stability and Pole Location ( ) 2 coso ot tj t j t

nv t e e e e t

Page 34: ECE 453 Wireless Communication Systems Amplifiers

ECE 453 – Jose Schutt‐Aine 34

Oscillator

• Closed‐Loop Transfer function:

• Barkhausen’s criteria for oscillation:––

• = oscillation‐frequency. 


Recommended