+ All Categories
Home > Documents > ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine...

ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine...

Date post: 25-Dec-2015
Category:
Upload: winifred-day
View: 227 times
Download: 6 times
Share this document with a friend
Popular Tags:
39
ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected] 1
Transcript
Page 1: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

ECE 342Electronic Circuits

2. MOS Transistors

Jose E. Schutt-AineElectrical & Computer Engineering

University of [email protected]

1

Page 2: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine 2

Typically L = 0.1 to 3 mm, W = 0.2 to 100 mm, and the thickness of the oxide layer (tox) is in the range of 2 to 50 nm.

NMOS Transistor

Page 3: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

• NMOS Transistor– N-Channel MOSFET– Built on p-type substrate– MOS devices are smaller than BJTs– MOS devices consume less power than BJTs

NMOS Transistor

3

Page 4: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

NMOS Transistor - Layout

Top View

Cross Section

4

Page 5: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

GS TV V

GS TV V

GS TV V

Resistive

Nonlinear

Saturation

MOS Regions of Operation

< ( )DS GS TV V V

DS GS TV V V

DSV small

Triode

Active

5

Page 6: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

• As VG increases from zero– Holes in the p substrate are repelled from the gate area

leaving negative ions behind– A depletion region is created– No current flows since no carriers are available

MOS Transistor Operation

• As VG increases– The width of the depletion region and the potential at the

oxide-silicon interface also increase– When the interface potential reaches a sufficiently

positive value, electrons flow in the “channel”. The transistor is turned on

• As VG rises further– The charge in the depletion region remains relatively

constant– The channel current continues to increase

6

Page 7: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

D ox GS T DS

WI C V V V

L

DS GS TV V V

Cox: gate oxide capacitancem: electron mobilityL: channel lengthW: channel widthVT: threshold voltage

MOS – Triode Region - 1

3.9 ox o

oxox ox

Ct t

7

Page 8: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

FET is like a linear resistor with 1

ds

n ox GS T

rW

C V VL

MOS – Triode Region

8

Page 9: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

21

2

D n ox GS T DS DS

WI C V V V V

L DS GS TV V V

GS TV V

– Charge distribution is nonuniform across channel– Less charge induced in proximity of drain

MOS – Triode Region - 2

9

Page 10: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

MOS – Active Region

Saturation occurs at pinch off when DS GS T DSPV V V V

2

2 D n ox GS T

WI C V V

L DS GS TV V V

GS TV V

(saturation)

10

Page 11: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine 11

NMOS – Drain Current

Page 12: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine 12

NMOS – Circuit Symbols

Page 13: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine 13

characteristics for a device with k’n (W/L) = 1.0 mA/V2.

NMOS – IV Characteristics

Page 14: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

• Characteristics of the threshold voltage – Depends on equilibrium potential– Controlled by inversion in channel– Adjusted by implantation of dopants into the channel– Can be positive or negative– Influenced by the body effect

MOS Threshold Voltage

The value of VG for which the channel is “inverted” is called the threshold voltage VT (or Vt ).

14

Page 15: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

nMOS Device Types

• Enhancement Mode – Normally off & requires positive potential on gate– Good at passing low voltages– Cannot pass full VDD (pinch off)

• Depletion Mode– Normally on (negative threshold voltage)– Channel is implanted with positive ions (VT )– Provides inverter with full output swings

15

Page 16: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine 16

Types of MOSFETS

Page 17: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

MOS – Active Region

• Saturation– Channel is pinched off– Increase in VDS has little effect on iD– Square-law behavior wrt (VGS-VT)– Acts like a current source

17

Page 18: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine 18

GD TV Vfor saturation region. Since VGD is zero, then the device is always in the saturation region.

Diode-Connected Transistor

When the drain and gate of a MOSFET are connected together the result is a two-terminal device known as a diode-connected transistor

Page 19: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine 19

2'1

2D n GS t

Wi i k V V

L

2't

Wi k V V

L

1

'

1 1

2 ' t n ov

ir

W WV k V V k VL L

t ovV V V

Diode-Connected Transistor

' '1If we replace by and use

2GS nV V k k

incrementalresistance

Page 20: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

An MOS process technology has Lmin= 0.4 mm, tox= 8 nm, m = 450 cm2/V.s, VT = 0.7V

(a)Find Cox and kn’= mnCox

(b) W/L = 8 mm/0.8mm. Calculate VGS, VDSmin for operation in saturation with ID= 100 mA

(c)Find VGS for the device in (b) to operate as a 1 kW resistor for small vDS

Example

20

Page 21: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

113 2 2

9

3.45 104.32 10 / 4.32 /

8 10

ox

oxox

C F m fF mt

' 2 2 2450 / . 4.32 / 194 / n n oxk C cm V s fF m A V

For operation in saturation region

2'1

2 D n GS T

Wi k V V

L

21 8100 194 0.7 0.7 0.32 1.02

2 0.8 GS GS GSV V V V V

min 0.32 DS GS TV V V V

Example - Solution

24.32 /oxC fF m

min 0.32DSV V

21

Page 22: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

'

1

DS

DSDS

D small vn GS T

vr

Wi k V VL

Triode region with vDS very small

6

1100

194 10 10 0.7 GSV

0.7 0.52 GSV V

1.22GSV V

Example – (con’t)

22

Page 23: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

• The body effect– VT varies with bias between source and body– Leads to modulation of VT

Potential on substrate affects threshold voltage

1/ 2 1/ 2( ) 2 2

T SB To F SB FV V V V

ln

aF

i

NkT

q n

1/ 22

a s

ox

qN

C

Fermi potential of material

Body bias coefficient

Body Effect

23

Page 24: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

With depletion layer widening, the channel length is in effect reduced from L to L-DL Channel-length modulation

This leads to the following I-V relationship

2'11

2D n GS T DS

Wi k v V v

L

Where l is a process technology parameter

Channel-Length Modulation

24

Page 25: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

Channel-Length Modulation

Channel-length modulation causes iD to increase with vDS in saturation region

25

Page 26: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

VGS(V) VDS(V) ID(mA) 2 1 80 2 8 91

Problem

( ) GS T DS GS Ta V V V V V Pinchoff

( ) 1GS T DS GS Tb V V V V V V Active region

A MOSFET has VT = 1 V with measured data:

Find l

26

Page 27: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine 27

2'11

2D n GS T DS

WI k V V V

L

2'1 1 1

11

2D n GS T DS

WI k V V V

L

2'2 2 2

11

2D n GS T DS

WI k V V V

L

Find iD at pinchoff VDSP = VGS-VT =1V

Problem (cont’)

Page 28: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine 28

1

2

1 911.1375

1 80DS

DS

VR

V

2 11 DS DSV R R V

2 1( ) 1DS DSV RV R

1

2 1

1 1.1375 10.0196

8 1DS DS

RV

V RV

Problem (cont’)

Page 29: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

0

100

200

300

400

500

600

700

0 0.5 1 1.5 2 2.5

NMOS

VGS=1.0VGS=1.5VGS=2.0VGS=2.5

IDS

Vds

NMOS IV Curves

29

Page 30: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine 30

NMOS IV Curves

Page 31: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine 31

The MOSFET in the circuit shown has Vt = 1V, kn’= 100mA/V2 and l = 0. Find the required values of W/L and of R so that when vI=VDD=+5 V, rDS=50 W and vo= 50 mV.

5 , 0.05I GS o DSv V V v V V

0.0550 0.001 1

50DS

DS DD

Vr I A mA

I

5 0.054.95

1DD o

D

V vR k

I

MOSFET Circuit at DC – Problem 1

Page 32: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine 32

triode regionDS GS tV V V

2

'

2DS

D n GS t DS

VWI k V V V

L

2

3 0.051 100 10 5 1 0.05

2

W

L

50W

L

MOSFET Circuit at DC – Problem 1 (cont’)

Page 33: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine 33

The NMOS transistors in the circuit shown have Vt = 1V, mnCox = 120mA/V2, l = 0 and L1=L2=1mm. Find the required values of gate width for each of Q1 and Q2 and the value of R, to obtain the voltage and current values indicated.

1 1.5GSV V

2

2

1120 1.5 1 2

2 1

WA W m

5 3.512.5

0.120R k

2'1Using

2D n GS t

WI k V V

L

MOSFET Circuit at DC – Problem 2

Page 34: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

0GTV 0, smallGT DSV V

0, largeGT DSV V

Gate Capacitance

• Capacitance– Depends on bias– Fringing fields are present– Account for overlap C

34

Page 35: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

Capacitance

• Gate Capacitance– CG determines the amount of charge to switch gate– Several distributed components– Large discontinuity as device turns on– At saturation capacitance is entirely between gate

and source2

2 11

3 2gs gso ox

XC C WLC

X

22 1

13 2gd gdo oxC C WLC

X

DS

GS T

VX

V VDefine

35

Page 36: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

MOS Capacitances

• Expect capacitance between every two of the four terminals.

36

Page 37: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

MOS Parasitics

- Capacitance from gate to other 3 terminals- Diodes to body- Series resistance- Wiring parasitics

37

Page 38: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine

PMOS Transistor

-700

-600

-500

-400

-300

-200

-100

0

-2.5 -2 -1.5 -1 -0.5 0

PMOS

VGS=-1.0VGS=-1.5VGS=-2.0VGS=-2.5

VG

S=

-1.0

Vds

- All polarities are reversed from nMOS- vGS, vDS and Vt are negative- Current iD enters source and leaves through drain - Hole mobility is lower low transconductance- nMOS favored over pMOS

38

Page 39: ECE 342 – Jose Schutt-Aine ECE 342 Electronic Circuits 2. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois.

ECE 342 – Jose Schutt-Aine 39

The PMOS transistor in the circuit shown has Vt = -0.7 V, mpCox = 60mA/V2, l = 0 and L=0.8mm. Find the values required for W and R, in order to establish a drain current of 115 mA and a voltage VD of 3.5 V.

PMOS Circuit

3.53.04

0.115R k

2310.115 60 10 1.5 ( 0.7)

2 0.8

WmA

4.8W m


Recommended