+ All Categories
Home > Documents > ECE 546 Lecture 12 Integrated Circuitsemlab.illinois.edu/ece546/Lect_12.pdfLecture 12 Integrated...

ECE 546 Lecture 12 Integrated Circuitsemlab.illinois.edu/ece546/Lect_12.pdfLecture 12 Integrated...

Date post: 08-Jul-2020
Category:
Upload: others
View: 2 times
Download: 2 times
Share this document with a friend
39
ECE 546 – Jose SchuttAine 1 ECE 546 Lecture 12 Integrated Circuits Spring 2020 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected]
Transcript

ECE 546 – Jose Schutt‐Aine 1

ECE 546Lecture 12

Integrated CircuitsSpring 2020

Jose E. Schutt-AineElectrical & Computer Engineering

University of [email protected]

ECE 546 – Jose Schutt‐Aine 2

Integrated Circuits

• IC Requirements– Biasing of ICs is based on the use of constant

current sources– Use current mirrors– Source circuits are used as loads

ECE 546 – Jose Schutt‐Aine 3

• Analog Design Requirements– Analog ICs may need resistors and capacitors for

the design of amplifiers– Resistors and capacitors occupy the space of

tens or hundreds of MOS devices– It is important to minimize their use

Integrated Circuits

ECE 546 – Jose Schutt‐Aine 4

Transistor Biasing

ECE 546 – Jose Schutt‐Aine 5

Transistor Biasing

ECE 546 – Jose Schutt‐Aine 6

Current Mirrors

A current mirror will reproduce a reference current to the output while allowing the output voltage to assume any value within a specified range. Io=KIin where K is a factor that can be less than or equal or greater than 1

ECE 546 – Jose Schutt‐Aine 7

MOS Current Mirror

2'1

1

12D n GS Tn

WI k V VL

1DD GS

D REFV VI I

R

2'2

2

12o D n GS Tn

WI I k V VL

R is usually external to IC

ECE 546 – Jose Schutt‐Aine 8

MOS Current Mirror

2 12

1 21

//

o

REF

W LI W LI W L W L

Assuming that the transistors are using the same process

• Can be limited by– Channel length modulation ()– Threshold voltage mismatch– Imperfect geometrical matching

ECE 546 – Jose Schutt‐Aine 9

MOS Current Mirror

2 22 1

1 2 1 1

11

DS DSPo

REF DS DSP

V VI W LI W L V V

• Some Properties1. MOS current mirrors draw zero control

currentbetter than BJT’s2. Matching of threshold voltages harder than

in BJT’s

ECE 546 – Jose Schutt‐Aine 10

ExampleA matched pair of MOSFETs are used in a current mirror witl = 0.032 V-1, Cox=70 A/V2, W/2L =10, and VT = 0.9 V. Find the value of R to create an input current of 100 A. Calculate the output current when Vo = 3 V.

21 11

2ox

D GS T DSC WI V V V

L

Use drain current equation in active region to calculate

21 100 700 0.9 1 0.032*D GS GSI V V

We can now solve for the value of VGS

ECE 546 – Jose Schutt‐Aine 11

ExampleMOS Current Mirror

ECE 546 – Jose Schutt‐Aine 12

Example

1

1

5 5 1.272 37.20.1

DS

D

VR kI

The resistance needed is:

The output current is calculated from:

22 700 1.272 0.9 1 0.032 3 106DI A

VGS = 1.272 V

2 106DI A

22 11

2ox

D GS T DSC WI V V V

L

ECE 546 – Jose Schutt‐Aine 13

Ideal MOS Common Source CKT

, ,i vo m ds o dsR A g r R r

m dsIntrinsic gain is g r

ECE 546 – Jose Schutt‐Aine 14

PMOS Implementation of Active Load

1 1 1ds oLet r r for Q

2 2 2ds or r for Q

1 2, ||out o othen R r r

1MB m outA g R

1 11

1o ds

o

Let g gr

2 22

1o ds

o

g gr

ECE 546 – Jose Schutt‐Aine 15

PMOS Implementation of Active Load

01 022

1 2 1 22odb db gd gd

g gf

C C C C

Can show that the 3dB point is given:

Large incremental load leads to high gain while maintaining acceptable DC current (resistor would not work)

ECE 546 – Jose Schutt‐Aine 16

Background• Differential Amplifiers

– The input stage of every op amp is a differential amplifier

– Immunity to temperature effects– Ability to amplify dc signals– Well-suited for IC fabrication because

– (a) they depend on matching of elements– (b) they use more components

– Less sensitive to noise and interference– Enable to bias amplifier and connect to other

stage without the use of coupling capacitors

ECE 546 – Jose Schutt‐Aine 17

Differential Amplifiers

• Practical Considerations– Both inputs to a differential amplifier may have

different voltages applied to them– In the ideal situation with perfectly symmetric

stages, the common-mode input would lead to zero output

– Temperature drifts in each stage are often common-mode signals

– Power supply noise is a common-mode signal and has little effect on the output signal

MOS Differential Pair

Assume current source is ideal

Transistors should not enter triode region

Common-Mode Operation

Input voltage vcm to both gates

Difference in voltage between the two drains is zero

Differential Input Voltage

Differential pair responds to differntial input signals by providing corresponding differential output signal between the two drains.

ECE 546 – Jose Schutt‐Aine 21

MOS Differential Pair

Assume current source is idealvID=vgs1-vgs2Output is collected as vD2-vD1

ECE 546 – Jose Schutt‐Aine 22

- If vID is positive, vD2-vD1 is positive

vID>0 vgs1>vgs2 ID1 > ID2vD1 lower voltage point than vD2

MOS Differential Pair

For proper operation, MOSFETS should not enter triode region

ECE 546 – Jose Schutt‐Aine 23

DC Analysis

1 2D

D DDIRV V 2 2

DD DD

IRV V

2

2ox

D GS TC WI V V

L

2DII

GS Tox

LIV VC W

SQ Tox

LIV VC W

ECE 546 – Jose Schutt‐Aine 24

Incremental Analysis

'1 2

ino m D

vv g R Neglecting the body effect

'2 2

ino m D

vv g R

' ||D D outR R r '2 1o oD m D

in

v vA g Rv

112

g cm idv v v 212

g cm idv v v

ECE 546 – Jose Schutt‐Aine 25

'

12high

out D

fC R

Frequency Response

When driven by a low-impedance signal source, the upper corner frequency is determined by the output circuit

ECE 546 – Jose Schutt‐Aine 26

1 2

1 2o o D

icm icmSS

m

v v Rv v R

g

Assume RSS >> 1/gm

Common-Mode Rejection Ratio

ECE 546 – Jose Schutt‐Aine 27

1 2

2o o D

icm icm SS

v v Rv v R

1,2 2

Dcm d m D

SS

RA A g RR

(a) For single-ended output:

dm SS

cm

ACMRR g RA

Common-Mode Rejection Ratio

ECE 546 – Jose Schutt‐Aine 28

Common-Mode Rejection Ratio

(b) For differential output:

2 1 0o ocm

icm

v vAv

2 1o od m D

id

v vA g Rv

CMRR

ECE 546 – Jose Schutt‐Aine 29

Differential Amplifiers - Observations

• Observations– The differential pair attenuates the input signal of

each stage by a factor of one-half cutting the gain of each stage by one-half

– The double-ended output causes the two single-ended gains to be additive

– Thus, the voltage gain of a perfectly matched differential stage is equal to that of a single stage

ECE 546 – Jose Schutt‐Aine 30

Replacing drain resistances with current sources, results in much higher voltage gain and savings in chip area in diff amp

MOS Differential Amp with Active Load

MOS Differential Amp - Equilibrium

ECE 546 – Jose Schutt‐Aine 32

Current mirror action makes it possible to convert the signal to single-ended form without loss of gain.

MOS Differential Amp with Active Load

2 4||od m o o

id

vA g r rv

2 4o o oIf r r r

12d m oA g r

The differential gain is:

ECE 546 – Jose Schutt‐Aine 33

The active-loaded MOS differential amplifier has a low common-mode gain high CMRR

MOS Differential Amp with Active Load

4

3 3

12 1

o ocm

icm SS m o

v rAv R g r

3 3 3 4, 1m o o oUsually g r and r r

The common-mode gain is:

3

12cm

m SS

Ag R

RSS is internal impedanceof current source

ECE 546 – Jose Schutt‐Aine 34

MOS Differential Amp with Active Load

2 4 3|| 2dm o o m SS

cm

ACMRR g r r g R

A

Since RSS is large, Acm will be small

2 4 3o o o m mIf r r r and g g

m o m SSCMRR g r g R

ECE 546 – Jose Schutt‐Aine 35

In the differential amplifier shown, Q1 and Q2 form the differential pair while the current source transistors Q4 and Q5 form the active loads for Q1 and Q2 respectively. The dc bias circuit that establishes an appropriate dc voltage at the drains of Q1 and Q2 is not shown. The following specifications are desired: differential gain Ad = 80V/V, IREF = 100 A, the dc voltage at the gates of Q6 and Q3 is +1.5V; the dc voltage at the gates of Q7, Q4 and Q5 is –1.5V.

CMOS OP Amp Example

The technology available is specified as follows: nCox=3pCox = 90A/V2; Vtn=|Vtp|=0.7V, VAn=|VAp| = 20V. Specify the required value of R and the W/L ratios for all transistors. Also, specify IDand VGS at which each transistor is operating. For dc bias calculations, you may neglect channel-length modulation. Fill in the entries in the table provided to show your results.

ECE 546 – Jose Schutt‐Aine 36

CMOS OP Amp Example

ECE 546 – Jose Schutt‐Aine 37

1.5 ( 1.5) 3100 300.1REF

VI A R kR mA

Drain currents are determined by symmetry and inspectionVGS values are also determined by inspection for all transistors except Q1 and Q2. To determine VGS for Q1 and Q2, we do the following: the equivalent load resistance will consist of ro1 in parallel with ro4 for Q1 and ro2 in parallel with ro5 for Q5. Since the ro’s are equal, this corresponds to ro/2. We have:

2 2 80 0.4 /2 400o d

m d mo

r Ag A g mA Vr k

CMOS OP Amp Example

ECE 546 – Jose Schutt‐Aine 38

Take polarity into account for PMOS

1,2 0.25 0.95GS TV V

To find W/L ratios, use

22

2( )2 ( )

DD ox GS T

ox GS T

IW WI C V VL L C V V

taking into account PMOS and NMOS devices separately

2 2 2 0.05 0.250.4

D Dm ov

ov m

I Ig VV g

CMOS OP Amp Example

ECE 546 – Jose Schutt‐Aine 39

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Units

Cox 30 30 30 90 90 30 90 A/V2

ID 50 50 100 50 50 100 100 A

VGS -.95 -.95 -1 +1 +1 -1 +1 V

W/L 57.3 57.3 74 1. 12.3 12.3 73.1 24.7

CMOS OP-AMP DESIGN TABLE


Recommended