+ All Categories
Home > Documents > ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019....

ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019....

Date post: 15-Jul-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
73
ECE 453 – Jose SchuttAine 1 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected] ECE 453 Wireless Communication Systems Phase Locked Loops
Transcript
Page 1: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 1

Jose E. Schutt-AineElectrical & Computer Engineering

University of [email protected]

ECE 453Wireless Communication Systems

Phase Locked Loops

Page 2: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 2

Loop oscillator frequency can be same or multiple of reference frequencyIf reference signal comes from a crystal oscillator, other frequencies can be derived with same stability as crystal frequencyLoop oscillator frequency will track that of inputPrinciple used in FM and FSCK demodulators tracking filters and instrumentation

Phase Locked Loop (PLL)A PLL is a voltage-controlled oscillator which has its frequency controlled by an external source

Page 3: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 3

Voltage controlled oscillator (VCO)Phase detector (PD or PFD)Loop filterFeedback divider (=1 for the simplest case)

Phase Locked Loop (PLL)A PLL synchronizes the output phase and frequency of a controlled oscillator with the phase and frequency of a reference oscillator

Functional Blocks

The task of the PLL is to maintain coherence between the reference signal frequency and the output frequency via phase comparison

Page 4: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 4

Components of PLL

‐ Loop is in lock when frequencies of input and VCO are identical (fs = fo)

‐ If input frequency changes, phase difference emust change enough to produce control voltage Vd that produce equality in frequency

Page 5: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 5

90e d

Phase Detector ‐ Sinusoidal

Page 6: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 6

ed

e

VK

Kd = gain factor of the phase detector

for a sinusoidal detector

sine eV A

e eV A

for e small, e e

de e

V VK A

Phase Detector ‐ Sinusoidal

Page 7: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 7

Phase Detector ‐ Triangular

2d

AK

Page 8: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 8

Phase Detector ‐ Sawtooth

dAK

Page 9: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 9

Voltage‐Controlled Oscillator

( / )o f o dK V rad s

Output frequency is expressed by:

Total angle of VCO can be described by:

0

t

f f ot dt t t

is deviation from f

0

t

o t dt

Page 10: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 10

DC Loop Gain

Kv = change in the oscillator frequency due to change in phase difference e.

o e dv d a o

e e e d

V VK K K KV V

Kd = Phase detector gain factorKa = Amplifier gainKo = VCO gain factor

Page 11: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 11

Phase Detector Mathematics

The phase detector is a mixer with

1 1 1cos RFv t V t

2 2 2cos LOv t V t

2 11 2

2 1

cos2 cos

LO RFp

LO RF

t tVVv tt t

After mixing

Page 12: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 12

Phase Detector MathematicsDefine

beat LO RF

1 2

2pbVVV

cosp pb beat ev t V t We get

2 1e Phase‐error difference between signal 1 and signal 2

Page 13: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 13

Phase Detector MathematicsWe have

cosp pb beat ev t V t

When the loop is in lock, beat= 0 and vp is a DC voltage. When the loop is not in lock, vp is a voltage that tries to pull the VCO into synchronism with the input signal.

Actual process of acquiring lock is nonlinear

Page 14: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 14

KH ss a

2

KH ss as b

Order of PLL

Highest power of s in denominator of closed‐loop transfer function

First Order

Second Order

Page 15: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 15

KA ss

Type of PLL

2

KA ss

Number of poles at the origin for the open‐loop transfer function

Type 1

Type 2

Page 16: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 16

PLL Transfer Functions

( )( )

o o d a

r o d a

s K K K F sH ss s K K K F s

( )

ee

r o d a

s sH ss s K K K F s

Page 17: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 17

/1 /

o d a o d a

o d a o d a

K K K K K K sH ss K K K K K K s

Loop Transfer Function - No Filter

/1 /

L

L

sH ss

L o d aK K K

When there is no filter in the loop, F(s) =1, and

which can be rewritten as

whereloop bandwidth

First‐order PLL

Page 18: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 18

First-Order PLLWhen there is no filter in the loop, F(s) =1, and

ee

r o d a

s sH ss s K K K

To find steady‐state response, use final‐value theorem for Laplace transforms

2

0 0

/lim lim lim 0r

e et s so d a

s st s s

s K K K

For a step change in the input phase (r/s) the corresponding phase error is:

/re

o d a

s ss

s K K K

First‐order loop will eventually track phase change at input

Page 19: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 19

First-Order PLL

Use final‐value theorem for Laplace transforms

2 2

0 0

/lim lim lim r r

e et s so d a o d a

s st s s

s K K K K K K

For a step change in frequency, the resulting phase change will be a ramp (r/s2) and the corresponding phase error is:

2/re

o d a

s ss

s K K K

PLL can be used as FM demodulator!

Phase error is proportional to frequency change

Page 20: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 20

Loop Transfer Function ‐ RC Filter

11

o

i

VF sV s

RC

21

1o d a o d a

H ss s

K K K K K K

Page 21: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 21

21

1o d a o d a

H ss s

K K K K K K

2

2

11 2 1

n n

H ss s

o d an

K K K

1

2 2n

o d a o d aK K K K K K

Loop Transfer Function ‐ RC Filter

: damping factorn: “natural frequency”

Page 22: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 22

Loop Transfer Function ‐ Lag‐Lead Filter

2

1 2

11

o

i

V sF sV s

1 1R C

2 2R C

2 2

2 2

2 /2

n n o d a n

n n

s K K KH s

s s

Page 23: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 23

1 1R C

2 2R C

2 2

2 2

2 /2

n n o d a n

n n

s K K KH s

s s

1

o d an

K K K

1/2

22

1

1 12 2 2

o d a n n

o d a o d a

K K KK K K K K K

Loop Transfer Function ‐ Lag‐Lead Filter

: damping factorn: “natural frequency” : damping factorn: “natural frequency”

Page 24: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 24

PLL Transfer Function ‐ Active Filter

2

1

1o

i

V sF sV s

1 1R C

2 2R C

Page 25: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 25

2

2 2

22

n n

n n

sH ss s

1

o d an

K K K

2

2n

PLL Transfer Function ‐ Active Filter

: damping factorn: “natural frequency”

Page 26: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 26

Hold in RangeRange over which we can change fs and still have the loop remain in lock.

Sinusoidal detector:Max Ve is A and A=Vd

sine d eV K

sin e e a oe

d v v

V V K KK K K

Since sin e cannot exceed as e approachesThe hold‐in range is equal to the DC loop gain

1/ 2

H vK

For sinusoidal phase detector

Page 27: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 27

Lock in Range

Range of frequencies over which the loop will come into lock without slipping cycles.

If the frequency difference |s ‐ f| is less than the 3‐dB bandwidth of the closed‐loop transfer function H(s), the loop will lock up without slipping cycles.

2L n Maximum lock‐in range

Page 28: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 28

Pull in RangeRange of frequencies over which the loop will eventually lock

Once loop is in lock, small loop bandwidth is desirable to minimize noise transmissionIf initial frequency difference is outside lock‐in range but inside pull‐in range, difference‐frequency waveshape is nonlinear and contains DC component that gradually shifts VCO frequency until lock up occurs

1/222 2p n v nK

Page 29: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 29

1 2

1 2

...( )

...m

mm

s Z s Z s ZH s a

s P s P s P

Transfer Function Representation

Z1, Z2,…Zm are the zeros of the transfer function

P1, P2,…Pm are the poles of the transfer function

In general, the transfer function of an amplifier can be expressed as

29

s is a complex number s = + j

Page 30: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 30

21 2

21 2

1 ...( )1 ...

nnn

n

a s a s a sH sb s b s b s

The coefficients a and b are related to the frequencies of the zeros and poles respectively.

Transfer Function and Stability

For a system to be stable all the poles and the zeros must reside on the left half of the s plane.

H(s) can also be written in the form

Page 31: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 31

PLL Stability

The loop is stable if the magnitude of the open‐loop gain falls below 1 dB before its phase reaches 180o

The greater the phase margin, the more stable the system and the higher the signal integrity

( )1

A sH s

A s

The closed‐loop transfer function H(s) can be expressed in terms of the open‐loop gain A(s)

Page 32: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 32

PLL Stability

Gain Margin:Difference between value of |A(s)| at 180 and unity

Phase Margin:Difference between value of phase when|A(s|=1 and 180o

If phase angle at frequency when |A(s)|=1 is less than 180o, loop is stable, otherwise, loop is unstable

Let A(s) be the open-loop gain

Page 33: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 33

PLL Operation – Acquisition

Tuning VoltageDuring acquisition

Page 34: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 34

• PLL characteristics– KD = 5/(2π) V/rad, KV = 2π (3×105) rad/V, τ1 = 4.385×10‐6 s,

τ2 = 1.592×10‐6 s

• Small unit step change in fin.• PLL operates in the linear region:

sin ( ) ( )e et t

PLL Operation – Lock‐In

Output Frequency Phase Error

Page 35: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 35

• Large change in fin.• PLL exhibits non‐linear behavior:

5 kHz change in fin. Pull-in/acquisition process.

2 MHz change in fin. Pull-out process. PLL no longer locks.

Output FrequencyDuring acquisition

Output FrequencyFor large step in frequency change

PLL Operation – Acquisition

Page 36: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 36

• Another example:– Long simulation (200 μs)

• Input:– 0 – 75 μs : 38.5 MHz– 75 μs – 130 μs : 38.3 MHz– 130 μs – 180 μs : 38.6 MHz– 180 μs – 200 μs : 38 MHz

PLL Operation – Long Simulation

Page 37: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 37

Clock Synthesizer

Page 38: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 38

• Closed‐loop feedback system that synchronizes theoutput CLK phase with that of the reference CLK.

• Tracks phase changes w/i the specified BW.• Idea is that the PD (Phase Detector) will compare the

reference CLK phase with that generated by the VCO.– Goal: Stabilize Δ → 0 such that VCO output CLK and

reference CLK are locked at same frequency and phase.– Tracks low‐frequencies but rejects high‐frequencies.

Basic PLL Block Diagram:

PLL Overview

Page 39: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 39

Why need PLLs?

• Reduces jitter.

• Reduces clock‐skew in high‐speed digital ckts.

• Instrumental in frequency synthesizers.

• Essential building block of CDRs.

Page 40: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 40

PLL Building Blocks

• PD/PFD ~ Phase/Phase+Frequency Detector

• CP ~ Charge pump circuit

• LF ~ Loop‐Filter

• VCO ~ Voltage controlled oscillator

• Frequency Divider

Basic PLL Components:

Page 41: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 41

PD/PFD Circuits

• PD/PFD are strictly digital circuits in high speed SerDestransceivers.

• Ideal PD is a “multiplier” in time‐domain, ex: Mixer• Analog PD High Jitter, noise.• XOR PD sensitive to clock duty cycle• PFD ~ best to lock phase and frequency!

Common PD Implementations: Common PFD Implementations:

Gilbert‐cell Mixer

XOR PD

Page 42: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 42

PFD Theory

1. PFD is needed to adjust the control voltage for VCO according to the phase difference between the VCO output and reference frequency

2. PFD can be seen as a state machine with three states. It will change the control voltage of VCO according to its current state and phase/frequency difference will cause state transition.

Page 43: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 43

PFD Analysis

1. PFD is in state 0 with no phase difference.

2. PFD is in state 1 with positive phase difference.

3. PFD is in state ‐1 with negative phase difference.

Page 44: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 44

PFD Design Overview

Down circuit

UP circuit

Charge pump

Phase Frequency detector

Page 45: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 45

PFD Simulation

Page 46: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 46

The Hogge Phase Detector

• Two Functions– Transition detection – Phase Detection

Page 47: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 47

The Charge Pump

• Combination of current source and sink

• Converts PD output to a current pulse influencing control voltage of VCO

Page 48: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 48

Charge-Pump Circuit

• Used in conjunction with PFD over PD+LF combo. b/c:– Higher capture/lock acquisition range of PLL– Δ 0 provide no device mismatch exists.– Provide infinite gain for a static phase‐error

Common CP Implementations:

Page 49: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 49

The Loop Filter

• Low‐pass for rejection of high frequency noise

• Forms the control voltage of the VCO

Page 50: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 50

Loop-Filter

• Extracts average of PD error signals generate VCO controlvoltage.

• Integrates low‐frequency phase‐errors on C1 to set avg. freq.

• R adds thermal noise, C1 determines loop BW, C2 smoothenscontrol voltage ripple.

Common LF Implementations:

Page 51: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 51

Loop-Filter Design1. Needed to filter out high frequency noise generated by PFD2. Due to the superior performance of PFD, only a passive second order RC low pass filter is needed.

Low pass filter for current input

Where

Assuming 25MHz

Page 52: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 52

Voltage Controlled Oscillator• Generates an output with oscillation frequency proportional to the control voltage

• Helps the CDR accumulate phase and achieve lock

Page 53: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 53

VCO

• Extracts average of PD error signals generate VCOcontrol voltage.

• PLL acts like a High‐pass filter with respect to VCO jitter.

• VCO always has one pole!

Common VCO Implementation:

LC‐Tank Oscillator

Page 54: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 54

Oscillators Overview

• Closed‐Loop Transfer function:

• Barkhausen’s criteria for oscillation:––

• = oscillation‐frequency.

Page 55: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 55

Ring Structure LC‐Tank Structure

1. Low‐power, highly integrated.

2. Occupies smaller die‐area.

3. Poor‐performance at high‐frequency due to large phase‐noise + jitter.

4. Can only accept digital signals.

1. High‐power, not integrable.

2. Occupies large die‐area.

3. Great phase‐noise and jitter performance at high frequency.

4. Can accept analog and digital signals.

Ring v/s Tank Architecture

Page 56: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 56

MOS Varactor

Page 57: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 57

Cascode MOS Varactor

Page 58: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 58

LC-Tank VCO Designs - I

Page 59: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 59

LC-Tank VCO Designs - II

Page 60: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 60

LC-Tank VCO Designs - III

Page 61: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 61

LC-Tank VCO Designs - Final

Page 62: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 62

Final VCO Design Parameters

M1 L = 100n, W = 2u

M2 L = 100n, W = 2u

M3 L = 100n , W = 2u

M4 L = 100n, W = 2u

M5 L = 500n, W = 10u

M6 L = 500n, W = 10u

M7 L = 500n, W = 10u

M8 L = 500n, W = 10u

M9 L = 100n, W = 2u

M10 L = 50n, W = 2u

L 1.5nH, Q = 5

R 465 Ω

Page 63: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 63

Fractional N-Divider Simulation

Page 64: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 64

VCO Jitter Analysis

Page 65: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 65

Theoretical Design Overview

– Recall,

•, ,

Page 66: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 66

Fractional N-Divider Circuit1. Needed to slow down the VCO’s output so that PFD can compare it with reference frequency.

2. N D‐FlipFlops cascaded together to achieve divider.

Positive edge‐triggered DFF using split‐output latches

Fractional 8 Divider

Page 67: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 67

Complete PLL Circuit

Page 68: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 68

Complete PLL Simulation

Page 69: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 69

Complete PLL Jitter Analysis

Page 70: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 70

CDR Circuit Overview• Monitor data signal transitions and select optimal

sampling phase for the data at midpoint between edges.

• Extracts clock information from incoming data stream and uses this regenerated clock to resample the data waveform and recover the data.

• Non‐linear circuit and key block to limit jitter, noise within the SERDES circuit.

Page 71: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 71

Basic Idea• Serial data transmission sends binary bits of information

as a series of optical or electrical pulses

• The transmission channel (coax, radio, fiber) generally distorts the signal in various ways

• From this signal we must recover both clock and data

Page 72: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 72

10 Gigabit Ethernet Serializer

Page 73: ECE 453 Wireless Communication Systems Phase Locked Loopsemlab.illinois.edu/ece453/pll.pdf · 2019. 12. 4. · ECE 453 –Jose Schutt‐Aine 3 Voltage controlled oscillator (VCO)

ECE 453 – Jose Schutt‐Aine 73

10 Gigabit Ethernet Deserializer


Recommended