+ All Categories
Home > Documents > ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers...

ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers...

Date post: 13-Jan-2016
Category:
Upload: sharyl-black
View: 222 times
Download: 0 times
Share this document with a friend
Popular Tags:
37
ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected]
Transcript
Page 1: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 1

ECE 342Solid-State Devices & Circuits

18. Operational Amplifiers

Jose E. Schutt-AineElectrical & Computer Engineering

University of [email protected]

Page 2: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 2

Operational Amplifiers

General terminal configuration with bias

• Universal importance (e.g. amplification from microphone to loudspeakers)

Page 3: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 3

Common configuration with bias implied but not shown

Operational Amplifiers

2 1( )outv A v v

Gain=A

• Signaling1. Differential input stage2. Difference between input is amplified

Page 4: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 4

2. Zero output impedance

Operational Amplifiers

Also, op amps are dc (or direct coupled) amplifiers since they are expected to amplify signals with frequency as low as DC.

1. Infinite input impedance

• Ideal Op Amp

4. Infinite CMRR or zero common-mode gain

3. Infinite open-loop gain Ainf

5. Infinite bandwidth

Page 5: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 5

Differential & Common-Mode Signals

- Differential input signal vID=v2-v1

- Common-mode input signal vICm=0.5(v1+v2)

1 2ID

ICm

vv v

2 2ID

ICm

vv v

Page 6: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 6

Ideally, vICM should be zero to achieve high CMRR.

• Amplifier will amplify the difference between the two input signals

Operational Amplifiers

Page 7: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 7

Practical ConsiderationsThe output voltage swing of an op amp is limited by the DC power supply. Since op amp can exhibit high gain, power supply voltage fluctuations must be minimized use decoupling capacitors from power supply

Page 8: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 8

Inverting Configuration

We introduce RF (or R2) to reduce gain (from inf)

• When RF is connected to terminal 1, we talk about negative feedback. If RF is tied to terminal 2, we have positive feedback

Terminal 2 is tied to ground

Page 9: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 9

Inverting Configuration

Need to evaluate vo/vI

Assume ideal Op-Amp

2 1( ) 0ov v vA

Since gain is infinite:

v1 is virtual ground

1 2, 0Thus v v

11

1 1

I Iv v vi

R R

Note: A is open-loop gain

Page 10: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 10

Since input impedance of OP amp is infinite, current through RF is i1

11

Ivi iR

1

0I o o I

F F

v v v vi

R R R

1 1

o I Fo I

F

v v Rv v

R R R

Inverting Configuration

Page 11: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 11

1

o F

I

v RG

v R

Closed-Loop gain

Observe that the closed-loop gain is the ratio of external components we can make the closed-loop as accurate as we want. Gain is smaller but more accurate.

Inverting Configuration

Page 12: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 12

2 1 1 /o ov v A v v v A

We assumed that the OP-amp was ideal. If we assume that the gain A is finite = A

Inverting Configuration

11 1

( / ) /in o in ov v A v v Ai

R R

Page 13: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 13

1

/i o Fo oo F

v v A Rv vv iR

A A R

Still assume infinite input impedance

Inverting Configuration

1

1 1

/

1 / / 1o F F

I F F

v R R ARG

v R R A R A R

1 1F

F

ARG

R A R

Closed-loop gain

forinverting configuration

Page 14: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 14

11

1

/

/

oR

oo

v A RvR

vi v AG

The reflected impedance of RF is given by

Inverting Configuration

1

1R

RR

A

G

since 11 (1 )

F

A RA

G R

1F

R

RR

A

small

Page 15: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 15

Inverting Configuration

Since the reflected impedance is so small, v1 is thus very small and the inverting terminal is said to be a virtual ground in this configuration

1

, FRas A GR

We see that

, 0Ras A R Note: To minimize the closed-loop gain (G) on the value of the open-loop gain (A), make 1+RF/R1 << A

Page 16: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 16

11 1/I I

iI

v vR R

i v R

Input and Output Impedances

- If high gain is required, input impedance will be low- Output impedance is zero

Inverting Configuration

Page 17: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 17

Find closed-loop gain for A=103, A=104 and A=105 assuming R1=1 kW and RF=100 kW. Assuming vI=0.1 V, find v1.

Example

A |G| v1

Using formulas

Note: Since output of inverting configuration is at terminal of VCVS, output impedance of closed-loop amp is zero.

103 90.83 -9.08 mV104 99.00 -0.99 mV105 99.90 -0.1 mV

Page 18: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 18

Non-Inverting Configuration

0oID

vv

A Assume gain is

Page 19: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 19

1 20 IDv v v virtual short

Infinite input impedance

Non-Inverting Configuration

1 0i

1 10o

F a

v v vTherefore

R R

1 a Fo

a

v R Rv

R

Page 20: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 20

Virtual short

Non-Inverting Configuration

2 1Iv v v

a FI o

a

R Rv v

R

1o F

I a

v RG

v R

1 F

a

RG

R

Page 21: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 21

The Buffer Stage

0, 1 1FF

a

RIf R G

R

Although voltage gain is low, current gain can be quite high. Buffer stage can be used to interface between processors and switches.

Page 22: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 22

The Voltage Follower

- Unity gain amplifier- 100% negative feedback

inR

0outR

Page 23: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 23

No feedback with feedback descriptionA(f) Ani(f) GainAMBOa AMBni Midband gainf2oa f2ni 3 dB freq ptGBWoa GBWni Gain-BW prod

Frequency Response – Non-Inverting

1MBoa

MBniMBoa

AA

A F

a

a F

RF

R R

Page 24: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 24

Frequency Response – Non-Inverting

1,MBoaIf A F

11a F F

MBnia a

R R RA

F R R

( )1ni

AA f

AF

2

( )1 /

MBoa

oa

AA f

jf f

Page 25: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 25

Frequency Response – Non-Inverting

2

1( )

1 11

MBoani

MBoa

MBoa oa

AA f

fA F jA F f

1MBoa

MBniMBoa

AA

A F

2 2 1ni oa MBoaf f A F

Page 26: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 26

2

( )1 /

MBnini

ni

AA f

jf f

Frequency Response – Non-Inverting

2 2 11

MBoani MBni ni oa MBoa

MBoa

AGBW A f f A F

A F

2 2ni MBni ni MBoa oa oaGBW A f A f GBW

Gain-Bandwidth product is constant

Page 27: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 27

Midband voltage gain is reduced from AMBoa to AMBni

The upper 3-dB frequency will be greater than that of the op amp by the same factor of gain reduction.

If the low-frequency gain of the op amp is AMBoa= 200,000 and with resistors AMBni = 40, the gain is reduced by a factor of 5,000. If the basic 3-db frequency is 5 Hz, the noninverting 3dB frequency will be 25 kHz.

Frequency Response – Non-Inverting

Page 28: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 28

1(1 )F

iF

ARA

R A R

Frequency Response – Inverting OP Amp

2

Using1 /

MBoa

oa

AA

jf f

1 1 2(1 ) /MBoa F

iMBoa F F oa

A RA

R A R j R R f f

Page 29: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 29

1 1Using ( 1) MBoa MBoaR A R A

Frequency Response – Inverting OP Amp

1

2 1 1

1

11 /[ ]

Fi

oa MBoa F

RA

fR jf A R R R

and neglecting FR

Page 30: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 30

1

FMBi

RA

R

Frequency Response – Inverting OP Amp

2 2 1 11 /[ ]i oa MBoa Ff f A R R R

12 2

1 1

1 FMBi i oa MBoa

F

R RA f f A

R R R

Page 31: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 31

2 21

1 FMBi i oa MBoa

F

RA f f A

R R

Frequency Response – Inverting OP Amp

2 2MBi i oa MBoaA f f A

if RF >> R1

2

( )1 /

MBii

i

AA f

jf f

Page 32: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 32

Frequency Response – Inverting OP Amp

if RF >> R1 gain-bandwidth is constant

if RF ~ R1 ,

2 21

F

i MBi i MBoa oaF

RGBW A f A f

R R

1

F

i oaF

RGBW GBW

R R

Page 33: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 33

Frequency Response – Inverting OP Amp

12

1 1

1 oaFi oa

F MBi F

GBW RRf GBW

R R A R R

Page 34: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 34

10200

0.05MBoA

ExampleDesign an amplifier to couple a microphone to a resistive load. The microphone generates a peak output of 50 mV for a typical voice input level and has a 10-kW output impedance. The output voltage across the 2-kW load is to have a peak value of 10 V. the bandwidth of the voltage gain should be at least 40 kHz. If the GBW of the op amp used is 3106 Hz, calculate the bandwidth of the final design

6

2

3 1015

200ni oa

niMBni MBni

GBW GBWf kHz

A A

The midband voltage gain is:

For a single noninverting stage with this gain, the upper corner frequency is:

Page 35: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 35

1

21

1 10FR

R 2

22

1 20FR

R

This value of BW will not work need 2 stages

Example (cont’)

Pick first stage gain 10; second stage gain 20. We must then have:

and

Page 36: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 36

6

2 2

3 10150

20nif kHz

6

2 1

3 10300

10nif kHz

Choose R21 and R22 arbitrarily and use above equations to extract RF1 and RF2; we get:

RF1= 18 kW, RF2 = 38 kW

Next, find 3-dB bandwidth of each stage by dividing respective gains into GBWoa or GBWni

Example (cont’)

Page 37: ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.

ECE 342 – Jose Schutt-Aine 37

5 5

10 20( )

1 /3 10 1 /1.5 10oA jf jf

2 22 210 10

2 1 19 10 2.25 10

o of f

2 126of kHz

The overall gain is:

At 3dB point, magnitude squared of denominator must be 2

From which

Example (cont’)


Recommended