+ All Categories
Home > Documents > ECE 546 Lecture 19 X Parameters

ECE 546 Lecture 19 X Parameters

Date post: 18-Oct-2021
Category:
Upload: others
View: 8 times
Download: 0 times
Share this document with a friend
73
ECE 546 – Jose Schutt‐Aine 1 ECE 546 Lecture 19 XParameters Spring 2020 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected]
Transcript
Page 1: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 1

ECE 546Lecture ‐19X‐Parameters

Spring 2020

Jose E. Schutt-AineElectrical & Computer Engineering

University of [email protected]

Page 2: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 2

[1] J J. Verspecht and D. E. Root, ʺPolyharmonic Distortion Modeling,ʺ IEEE Magazine, June 2006, pp. 44‐57.

[2] D.E. Root, J. Verspecht, D. Sharrit, J. Wood, and A. Cognata,“Broad‐band poly‐harmonic distortion (PHD) behavioral models from fast automated simulations and large‐signal vectorial network measurements,”IEEE Trans. Microwave Theory Tech., vol. 53, no. 11, pp. 3656–3664, Nov. 2005.

[3] D.E. Root, J. Verspecht, J. Horn, J. Wood, and M. Marcu,“X Parameters”, Cambridge University Press, 2013.

References

Page 3: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 3

1 11 1 12 2b S a S a

2 21 1 22 2b S a S a

B SA1

N

i ij jj

B S A

0

1,...,

k

iij

Aj k jk N

BSA

For a general N-port

For a two-port

2 22

o

a bIZ

1 11

o

a bIZ

1 1 1 V a b 2 2 2V a b

“ …most successful behavioral models…”

Scattering Parameters

Page 4: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 4

S Parameters are a very powerful tool for signal integrity analysis.

Today, X parameters are primarily used to characterize power amplifiers and nonlinear devices. Not yet applied to signal integrity.

X Parameters: Motivation

Page 5: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 5

Characterize nonlinear behavior of devices and systems

- Mathematically robust framework- Can handle nonlinearities- Instrument exists (NVNA)- Blackbox format vendor IP protection- Matrix format easy incorporation in CAD tools- X Parameters are a superset of S parameters

Advantages

Purpose

X Parameters

Page 6: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 6

– Need to accurately handle very high data rates– Simulate large number of bits to achieve low BER– Non‐linear blocks with time variant systems– Model TX/RX equalization– All types of jitter: (random, deterministic, etc.)– Crosstalk, loss, dispersion, attenuation, etc…– Handle and manage vendor specific device settings– Clock data recovery (CDR) circuits

High speed Serial channels are pushing the current limits of simulation. Models/Simulator need to handle current challenges

These cannot be accurately modeled with S parameters

Challenges in HS Links

Page 7: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 7

• ApplicationsHigh-speed links, power amplifiers, mixed-signal circuits

• Existing MethodsLoad pull techniquesIBIS modelsModels are flawed and incomplete

Motivation

Limitation: S Parameters only work for linear systems. Many networks and systems are nonlinear

Page 8: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 8

• Polyharmonic distortion (PHD) modeling is a frequency-domain modeling technique

• PHD model defines X parameters which form a superset of S parameters

• To construct PHD model, DUT is stimulated by a set of harmonically related discrete tones

• In stimulus, fundamental tone is dominant and higher-order harmonics are smaller

PHD Modeling

Page 9: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 9

• Signal is represented by a fundamental with harmonics

• Signals are periodic or narrowband modulated versions of a fundamental with harmonics

• Harmonic index: 0 for dc contribution, 1 for fundamental and 2 for second harmonic

• Power level, fundamental frequency can be varied to generate complete data for DUT

PHD Framework

Page 10: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 10

• StimulusA-waves are incident and B-waves are scattered

• Reference System ZCDefault value is 50 ohm

PHD Framework

2CV Z IA

2CV Z IB

For a given port with voltage V and current I

Page 11: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 11

Fpm describes a time-invariant systemdelay in time domain corresponds to phase shift in frequency domain

PHD Framework

2 211 12 21 22, ,..., , ,...jm j j j j

pm pmB e F A e A e A e A e

For phase normalization, define

11( )j AP e

2 3 1 211 12 13 21 22, , ,..., , ,... m

pm pmB F A A P A P A P A P P

Page 12: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 12

PHD Framework

Page 13: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 13

Cross-Frequency Phase for Commensurate Tones

• Defined as the phase of each pseudowave when the fundamental, A1,1, has zero phase.

• B2,3 can be related to A2,2 in magnitude and phase.

A1,1

A2,2

B2,3

Page 14: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 14

Time-Invariance Property of Nonlinear Scattering Function

• Shifting all of the inputs by the same time means that different harmonic components are shifted by different phases.

2 3, 1,1 1,2 1,3

, 1,1 1,2 1,3

( e , (e ) , (e ) ,...)

( , , ,...)(e )

j j jp k

j kp k

F A A A

F A A A

f0 180º phase shift

2f0 360º phase shift

3f0 540º phase shift

time delay

Page 15: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 15

Shifting reference to zero phase of A1,1.

Defining Phase Reference• Can use time‐invariance to separate magnitude and 

phase dependence of one incident pseudowave.

, , 1,1 1,2 1,3

2 3, 1,1 1,2 1,3

( , , ,...)

( , , ,...)p k p k

p kk

F A A A

F A

B

A A P P P 1,1arg( )1,1

1,1

j AAP e

A

using

Page 16: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 16

Commensurate Tones X-Parameter Formalism*

• Still difficult to characterize this nonlinear term.• If only one incident pseudowave, A1,1, is large then the 

other smaller inputs can be linearized about the large‐signal response of Fp,k to only A1,1.

( ) 2 3, 1,1 1,2 1,3

, 1,1 1,2 1,3

( , , ,...)

( , , ,...)

FBp k

kp k

X A A P A P

F A A A P

• Define

( ) 2 3, , 1,1 1,2 1,3( , , ,...)FB k

p k p kB X A A P A P P

*D. E. Root, et al., X-Parameters, 2013.

Page 17: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 17

• Introduce multivariate complex function Fpmsuch that

PHD Framework

11 12 21 22, ,..., , ,...pm pmB F A A A A

Apmport harmonic

Bpmport harmonic

Define variables

Page 18: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 18

Harmonic superposition principle is key to PHD model

In many situations, there is only one dominant large-signal input component present. The harmonic frequency components are relatively small harmonic components can be superposed

Harmonic Superposition

Page 19: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 19

3( )f x x x

Nonanalytical Mapping*A nonlinearity described by:

( ) ( ) ( )ox t x t x t

Signal is sum of main signal and additional perturbation term which is assumed to be small

* see: J. Verspecht and D. E. Root, ʺPolyharmonic Distortion Modeling,ʺ IEEE Magazine, June 2006, pp. 44‐57.

Page 20: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 20

( )ox t A

*

( )2

j t j te ex t

( ) ( ) ( ) ( )o oy t f x t x t f x t

Consider the signal x(t), given by the sum of a real dc component and a small tone at frequency f

A is real

is a small complex number

The linear response in x(t) can be computed by

Case 1

Page 21: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 21

For case 1, we evaluate the conductance nonlinearity f ’(xo) at the fixed value xo=A

( ) ' ( ) ( )oy t f x t x t

2' 3f A A

*

2( ) 32

j t j te ey t A

232

A

Case 1

After substitution, we get

The complex coefficient of term proportional to ejt is

Linear input-output relationship

Page 22: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 22

( ) cosox t A t

*

( )2

j t j te ex t

2

2 2

'( cos( )) 3 cos( )

3 3 cos(2 )2 2

f A t A t

A A t

Case 2Now, xo(t) is a periodically time-varying signal:

Evaluating the conductance nonlinearity at xo(t) gives

Page 23: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 23

2 2 2 2

*

3 3( )2 2 2

2

j t j t

j t j t

A A e ey t

e e

Case 2

We can evaluate (y(t)) to get:

Now, we have terms proportional to ejt and ej3t and their complex conjugates. Restrict attention to complex term proportional to ejt

Page 24: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 24

Case 2

2 2*3 3

2 4 4A A

2 22 ( )

ˆ( ) 3 3ˆ 2 4 4( )

jPhaseY A A eX

The complex coefficient of term proportional to ejt is

We observe that the output phasor at frequency is not just proportional to the input phasor at frequency but has distinct contributions to both and *

Linearization is not analytic

In Fourier domain, we have:

Page 25: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 25

11

, 11

, 11

Re( )

Im( )

mpm pm

m npq mn qn

qn

m npq mn qn

qn

B K A P

G A P A P

H A P A P

11 11 ,0,...,0pm pmK A F A

11

, 11

,0,...,0Re

pmpq mn n

qn A

FG A

A P

11

, 11

,0,...,0Im

pmpq mn n

qn A

FH A

A P

PHD Derivation

in which

Spectral mapping is nonanalytic

Page 26: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 26

Re( )

2

n nqn qnn

qn

A P conj A PA P

Im( )

2

n nqn qnn

qn

A P conj A PA P

j

11

, 11

, 11

2

2

mpm pm

n nqn qnm

pq mnqn

n nqn qnm

pq mnqn

B K A P

A P conj A PG A P

A P conj A PH A P

j

Since

we get

PHD Derivation

Page 27: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 27

( ) ( )11 , 11

( ), 11

FB m S m npm pm pq mn qn

qn

T m npq mn qn

qn

B X A P X A P A

X A P conj A

11( )1, 1 11

11

pmSp m

K AX A

A ( )

1, 1 11 0Tp mX A

, 11 , 11( ), 11, 1,1 :

2pq mn pq mnS

pq mn

G A jH Aq n X A

, 11 , 11( ), 11, 1,1 :

2pq mn pq mnT

pq mn

G A jH Aq n X A

PHD Model Equation

PHD Model

Page 28: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 28

Nonlinear Mapping

Simple Nonlinear Mapping

Nonanalytic Harmonic Superposition

Incident Waves Scattered WavesApproximates

1-Tone X-Parameter Formalism*

( ) 2 3, , 1,1 1,2 1,3( , , ,...)FB

p k p kX A A P A PB

Xp,k(FB)( A1,1 ,0,0,...)

( ) ( ) *, ; , , , ; , ,S T

p k q l q l p k q l q lX A X A

A1,1Large-Signal

frequency frequency

frequency

frequency

frequency

frequency

*J. Verspecht, et al., “Linearization…,” 2005.

Page 29: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 29

1-Tone X-Parameter Formalism*

, ,

( ) ( ) ( ) *, , , ; , , , ; , ,

1, 1 1, 1( , ) (1,1) ( , ) (1,1)

q N l K q N l KFB k S k l T k l

p k p k p k q l q l p k q l q lq l q lq l q l

B X P X A P X A P

Simple nonlinear map

Linear harmonic map function of incident wave

Linear harmonic map function of conjugate of incident wave

( ), ; ,S

p k q lXoutput port input

portinput harmonic

output harmonic

• X‐parameters of type FB, S, and T fully characterize the nonlinear function.

• Depend on– frequency– large signal magnitude, |A1,1|– DC bias

1,1

1,1

AP

A

*D. E. Root, et al., X-Parameters, 2013.

Page 30: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 30

Excitation DesignExcitation 1 Excitation 2

Excitation 3 Excitation 4

Each excitation will generate response with fundamental and all harmonics

Page 31: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 31

! Created Fri Jul 30 07:44:48 2010

! Version = 2.0! HB_MaxOrder = 25! XParamMaxOrder = 12! NumExtractedPorts = 3

! IDC_1=0 NumPts=1! IDC_2=0 NumPts=1! VDC_3=12 NumPts=1! ZM_2_1=50 NumPts=1! ZP_2_1=0 NumPts=1! AN_1_1=100e-03(20.000000dBm) NumPts=1! fund_1=[100 Hz->1 GHz] NumPts=4

TOP: FILE DESCRIPTION

X-Parameter Data File

Page 32: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 32

BEGIN XParamData% fund_1(real) FV_1(real) FV_2(real) FI_3(real) FB_1_1(complex) % FB_1_2(complex) FB_1_3(complex) FB_1_4(complex)% FB_1_7(complex) FB_1_8(complex) FB_1_9(complex)% FB_1_12(complex) FB_2_1(complex) FB_2_2(complex) % FB_2_5(complex) FB_2_6(complex) FB_2_7(complex)% FB_2_10(complex) FB_2_11(complex) FB_2_12(complex)% T_1_1_1_1(complex) S_1_2_1_1(complex) T_1_2_1_1(complex)% S_1_4_1_1(complex) T_1_4_1_1(complex) S_1_5_1_1(complex)% T_1_6_1_1(complex) S_1_7_1_1(complex) T_1_7_1_1(complex)% S_1_9_1_1(complex) T_1_9_1_1(complex) S_1_10_1_1(complex)) % T_1_11_1_1(complex) S_1_12_1_1(complex) T_1_12_1_1(complex)% T_2_1_1_1(complex) S_2_2_1_1(complex) T_2_2_1_1(complex)% S_2_4_1_1(complex) T_2_4_1_1(complex) S_2_5_1_1(complex% T_2_6_1_1(complex) S_2_7_1_1(complex) T_2_7_1_1(complex)

% S_2_9_1_1(complex) T_2_9_1_1(complex) S_2_10_1_1(complex)

MIDDLE: FORMAT DESCRIPTION

X-Parameter Data File

Page 33: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 33

100 0 0.903921 0.0263984 0.316228 -5.41159e-09 -5.8503e-16 -4.19864e-10 -6.37642e-16 -1.6748e-10 -4.62314e-16-1.25093e-15 -3.79264e-10 -7.91128e-16 -1.51261e-10 1.93535e-17-1.38032e-16 -2.09262e-10 0.107122 -5.52212e-08 0.0739648-0.0081633 -2.40901e-08 -0.00739395 -1.21199e-08 -0.0005307680.000921039 -4.82427e-09 -0.00230559 1.07836e-08 -0.00288533-1.20792e-15 -5.09916e-10 -6.95799e-15 -2.56672e-09 -3.25033e-15-1.2948e-14 3.97284e-10 -7.08201e-15 -2.17127e-09 -1.43757e-143.39598e-15 3.66098e-10 -1.08395e-14 -4.05911e-09 1.67366e-142.76565e-14 5.60242e-09 2.69755e-14 -6.60802e-10 3.99868e-14

BOTTOM: DATA LISTING

X-Parameter Data File

RemarksData is measured or generated from a harmonic

balance simulatorData file can be very large

Page 34: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 34

11:P Phase of a

, :ik jlS S type X parameter

, :ik jlT T type X parameter

:ikD B type X parameter

*11 , 11 , 11

( , ) (1,1)

k k l k lik ik ik jl jl ik jl jl

j lb D a P S a P a T a P a

X-Parameter Relationship

Page 35: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 35

-5 0 5 10 15 20 25 30-7

-6

-5

-4

-3

-2

-1x 10-3

|A11| (dBm)

S11

,11

- Am

plitu

de (d

B)

0.5 GHz1 GHz

-5 0 5 10 15 20 25 30-100

-90

-80

-70

-60

-50

|A11| (dBm)

T11,

11 -

Am

plitu

de (d

B)

0.5 GHz1 GHz

-5 0 5 10 15 20 25 30-20

-15

-10

-5

0

|A11| (dBm)

S21

,11

- Am

plitu

de (d

B)

0.5 GHz1 GHz

-5 0 5 10 15 20 25 30-60

-50

-40

-30

-20

-10

|A11| (dBm)

T21,

11 -

Am

plitu

de (d

B)

0.5 GHz1 GHz

X Parameters of CMOS

Page 36: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 36

-5 0 5 10 15 20 25 30-65

-60

-55

-50

-45

-40

-35

|A11| (dBm)

S12

,11

- Am

plitu

de (d

B)

0.5 GHz1 GHz

-5 0 5 10 15 20 25 30-100

-90

-80

-70

-60

-50

-40

|A11| (dBm)

T12,

11 -

Am

plitu

de (d

B)

0.5 GHz1 GHz

-5 0 5 10 15 20 25 30-50

-45

-40

-35

-30

-25

-20

|A11| (dBm)

S22

,11

- Am

plitu

de (d

B)

0.5 GHz1 GHz

-5 0 5 10 15 20 25 30-100

-80

-60

-40

-20

|A11| (dBm)

T22,

11 -

Am

plitu

de (d

B)

0.5 GHz1 GHz

X Parameters of CMOS

Page 37: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 37

Large-Signal Reflection

Microwave amplifier with fundamental frequency at 9.9 GHz

Page 38: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 38

Compression and AM-PM

Microwave amplifier with fundamental frequency at 9.9 GHz

Page 39: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 39

T22,11

Microwave amplifier with fundamental frequency at 9.9 GHz

Page 40: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 40

• T-Type X ParameterSpectral mapping is non-analyticalReal and imaginary parts in FD are treated differentlyEven and odd parts in TD are treated differentlyT involves non-causal component of signal

• Phase Term PP is phase of large-signal excitation (a11)Contributions to B waves will depend on P In measurements, system must be calibrated for phase

Special Terms

Page 41: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 41

( ), 11 , 11(| |)S

ik jl ik jlS a X A

( )11 11

FBik ikD a X a

Define

Notation Change

( ), 11 , 11(| |)T

ik jl ik jlT a X A

Page 42: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 42

*11 , 11 , 11

( , ) (1,1)

k k l k lik ik ik jl jl ik jl jl

j lb D a P S a P a T a P a

*11 , 11 , 11

( , ) (1,1)

k l lik ik ik jl jl ik jl jl

j lb P D a S a P a T a P a

11jP e 11 11where is the phase of a

*11 , 11 , 11

( , ) (1,1)ik ik ik jl jl ik jl jl

j lb D a S a a T a a

where andk kik ik ik ikb b P a a P

we can always express the relationship in terms of modified power wave variables

Multiply through by kP

Handling Phase Term

Page 43: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 43

r rr ri r

i ir ii i

b X X ab X X a

,rr r r ri i iX S T X S T

,ir i i ii r rX S T X S T

Because of non-analytical nature of spectral mapping, real and imaginary component interactions must be accounted for separately.

where

we have

Handling R&I Components

Page 44: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 44

' '

' '

cos sin cos sinsin cos sin cos

b b rr ri a ar r

b b ir ii a ai i

X Xb aX Xb a

'

'

cos sinsin cos

r b b r

i b b i

b bb b

'

'

cos sinsin cos

r a a r

i a a i

a aa a

Handling Phase TermPhase term can be accounted for by applying following transformations

r rr ri r

i ir ii i

b X X ab X X a

in which

Page 45: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 45

Separate real and imaginary componentsAccount for real-imaginary interactionsAccount for harmonic-to-harmonic contributionsAccount for harmonic-to-DC contributions

Matrix size is 2 2mn mnm: number of harmonicsn: number of ports

X Matrix Construction

Page 46: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 46

1

2

p

n

aa

aaa

1

2

p

n

bb

bbb

(1)

(1)

(2)

(2)

( )

( )

pr

pi

pr

pi

mprm

pi

aaaa

aa

pa

(1)

(1)

(2)

(2)

( )

( )

pr

pi

pr

pi

mprm

pi

bbbb

bb

pb

b = XaWe wish to use:

*DC term not included

vector size is 2mm: number of harmonicsn: number of ports

(real vectors)

size:2mn

size:2mn

Matrix Formulation*

Page 47: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 47

(11) (11) (12) (12) (1 ) (1 )

(11) (11) (12) (12)

(21) (21) (22) (22)

(21) (21) (22) (22)

m mpqrr pqri pqrr pqri pqrr pqri

pqir pqii pqir pqii

pqrr pqri pqrr pqri

pqir pqii pqir pqii

X X X X X XX X X XX X X XX X X X

pqX

( 1) ( 1) ( ) ( )m m mm mmpqir pqii pqir pqiiX X X X

11 12 1n

21 22

pq

n1 nn

X X XX X

X =X

X X

*DC term not included

matrix size is 2mn 2mnm: number of harmonicsn: number of ports

(real matrix)

size: 2m 2m

Matrix Formulation*

Page 48: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 48

(11) (11) (12) (12) (11) (11) (12) (12)11 11 11 11 12 12 12 12(11) (11) (12) (12) (11) (11) (12) (12)11 11 11 11 12 12 12 12(21) (21) (22) (22) (21) (21)11 11 11 11 12 12

rr ri rr ri rr ri rr ri

ir ii ir ii ir ii ir ii

rr ri rr ri rr ri

X X X X X X X XX X X X X X X XX X X X X X

X

(21) (21)12 12

(21) (21) (22) (22) (21) (21) (22) (22)11 11 11 11 12 12 12 12(11) (11) (12) (12) (11) (11) (12) (12)21 21 21 21 22 22 22 22(11) (11) (12) (12)21 21 21 21 2

rr ri

ir ii ir ii ir ii ir ii

rr ri rr ri rr ri rr ri

ir ii ir ii

X XX X X X X X X XX X X X X X X XX X X X X (11) (11) (12) (12)

2 22 22 22(21) (21) (22) (22) (21) (21) (22) (22)21 21 21 21 22 22 22 22(21) (21) (22) (22) (21) (21) (22) (22)21 21 21 21 22 22 22 22

ir ii ir ii

rr ri rr ri rr ri rr ri

ir ii ir ii ir ii ir ii

X X XX X X X X X X XX X X X X X X X

For instance, X(12)21ri is the contribution to the real part

of the 1st harmonic of the wave scattered at port 2 due to the imaginary part of the 2nd harmonic of the wave incident port in port 1. *DC term not included

(real matrix)

(2 harmonics)X Matrix for 2-Port System*

Page 49: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 49

Linear

ImpedancePolyharmonic

ImpedanceNonlinear

Impedance

­ Time invariant

­ Linear

­ Scalar

­ Time invariant

­ Linear

­ Matrix

­ Time variant

­ Nonlinear

­ Function

[ ( )] [ ( )][ ( )]V f Z f I f ( ) ( ( ))V t Z I tV ZI

FD & TD FD only

Model assumes that nonlinear effects are mild and are captured via harmonic superposition.

Polyharmonic Impedance

Page 50: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 50

(1) (11) (12) (13) (14) (1)

(2) (21) (22) (23) (24) (2)

(3) (31) (32) (33) (34) (3)

(4) (41) (42) (43) (44) (4)

V Z Z Z Z IV Z Z Z Z IV Z Z Z Z IV Z Z Z Z I

Polyharmonic Impedance4-harmonic system

(1) (2) (3) (4)( ) ( ) ( ) ( ) ( )v t v t v t v t v t

(1) (2) (3) (4)( ) ( ) ( ) ( ) ( )i t i t i t i t i t

in frequency domain:

in time domain:

Page 51: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 51

Polyharmonic Impedance

-1oZ = 1 + X 1- X Z

V = ZI

ZV

I

oZ : Reference impedance matrix

: Polyharmonic impedance matrix

: Voltage vector

: Current vector Describes interactions between harmonic components of voltage and current.

Page 52: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 52

ga = Dv + Γb

-1 ga = 1 - ΓX Dv

b = XaScattered waves

Termination equations

Wave Solution

Voltage Solution

v = 1 + X a

Network Formulation

Page 53: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 53

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-100

-80

-60

-40

-20

0

20

40

60

80

100

time(ns)

Volts

Time-Domain Response

VinVout

X Parameter

ADS

cubic term

Steady-State Simulations

Page 54: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 54

Generate X parameters for composite systemPower level: 20 dBm, frequency: 1 GHzConstruct X matrixCombine with terminations for simulation

CMOS Driver/Receiver Channel

Page 55: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 55

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-8

-6

-4

-2

0

2

4

6

8

time(ns)

Vol

ts

DC+Fundamental

VinVout

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-8

-6

-4

-2

0

2

4

6

8

time(ns)

Vol

ts

3 Harmonics

VinVout

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-8

-6

-4

-2

0

2

4

6

8

time(ns)

Vol

ts

8 Harmonics

VinVout

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-8

-6

-4

-2

0

2

4

6

8

time(ns)

Vol

ts

12 Harmonics

VinVout

CMOS Driver/Receiver - Harmonics

Page 56: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 56

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-8

-6

-4

-2

0

2

4

6

8

time(ns)

Volts

Time-Domain Response

VinVout

25.2 25.4 25.6 25.8 26.0 26.2 26.4 26.6 26.8 27.0 27.2 27.4 27.6 27.8 28.0 28.2 28.4 28.6 28.8 29.0 29.2 29.4 29.6 29.825.0 30.0

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

-7

7

time, nsec

Vin

, VV

out,

V

X Parameter

ADS

Validation

Page 57: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 57

Cascading S-Parameter Blocks*

[T](T) =

[T](1)[T](2)

A1(1) A2

(2)

B2(2)B1

(1)

[S](T)A1(1) A2

(2)

B2(2)B1

(1)[S](1)A1(1)

A2(1)

B2(1)

B1(1) [S](2)A1

(2)

A2(2)

B2(2)

B1(2)

[T](1)A1(1)

A2(1)

B2(1)

B1(1) [T](2)A1

(2)

A2(2)

B2(2)

B1(2)

==

Can disregard circuit behavior at internal node.

*G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, 2nd ed. Prentice-Hall, 1997.

[T] = transfer scattering parameters.

Page 58: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 58

Cascading X-Parameter Blocks*

These equations at the internal node must always be satisfied:B1,k

(1) = A1,k(2),

A1,k(2) = B2,k

(1)

for all values of k.

[X](1) [X](2)

[X](T)

A2,k(1)

B2,k(1)A1,k

(1)

B1,k(1)

A1,k(2)

B1,k(2) A2,k

(2)

B2,k(2)

A2,k(2)

B2,k(2)A1,k

(1)

B1,k(1)

==

*D. E. Root, et al., X-Parameters, 2013.

Page 59: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 59

Cascading X Parameters

X-parameters of individual devices can be accurately cascaded within a harmonic balance simulator environment.

X

Vendor A Vendor CVendor B

GOAL: Simulate complete channel by combining X-parameter blocks from different sources into a single composite X matrix.

Foundry In­House FoundryIn­House

Page 60: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 60

A linear causal system with memory can be described by the convolution representation

( )y t h x t d

where x(t) is the input, y(t) is the output, and h(t) the impulse response of the system.

A nonlinear system without memory can be described with a Taylor series as:

1

( ) ( ) nn

n

y t a x t

where x(t) is the input and y(t) is the output. The an are Taylor series coefficients.

Volterra Series

Page 61: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 61

A Volterra series combines the above two representations to describe a nonlinear system with memory

1 111

1( ) ... ,..., ( )!

n

n n n rrn

y t du du g u u x t un

1 2 2 1

1 1 1

2 1 2

1 2 3 3 1 2 3 1 2 2 1 2 1 2 3

1( 1 ( ) (

1 ( , ) ( ) ( )2

)

!

1 ( , , ) ( ) ( ) ( , ) ( ) ( ) ( )2!.

!

.

)1

.

du du g u u x t u x t u

du du du g u u u x t u x t u g u u x t u x

du g u x ty

t u x t

t u

u

where x(t) is the input and y(t) is the output and the gn(u1,…,un) are called the Volterra kernels

impulse response

higher-order impulse responses

Volterra Series

Page 62: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 62

1 1 1 1 1 2 2 1 2 1 21 1( ) ,1! 2!

y t du g u x t u du du g u u x t u x t u

1 2( ) exp expx t j t j t

1 1 2 1

1 1 2 1 1 2 2 2

1 1 1

1 2 2 1 2

1( )1!

1 ,2!

j t u j t u

j t u j t u j t u j t u

y t du g u e e

du du g u u e e e e

where the input x(t) is given by

This can be written as

Volterra SeriesApplication to X parameters:

Take order = 2

Page 63: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 63

1 1 1 1 11 2 1 1 1 21

1 2 2 1 2 1 11 2 21 1 12 2 22

( )

1 ,2!

y t T du g u U T du g u U

du du g u u TU T U TU T U

1 2 3 4 5 6( )y t I I I I I I

1 21 2,j t j tT e T e

1 111

j uU e 1 212

j uU e 2 1

21j uU e 2 2

22j uU e

Define

This gives

or

Volterra Series

Page 64: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 64

1 1 1 1 1 11 1 1 1 1I T du g u U I T G f

2 2 1 1 1 21 2 2 1 2I T du g u U I T G f

G1(f) is the Fourier transform of g1(u) evaluated at f

in which

Volterra Series

Page 65: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 65

2 23 1 1 2 2 1 2 11 12 1 2 1 1

1 1, ,2! 2

I T du du g u u U U T G f f

4 1 2 1 2 2 1 2 11 22 1 2 2 1 21 1, ,2! 2

I TT du du g u u U U TT G f f

5 2 1 1 2 2 1 2 21 12 2 1 2 2 11 1, ,2! 2

I T T du du g u u U U T T G f f

2 26 2 1 2 2 1 2 21 22 2 2 2 2

1 1, ,2! 2

I T du du g u u U U T G f f

G2(f1, f2) is the double Fourier transform of g(u,v) evaluated at (f1, f2)

Volterra Series

Page 66: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 66

So, G1(f) is the Fourier transform of g1(u) evaluated at f and G2(f1, f2) is the double Fourier transform of g(u,v) evaluated at (f1, f2)

1 1 1 1 2 1 2y t T G f T G f

2 22 1 2 1 1 1 2 2 1 2 1 2 2 2 1 2 2 2 2

1 , , , ,2!

y t T G f f TT G f f TT G f f T G f f

Volterra Series

We can also express y(t) as:

1 2y t y t y t

in which

and

Page 67: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 67

1 1 2 2( ) exp expx t A j t A j t

1 1 2 1

1 1 2 1

1 2 2 2

1 1 1 1 2

1 2 2 1 2 1 2

1 2

( )

1 ,2!

j t u j t u

j t u j t u

j t u j t u

y t du g u A e A e

du du g u u A e A e

A e A e

1 1 1 2 2 2andT AT T A T

1 1 1 1 1 2 2 1 2

A BA Term H B Term H

y t AT G f A T G f

If we take into account the respective amplitudes of the tone, we have

Volterra Series

We can make the transformation

Page 68: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 68

2 22 1 1 2 1 1

1 1 2 2 2 1 2 1 1 2 2 2 2 1

2 22 2 2 2 2

1 ,2!

, ,

,

C

D

E

C Term H

D Term H

E Term H

y t A T G f f

AT A T G f f AT A T G f f

A T G f f

If we choose f2 = kf1, then T1f1 and T2 kf1.In general, 2=k1 so that if

1 1 2 1,T f T kf

HA=A-Term contains terms in f1HB=B-Term contains terms in kf1HC=C-Term contans terms in 2f1HD=D-Term contains terms in 2kf1HE=E-Term contains terms in (k+1)f1

Volterra Series

Page 69: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 69

1 1 2 2( ) exp expa t A j t A j t

b=Xa

- First determine the X parameters of the system

- Next, provide excitation a(t)

- Next, calculate b in phasor domain using X parameters

p A B C D Eb H H H H H

- For each port, the scattered wave will include contributions from all harmonics

Volterra Series

Page 70: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 70

1 11

AHG fA

1 22

BHG fA

2 1 1 21

2, CHG f fA

2 2 2 22

2, DHG f fA

2 1 21 2

, EHG f fA A

A-Term: B-Term:

C-Term:

D-Term:

E-Term:

Volterra SeriesFinally, a relationship can be obtained to extract Volterrakernel Fourier transforms

Page 71: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 71

Term Wave Coefficient Constant index k=1 k = 2 k = 3 k = 3

A-Term T1 G1(f1) A1 f1 f1 f1 f1 f1

B-Term T2 G1(f2) A2 k f1 f1 2 f1 3 f1 4 f1

C-Term T12 G2(f1,,f1) A1

2/2! 2 f1 2 f1 2 f1 2 f1 2 f1

D-Term T22 G2(f2,,f2) A2

2/2! 2k f1 2 f1 4 f1 6 f1 8 f1

E-Term T1T2 G2(f1,,f2) A1A2 (k+1) f1 2 f1 3 f1 4 f1 5 f1

Volterra Series

TABLE OF VOLTERRA KERNEL TRANSFORMS

Page 72: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 72

NVNA instruments will gradually replace all VNAs

Nonlinear Vector Network Analyzer (NVNA)

Page 73: ECE 546 Lecture 19 X Parameters

ECE 546 – Jose Schutt‐Aine 73

Nonlinear Vector Network Analyzer (NVNA)*

*L. Betts, “X-Parameters and NVNA…,” May 9, 2009.


Recommended