+ All Categories
Home > Documents > ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering...

ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering...

Date post: 18-Jan-2016
Category:
Upload: nora-fowler
View: 228 times
Download: 0 times
Share this document with a friend
128
ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected] ECE 546 Lecture - 20 Jitter
Transcript
Page 1: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 1

Spring 2014

Jose E. Schutt-AineElectrical & Computer Engineering

University of [email protected]

ECE 546 Lecture - 20

Jitter

Page 2: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 2

• Timing uncertainties in digital transmission systems

• Utmost importance because timing uncertainties cause bit errors

• There are different types of jitter

Jitter Definition

Jitter is difference in time of when somethingwas ideally to occur and when it actually did occur.

Page 3: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 3

• Jitter is a signal timing deviation referenced to a recovered clock from the recovered bit stream

• Measured in Unit Intervals and captured visually with eye diagrams

• Two types of jitter– Deterministic (non Gaussian)– Random

• The total jitter (TJ) is the sum of the random (RJ) and deterministic jitter(DJ)

Jitter Characteristics

Page 4: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 4

Types of Jitter• Deterministic Jitter (DDJ)

Data-Dependent Jitter (DDJ)Periodic Jitter (PJ)Bounded Uncorrelated Jitter

(BUJ)

• Random Jitter (RJ)Gaussian Jitterf-a Higher-Order Jitter

Page 5: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 5

Bandwidth LimitationsCause intersymbol interference

(ISI)ISI occurs if time required by signal

to completely charge is longer than bit interval

Amount of ISI is function of channel and data content of signal

Jitter Effects

Oscillator Phase NoisePresent in reference clocks or high-

speed clocksIn PLL based clocks, phase noise

can be amplified

Page 6: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 6

Jitter Statistics

Most common way to look at jitter is in statistical domain

Because one can observe jitter histograms directly on oscilloscopes

No instruments to measure jitter time waveform or frequency spectrum directly

Jitter Histograms and Probability Density Functions (PDF)Built directly from time waveforms Frequency information is lostPeak-to-peak value depends on observation

time

Page 7: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 7

Jitter Classification

Page 8: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 8

Gaussian Random Jitter• Random jitter can be described by a

Gaussian distribution with the following probability density function

2221

( )2

x

RJPDF x e

x

: independent value

: RMS value

: mean of distribution (zero by definition)

Note: the PDF of a Gaussian process is unbounded, i.e, its PDF is not zero unless the jitter Dt approaches infinity

Page 9: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 9

Gaussian Jitter PDF

Can be used to estimate the probability when the deviation of the random jitter variable Dt is within a multiple of its s value.

0.6826P t

2 0.9545P t

3 0.9973P t

Page 10: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 10

Cummulative Density Function

Cummulative density function (CDF) is defined as:

( ) ( )t

CDF t PDF x dx

CDF(t) tells us the probability that the transition occurred earlier than t. For random jitter, we get:

1 1( )

2 2 2RJ

xCDF x erf

erf is the error function

Page 11: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 11

PDF and CDF of Random Jitter

PDF CDF

Page 12: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 12

• Crosstalk– Noisy neighboring signals

• Interference• Reflections

– Imperfect terminations– Discontinuities (e.g. multidrop

buses, stubs)• Simultaneous switching noise (SSN)

– Noisy reference plane or power rail– Shift in threshold voltages

Causes of Deterministic Jitter

Page 13: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 13

Data-Dependent Jitter• Most commonly encountered DJ type• Dominant limiting factor for link

channels• Due to memory of lossy electrical or

optical system• Bit transition of current bit depends on

the transition times of the previous bits

Page 14: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 14

Data-Dependent Jitter• DDJ depends on the impulse response

of the system that generates the pattern

• DDJ depends on the input pattern• DDJ is a distribution with its sample

size equal to the number of transitions of the data patent

• Duty cycle distortion (DCD) occurs for clock patterns of repeating bits

Page 15: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 15

Data-Dependent Jitter

• Since channel does not have zero-rise time step response or infinite bandwidth, jitter is to be expected

• Settling time gives good indication of DDJ

Page 16: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 16

DDJ Estimation for RC Network

/( ) 1 toU t e

Assume an RC time constant of =RC. The step response for an RC circuit is given by:

The DDJ time displacement at the 50% voltage level is:

ln 1 50% 0.6931DDJt

2

1( )

1H

3

0.2757dBf

3

0.191DDJ

dB

tf

In the frequency domain the transfer function is:

The 3dB bandwidth is:

The DDJ displacement

is:

Page 17: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 17

Model for DDJ

1

( )N

DDJ DDJDDJ i i

i

f t P t D

DDJiP is the probability for the DDJ value of

DDJiD

The generic form for DDJ PDF is:

DDJiP

1

1N

DDJi

i

P

satisfies the condition

Page 18: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 18

Periodic Jitter

Periodic jitter is a repeating jitter signal at a certain period or frequency. It is described by:

cos ot A t o

: angular frequency: initial phase

From a signal perspective, it is the same as any periodic signal in terms of frequency and phase, but its amplitude is jitter in units of timing.

Page 19: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 19

Define the overall phase by:

ot

Phase has a uniform distribution if it is observed over a few periods. Its PDF is given by

10 2

2f for

The inverse function of t is:

1cos /t A

Periodic Jitter

Page 20: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 20

Using the rule for PDF of related variables, the PDF for PJ t is given by

1cos ( / )( )PJ

d t Ad tf t f f

dt dt

2

1,

1 /PJf t A t A

t A

Which can be approximated by

1

2PJf t t A t A

Periodic Jitter

After substitution and differentiation, we get

Page 21: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 21

Periodic Jitter

PDF for single sinusoidal

2

1,

1 /PJf t A t A

t A

Page 22: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 22

Periodic JitterThere are 3 common waveforms for the theoretical analysis of periodic jitter

1 1( )

2 2 2 2PJ rect

m mPDF x

Rectangle Periodic Jitter

1( ) 2

0PJ triang

mfor x

PDF x motherwise

Triangle Periodic Jitter

Page 23: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 23

Periodic Jitter

2

1

22

( ) / 2

0

PJ line

mfor x

PDF x m xm

otherwise

Sinusoidal Periodic Jitter

Page 24: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 24

Rectangular Periodic Jitter

PDFCDF

Page 25: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 25

Triangular Periodic Jitter

PDFCDF

Page 26: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 26

Sinusoidal Periodic Jitter

PDFCDF

Page 27: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 27

PDF of Two PJsA single PJ does not depend on its

initial phase if it is observed over many periods.

In the case of 2 PJs, the relative phase is important

When two PJs with the same magnitude, frequency and phase are added together, they form another PJ with twice the amplitude

When two PJs with the same magnitude, frequency and opposite phase are added together, their sum is zero.

The sum of two PJs can have totally different shapes depending on their phase relationships

Periodic Jitter

Page 28: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 28

Phase Noise & Phase Jitter• Phase noise in clock oscillators

Phase offset term that continually changes timing of signal

( ) ( )S t P t t signal waveformwith phase noise

undistortedsignal

phase noise

Example:

9( ) sin 10 10 2P t t

91( ) sin 2 10 2

4t t

9 9( ) sin 10 10 2 0.25sin(2 10 2 )S t t t

Page 29: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 29

Phase Noise

clean signal

noisy signal

2 GHz phase noise

Page 30: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 30

• Phase jitter in digital systemsVariability in timing of transition in

digital systems is called phase jitterPhase jitter is digital equivalent of

phase noiseAlways defined relative to the ideal

position of the transitions

Phase Jitter

n n nt T For a jittered digital signal

nt

nT

is the actual time of the nth transition

nis the ideal timing value of the nth transition

is the time offset of the transition phase jitter term

Example: 10 Gbits/s Tn has bit intervals of 100 ps. Transitions take place at 0, 100, 200 ps

Page 31: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 31

Phase Jitter

clean signal

noisy signal

Page 32: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 32

• Phase jitter causes bit periods to contract and expand

• Actual bit periods are given by the time difference between 2 consecutive transitions

1 1 1n n n n n n nP t t T T

Ideal bit period:

1n n nTB T T

Period jitter:

n n nPerJ TB P

1 1 1 1n n n n n n n n nPerJ T T T T

Cycle-to-Cycle Jitter

Page 33: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 33

Cycle-to-cycle jitter:

1n n nCCJit P P

1n n nCCJit PerJ PerJ

Cycle-to-Cycle Jitter

Page 34: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 34

Bounded Uncorrelated Jitter

2

22

2

0

BUJ

t

BUJBUJ

PJ BUJ

BUJ

pe for t A

f t

for t A

BUJ is primarily due to crosstalk

The PDF for BUJ is given by

Page 35: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 35

Mix of Random and Periodic Jitters

*2 2rect

m mRJ PJ RJ t d

Obtain convolution of 2 PDFs

2 2

2 2

/2 /2

2 21

2 2

t m t m

e e

Gaussian RJ and Rectangle PJ

Result is the sum of 2 Gaussian distributions with equal RMS value offset by the PJ peak-to-peak value . It is called the DUAL DIRAC DISTRIBUTION

Page 36: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 36

• ProblemIn tests, we have measured jitter

histograms and need to extract the individual jitter components

Ideally, we could use deconvolution into components. However without prior knowledge of deterministic jitter, it is not possible

Use dual Dirac distribution model which would yield the worst case deterministic jitter

Jitter Mixing

Page 37: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 37

Total Jitter Time Waveform

The total jitter waveform is the sum of individual components

TJ(t) = PJ(t) + RJ(t)

Page 38: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 38

Jitter Statistics

TJ(x) = PJ(x) * RJ(x)

The total jitter PDF is the convolution of individual components

Page 39: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 39

• Transfer of Level Noise into the Time DomainNoise on digital data signals causes

jitter because it offsets the threshold crossing point in time

• Bandwidth LimitationsPrimarily caused by intersymbol

interference

• Oscillator Phase NoisePhase noise present in reference clocks

especially in systems based on PLL

Jitter Mechanisms

Page 40: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 40

Jitter MechanismsTransfer of noise into time

domainBandwidth limitation in

channelsOscillator phase noiseNoise

pk pk tH L

VNJ t

V V

NoiseVtt

HV

LV

rise time

pk-pk noise amplitude

Hi signal level

Lo signal level

Jitter Mechanisms

Page 41: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 41

Jitter Mechanisms

Transfer of voltage noise into time domain – Linear model

Random noise caused by thermal effects

Page 42: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 42

Jitter Mechanisms

Transfer of voltage noise into time domain – First order model

Periodic noise: switching power, crosstalk, etc…

Page 43: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 43

Jitter Mechanisms

Multiple threshold crossing of a signal with high-frequency level noise

Page 44: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 44

Bandwidth Limitations

0001111 data pattern

Page 45: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 45

0101111 data pattern

Bandwidth Limitations

Page 46: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 46

Q-Scale Transformation

1 1( )

2 2 2

xCDF x erf

Use CDF

Q-scale is defined such that the Gaussian distribution mapped onto the Q-scale is a straight line

1( ) 2 2 ( ) 1x

Q x erf CDF x

A Gaussian CDF is a straight line in the Q scale with slope 1/ . s DJ is given by distance d

Page 47: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 47

Q-Scale Transformation

PDFCDF

Gaussian RJ

= 0.5

Page 48: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 48

Q-Scale Transformation

PDFCDF

Gaussian RJ

= 0.25

Page 49: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 49

Q-Scale - Generalization

PDFCDF

1( ) 2 2 ( ) 1x

Q x erf CDF x

Mixed Gaussian RJ and PJ

= 0.1

Page 50: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 50

PDFCDF

Q-Scale - Generalization 1( ) 2 2 ( ) 1

xQ x erf CDF x

Mixed Gaussian RJ and PJ

= 0.25

Page 51: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 51

Dual Dirac Model

Mixed Gaussian RJ and Triangular PJ

Page 52: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 52

Jitter Classification

Page 53: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 53

Measuring Jitter

Page 54: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 54

Eye Diagrams• Eye diagrams are a time domain display of digital data

triggered on a particular cycle of the clock. Each period is repeated and superimposed. Each possible bit sequence should be generated so that a complete eye diagram can be made

Page 55: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 55

Eye Diagram

Page 56: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 56

High-Speed Oscilloscope

8-bit flash ADCs provide 256 discrete levels along vertical axis

Page 57: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 57

Interleaving Architecture

Page 58: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 58

High-Speed Scope Digitizers

• SiGe-Based Technologies Fastest ADCs run at 3.125 Gsamples/s Typically 8-16 digitizers

• CMOS Designs ADCs sample at lower rate 80 digitizers or more

Page 59: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 59

Timing Diagram

Page 60: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 60

Once waveform samples have been reassembled into a representation of the waveform, they are stored to digital memory

The maximum number of samples is the record length

Record length are typically in excess of 100 million samples

Sampling Procedure

Page 61: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 61

Frequency Interleaving

Page 62: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 62

A signal of bandwidth B that has been sampled at regular intervals T can be exactly recovered if the sampling rate satisfies

12*NF B

T

NF

T

B

: Nyquist rate

: sampling interval

: bandwidth

Nyquist Criterion

Page 63: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 63

High-Speed Oscilloscopes

• Oscilloscopes use DSP techniques to: Extend their analog bandwidth Flatten their amplitude

• Practice has benefits

• However, limitations should be understood

Page 64: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 64

Scope Channel Equalization

Page 65: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 65

Edge Triggering

TOFF is recorded with high resolution but is subject to noise

Page 66: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 66

Trigger jitter is the amount of effective timing instability between the trigger path and the signal capture path

Trigger Jitter

In eye diagram construction, multiple waveform acquisitions are overlayed. Trigger jitter is then an externally introduced noise that cannot be distinguished from the true jitter

Typical value: ~ 1 ps RMS

Page 67: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 67

Trigger Jitter

Page 68: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 68

Much of the timing instability in an oscilloscope is a combination of phase noise in the instrument’s time base and aperture jitter in the track-and-hold circuits

Sample Jitter

They exhibit a Gaussian probability distribution

Interleaving errors from the digitizers are another large source of errors. They are deterministic and are manifested as deterministic jitter can be calibrated out

Page 69: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 69

Oscillator Phase Noise

Page 70: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 70

• Gaussian Errors Phase noise Aperture jitter in track-and-hold circuits

• Deterministic Errors Interleaving mismatches Can be calibrated out

Sample Jitter

Page 71: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 71

An eye diagram is a time-folded representation of a signal that carries digital information

Eye Diagram

Eye is horizontally centered on the ideal sampling instant

Page 72: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 72

• Unit interval (UI) of a bit sequence is typically independent of the waveform sampling interval of the measurement instrument. Waveform sampling interval must be no more than

one half the unit interval to avoid aliasing Rule of thumb for eye diagrams is to sample 5 to 10

times the bit rate For 2.5 Gb/s, the sampling rate should be 20

GSamples/s

Eye Diagram

Large eye openings ensure that the receiving device can reliably decide between high and low logic states even when the decision threshold fluctuates or the decision time instant varies.

Page 73: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 73

Eye Diagram Construction

Eye diagram construction in real-time oscilloscope is based on hardware clock recovery and trigger circuitry

Page 74: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 74

Eye Diagram Construction

Page 75: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 75

1. Capture of the Waveform Record

2. Determine the Edge Times

Eye Diagram Construction

Page 76: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 76

Eye Diagram Construction

3. Determine the Bit Labels

Page 77: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 77

4. Clock Recovery

Eye Diagram Construction

Page 78: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 78

Eye Diagram Construction

5. Slice Overlay

6. Display

Page 79: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 79

Eye Diagram Measurements

Page 80: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 80

Eye Diagram Measurements

Page 81: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 81

Reference Levels

Page 82: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 82

Eye HeightEye Height is the measuremnt of the eye height in volts

3 3PTop PTop PBase PBaseEye Height

PTop

PBasePBasePTop

: mean value of eye top

: standard deviation of eye top

: mean value of eye base

: standard deviation of eye base

Page 83: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 83

Eye WidthEye Width is the measuremnt of the eye width in seconds

2 2 1 13 3TCross TCross TCross TCrossEyeWidth

1Crossing Percent 100%PCross PBase

PTop PBase

Crossing percent measurement is the eye crossing point expressed as a percentage of the eye height

Page 84: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 84

Jitter MeasurementsJitter peak-to-peak is the peak-to-peak value for the edge jitter in the current horizontal units

Jitter pp max 1 min 1TCross TCross

Jitter root mean square is the RMS value of the edge jitter in the current horizontal units

1Jitter RMS TCross

Jitter 6s represents the same measurement reporting the 6TCross1 value

Page 85: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 85

Noise MeasurementsNoise peak-to-peak is the peak-to-peak value of the noise at the top or base of the signal as specified by the user

max min ,Noise pp

max min

PTop PTop or

PBase PBase

Noise root mean square is the RMS value of the noise at the top or base of the signal

Noise RMS orPTop

PBase

Page 86: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 86

Noise MeasurementsSignal-to-noise ratio is the ratio of the signal amplitude to the noise at either the top or the base of the signal

S/N RatioPTop PBase

PTop PBase

Duty cycle distortion is the peak-to-peak time variation of the first eye crossing measured at the mid-voltage reference as a percent of the eye period

p-p

2 1

TDCDDCD 100%

TCross TCross

Page 87: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 87

Eye Quality Factor

Quality factor is the ratio of the eye size to noise

Quality Factor

PTop PBase

PTop PBase

Page 88: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 88

Eye Diagram Specifications

PCI Express 2.0 eye diagram specification for full and deemphasized signals

Page 89: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 89

Margin Testing

Eye diagram with low margin

Page 90: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 90

Pseudorandomsequencegenerator

Transmitter Receiver

Scope

Trig Vert

Clk

Data

Fiber

Eye Pattern Analysis

Page 91: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 91

Typical Eye Diagrams

Eye Diagram

Page 92: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 92

BERT Scan

The sample delay BERT scan curve is a direct measurement of the jitter cummulative density function (CDF).

Page 93: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 93

( ) (1 ( 0.5))leftBER t TD CDF t

( ) ( ( 0.5))rightBER t TD CDF t

( ) ( ) ( )left rightBER t BER t BER t

( ) (1 ( ( 0.5) ( ( 0.5))BER t TD CDF t CDF t

BERT Scan

Page 94: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 94

Bathtub Curve

Linear Scale Logarithmic Scale

Page 95: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 95

• ProblemIn tests, we have measured jitter

histograms and need to extract the individual jitter components

Ideally, we could use deconvolution into components. However without prior knowledge of deterministic jitter, it is not possible

Use dual Dirac distribution model which would yield the worst case deterministic jitter

Jitter Mixing

Page 96: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 96

Random Jitter Extraction• Spectrum Analysis

Extract random jitter by using the assumption that it has a piecewise linear spectrum

Impulses are attributed to DJ

Noise floor is due to RJ

Page 97: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 97

Extracting Random Jitter

Total jitter

Random jitter

Time domain

Statistical domain

Spectral domain

Page 98: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 98

Jitter Spectrum

A longer FFT yields a spectrum with greater frequency resolution and lower noise floor.

Time record: 10N Time record: N

Page 99: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 99

Random Jitter Extraction• Tail-Fit

Extract random jitter under the assumption that its probability density function follows a Gaussian distribution

Make use of the Dual-Dirac Model

Page 100: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 100

Dual Dirac Model

• Equal Amplitudes Two unknown variables Linear Problem Explicit solution

- gap between 2 impulses- for Gaussian distribution

Unknowns

Page 101: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 101

Dual Dirac Model

• Unequal Amplitudes Three unknown variables Nonlinear Problem No explicit solution

- gap between 2 impulses- for Gaussian distribution- ratio of 2 impulse amplitudes

Unknowns

Page 102: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 102

Dual Dirac Model

*2 2rect

m mRJ PJ RJ t d

Obtain convolution of 2 PDFs

2 2

2 2

/2 /2

2 21

2 2

t m t m

e e

Assume Gaussian RJ and Rectangle PJ

Result is the sum of 2 Gaussian distributions with equal RMS value offset by the PJ peak-to-peak value . It is called the DUAL DIRAC DISTRIBUTION

Page 103: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 103

DDJ and DC D• DDJ and DCD are correlated to the data

pattern

For N bits, transmitted at rate FR, the jitter components due to DDJ and DCD will appear in the spectrum at multiple of FR/N

FR=1.0625 Gbits/s

N=40 bits

Page 104: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 104

Pattern Correlation

Page 105: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 105

Pattern Correlation

The phase errors from all occurences of each M-bit patterns are averaged together to estimate the phase error due to that M-bit pattern

Page 106: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 106

Extracting DDJ

Spectral domain Eye

DDJ Dominant

RJ Dominant

DDJ & RJ

Page 107: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 107

Periodic Jitter

PJ PJ subcomponent

Time domain

Statistical domain

Spectral domain

Page 108: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 108

Clock jitter is the single most important degrader of clock performance

Clock JitterIn a computer system, the clock is used to provide timing or synchronization for the system.

In a communication system, the clock is used to specify when a data switch or bit transaction should be transmitted and received

In a synchronized system, a central global clock is distributed to its subsystem

Page 109: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 109

Definition• Most of the definitions of data jitter

(DJ, Rj,…) apply to clock jitter

• ISI does not apply to clock jitter

Page 110: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 110

Clock jitter analysis is subject to fewer sampling constraints compared to data signal jitter; therefore, more direct and versatile methods are possible for clock jitter analysis.

Clock Jitter

Page 111: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 111

Synchronized System

- Initial clock pulse causes A to latch data from input and launch it into channel- Second clock causes B to latch the incoming data

Page 112: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 112

Timing Parameters

Page 113: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 113

The minimum conditions are that both setup time and hold time margin should be larger than 0

0 _ _ _c jitt c skew d pd suT T T T T

_ _ _hd d pd c skew c jittT T T T

Timing Conditions

These give a quantitative description of how clock jitter and clock skew affect the performance of the synchronized system in which a common or global clock for both driver and receiver is used

Page 114: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 114

Skew Impact

• Tc_jitter=0, Tc_skew>0The minimum clock period

increases. The maximum hold time increases hold time condition easier to meet

• Tc_jitter=0, Tc_skew<0The minimum clock period

decreases. The maximum hold time decreases hold time condition harder to meet (race condition)

Page 115: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 115

Jitter Impact

• Tc_skew=0, Tc_jitter>0 (longer cycle)The minimum clock period

increases. The maximum hold time decreases hold time condition harder to meet

• Tc_skew=0, Tc_jitter<0 (shorter cycle)The minimum clock period

decreases. The maximum hold time increases hold time condition easier to meet

Page 116: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 116

1. Positive jitter over one clock period makes both clock period and hold time hard to meet

2. A longer cycle does more harm to system performance

3. When both skew and jitter are present, system performance can be any of the four scenarios just discussed

System Performance

Page 117: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 117

Asynchronized System

The skew of a synchronized system becomes hard to manage when the data rate increases(~1 Gb/s). At multiple Gb/s data rates, an asynchronized system is commonly used.

Page 118: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 118

• Synchronized SystemGlobal clock is used to update and

determine bits

• Asynchronized SystemOnly data is sentClock is embedded in dataClock recovery unit (CRU) recovers

clock at receiver

Clock Types

Page 119: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 119

Asysnchronized Link

_ _ _clk tot clk tx clk rxDJ DJ DJ

_ _ _

2 2 2

clk tot clk tx clk rx

Low-frequency jitter from the transmitter clock can be tracked or attenuated by the clock recovery function if it has a high enough corner frequency. A low phase noise oscillator within a PLL clock recovery also provides smaller random jitter generations.

Page 120: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 120

Phase Jitter

n n nt t T

nt : timing for nth edge for jittery clock

nT : timing for nth edge for ideal clock

oT : ideal clock period

n oT nT

Page 121: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 121

Phase Jitter

Phase jitter captures the instance timing deviation from the ideal for each transition. Jitter measured with phase jitter is absolute and accumulates over time.

2nn

o

t

T

In frequency domain

Page 122: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 122

Period JitterPeriod jitter is defined as the period deviation from the ideal period.

1pn n n ot t t T

1pn n nt t t

using previous relations

in terms of phase units

'1n n n

Period jitter and phase jitter are not independent we can derive one from the other.

Page 123: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 123

Phase, Period and CTC Jitter

Page 124: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 124

Phase Jitter in Time Domain

If the phase varies, the waveform V(t) shifts back and forth along the time axis and this creates phase jitter

Page 125: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 125

Phase Jitter in Spectral Domain

Phase noise appears as sidebands centered around the carrier frequency

Page 126: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 126

Phase Jitter

( )( ) n

o

P fL f

P f

: phase noise power (in watts) ( )nP f

: carrier’s power (in watts) oP

: phase noise bandwidth (in hertz) f

1( ) ( )

2L f S f

Phase noise magnitude is specified relative to the carrier’s power on a per-hertz basis

: PSD of phase noise( )S f

10

( )( ) 10log

2

S fL f

or

Page 127: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 127

Phase Noise to Phase Jitter

From the phase noise PSD, random jitter and deterministic jitter can be identified

Need: convert phase noise measured in the frequency domain to phase jitter for PLLs, clocks and oscillators

Page 128: ECE 546 – Jose Schutt-Aine 1 Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Lecture.

ECE 546 – Jose Schutt-Aine 128

Probe Further

• Course web site http://emlab.uiuc.edu/ece546/appnotes

• May 09 issue of IEEE Transactions on Advanced Packaging

• D. Derickson and M. Muller, “Digital Communications Test and Measurement”, Prentice Hall, 2007.

• Mike Peng Li, “Jitter, Noise and Signal Integrity at High-Speed”, Prentice Hall, 2008.


Recommended