+ All Categories
Home > Documents > ECE305#Homework#SOLUTIONS:#Week#11# …Week11HWSolutions_S15.pdfECE305#Homework#SOLUTIONS:#Week#11#...

ECE305#Homework#SOLUTIONS:#Week#11# …Week11HWSolutions_S15.pdfECE305#Homework#SOLUTIONS:#Week#11#...

Date post: 01-Aug-2020
Category:
Upload: others
View: 57 times
Download: 4 times
Share this document with a friend
13
ECE 305 Spring 2015 ECE305 Spring 2015 1 ECE 305 Homework SOLUTIONS: Week 11 Mark Lundstrom Purdue University 1) In an MOS capacitor, everything depends on the bandbending in the semiconductor. If ! S is the potential at the surface, and ! = 0 is the potential in the bulk, then ! q " S is the total bandbending in the semiconductor. A negative ! S means the bands bend up, and a positive ! S means the bands bend down. This question helps familiarize you with surface potential and bandbending. Assume a Si MOS capacitor at room temperature. 1a) Assume N A = 10 17 cm -3 and compute E i ! E F and the related potential, ! F = E i " E F ( ) q , which plays an important role in MOS electrostatics. Solution: To determine E i ! E F , we begin with the relation between E i and E F : p 0 = N A = n i e E i ! E F ( ) k B T and solve it to find E i ! E F ( ) = k B T ln N A n i " # $ % & ' The potential is ! F = E i " E F ( ) q = k B T q ln N A n i # $ % & ' ( Putting in numbers: ! F = 0.026 ln 10 17 10 10 " # $ % & ' = 0.42 V ! F =+0.42 V Note that ! F is positive in a Ptype semiconductor (and negative in an Ntype semiconductor). 1b) Assume ! S = ! F and sketch the energy band diagram and the charge density, ! x () vs. position in the semiconductor.
Transcript
Page 1: ECE305#Homework#SOLUTIONS:#Week#11# …Week11HWSolutions_S15.pdfECE305#Homework#SOLUTIONS:#Week#11# # MarkLundstrom# PurdueUniversity# # # 1) InanMOScapacitor,everythingdependson#the#bandbendingin#the#

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  1  

ECE  305  Homework  SOLUTIONS:  Week  11    

Mark  Lundstrom  Purdue  University  

   1) In  an  MOS  capacitor,  everything  depends  on  the  bandbending  in  the  

semiconductor.    If     !S  is  the  potential  at  the  surface,  and   ! = 0  is  the  potential  in  the  bulk,  then   !q"S is  the  total  bandbending  in  the  semiconductor.    A  negative   !S means  the  bands  bend  up,  and  a  positive   !S  means  the  bands  bend  down.    This  question  helps  familiarize  you  with  surface  potential  and  bandbending.    Assume  a  Si  MOS  capacitor  at  room  temperature.  

 1a)   Assume   N A = 1017 cm-3  and  compute   Ei ! EF  and  the  related  potential,  

!F = Ei " EF( ) q  ,  which  plays  an  important  role  in  MOS  electrostatics.    Solution:  To  determine   Ei ! EF ,  we  begin  with  the  relation  between   Ei  and   EF :  

p0 = N A = nieEi!EF( ) kBT  

and  solve  it  to  find  

Ei ! EF( ) = kBT ln

N A

ni

"#$

%&'  

The  potential  is  

!F =

Ei " EF( )q

=kBTq

lnN A

ni

#$%

&'(  

Putting  in  numbers:  

!F = 0.026ln 1017

1010

"#$

%&'= 0.42 V    

!F = +0.42 V  

Note  that   !F  is  positive  in  a  P-­‐type  semiconductor  (and  negative  in  an  N-­‐type  semiconductor).  

 1b)   Assume   !S = !F  and  sketch  the  energy  band  diagram  and  the  charge  density,  

! x( )  vs.  position  in  the  semiconductor.              

Page 2: ECE305#Homework#SOLUTIONS:#Week#11# …Week11HWSolutions_S15.pdfECE305#Homework#SOLUTIONS:#Week#11# # MarkLundstrom# PurdueUniversity# # # 1) InanMOScapacitor,everythingdependson#the#bandbendingin#the#

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  2  

HW11  Solutions  (continued):    

Solution:  

   

 Note:  When  solving  for  the  electric  fields  in  the  depletion  approximation,  we  approximate  the  charge  density  as  a  rectangle  with  an  abrupt  edge  at   x =W .    

 1c)   Assume   !S = "!F    and  sketch  the  energy  band  diagram  and  the  charge  density,  

! x( )  vs.  position  in  the  semiconductor.    

Solution:    

 Negative  surface  potential  means  that  the  bands  bend  up  at  the  surface.  Majority  carrier  holes  will  pile  up  at  the  surface  and  that  there  is  NO  depletion  region.    

Page 3: ECE305#Homework#SOLUTIONS:#Week#11# …Week11HWSolutions_S15.pdfECE305#Homework#SOLUTIONS:#Week#11# # MarkLundstrom# PurdueUniversity# # # 1) InanMOScapacitor,everythingdependson#the#bandbendingin#the#

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  3  

HW11  Solutions  (continued):  

 Holes  pile  up  (“accumulate”)  near  the  surface,  giving  a  large,  positive  space  charge.    Note  that  the  band  bending  occurs  in  a  much  thinner  region  near  the  surface  as  compared  to  the  case  for  depletion  in  1b)(the  dotted  line).  

 1d)   Assume   !S = 0    and  sketch  the  energy  band  diagram  and  the  charge  density,  

! x( )  vs.  position  in  the  semiconductor.    

Solution:  

 A  zero  surface  potential  means  no  band  bending.  

 

Page 4: ECE305#Homework#SOLUTIONS:#Week#11# …Week11HWSolutions_S15.pdfECE305#Homework#SOLUTIONS:#Week#11# # MarkLundstrom# PurdueUniversity# # # 1) InanMOScapacitor,everythingdependson#the#bandbendingin#the#

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  4  

HW11  Solutions  (continued):    No  bandbending  means  no  space  charge  in  the  semiconductor  (the  heavy  line  at  

! x( ) = 0 ).    

1e)   Assume   !S = 2!F  and  sketch  the  energy  band  diagram  and  the  charge  density,  

! x( )  vs.  position  in  the  semiconductor.    

Solution:    

   

   As  compared  to  1b)  (shown  by  the  dotted  line),  the  depletion  layer  is  deeper,  

WT >W ,  because  the  surface  potential  is  larger.    But  now  the  intrinsic  level  at  the  surface  is  as  far  below  the  Fermi  level  as  it  was  above  the  Fermi  level  in  the  bulk.    So  the  concentration  of  electrons  at  the  surface  is  the  same  as  the  concentration  of  holes  in  the  bulk.    This  electron  inversion  charge  piles  up  very  close  to  the  surface.    (For  analytical  calculations,  we  treat  it  as  a  delta-­‐function.)            

Page 5: ECE305#Homework#SOLUTIONS:#Week#11# …Week11HWSolutions_S15.pdfECE305#Homework#SOLUTIONS:#Week#11# # MarkLundstrom# PurdueUniversity# # # 1) InanMOScapacitor,everythingdependson#the#bandbendingin#the#

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  5  

HW11  Solutions  (continued):    At   !S = 2!F ,  an  inversion  layer  is  beginning  to  develop  at  the  surface,  but  most  of  the  charge  is  still  in  the  depletion  layer.    As  the  surface  potential  increase  just  a  little  above   !S = 2!F ,  the  inversion  charge  builds  up  exponentially.    The  term  “strong  inversion”  describes  the  situation  for   !S  just  a  little  above   2!F  where  the  inversion  charge  dominates.  

   

To  test  your  understanding,  you  should  repeat  this  problem  for  an  N-­‐type  semiconductor  with   N D = 1017 cm-3 .    Note  that   !F  is  still  defined  as  

!F = Ei " EF( ) q ,  so   !F  is  negative  in  an  N-­‐type  semiconductor.      

2) Get  a  feel  for  the  magnitudes  of  important  quantities  by  answering  the  following  questions  for  a  room  temperature  MOS  capacitor  with     N A = 1018 cm-3  and  an  oxide  thickness  of  2  nm  with   KO = 3.9 .    

2a)   Compute   !F = Ei " EF( ) q    Solution:  

!F =

Ei " EF( )q

=kBTq

lnN A

ni

#$%

&'(= 0.026ln 1018

1010

#$%

&'(= 0.479  

!F = 0.479 V  

 2b)    Compute  the  depletion  layer  thickness,   W ,  when   !S = 2!F .    Solution:  

W =

2KS!0

qN A

"S

#

$%

&

'(

1/2

= 2)11.8)8.854)10*14

1.6)10*19 )1018 ) 2) 0.479#

$%

&

'(

1/2

= 3.54)10*6 cm    

W =WT = 3.54!10"6 cm = 0.0354 µm = 35.4 nm  

 2c)     Compute  the  electric  field  at  the  surface,   E S ,  when   !S = 2!F .    

Solution:  

We  could  use  the  formula:     E S =

2qN A

KS!0

"S

#

$%

&

'(

1/2

   

Or  we  could  remember  that:    

Page 6: ECE305#Homework#SOLUTIONS:#Week#11# …Week11HWSolutions_S15.pdfECE305#Homework#SOLUTIONS:#Week#11# # MarkLundstrom# PurdueUniversity# # # 1) InanMOScapacitor,everythingdependson#the#bandbendingin#the#

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  6  

HW11  Solutions  (continued):    

!S =

12E SW  

Since  we  know  the  surface  potential  and   W ,  the  second  way  is  easier.  

E S =

2!S

W=

2 " 2 " 0.479( )3.54 "10#6 = 5.42 "105 V/cm  

E S 2!F( ) = 5.42 "105 V/cm

   It  is  important  to  note  that  although  we  are  at  the  onset  of  inversion,  we  are  assuming  that  most  of  the  charge  is  still  in  the  depletion  region,  so  that  we  can  still  use  depletion  approximation  equations.

 

 2d)   Compute  the  threshold  voltage,   VT ,  assuming  no  metal-­‐semiconductor  

workfunction  difference.    (This  is  the  gate  voltage  needed  to  make   !S = 2!F  and  create  an  inversion  layer  in  the  semiconductor.  

 Solution:  According  to  SDF,  eqn.  (16.26)  

VG = !S +

KS

K0

x0E S  

If  we  define  the  oxide  capacitance  per  cm2  as  

Cox =

KS!0

x0

   

and  remember  that  the  charge  in  the  semiconductor,   QS ,  is  related  to  the  electric  field  at  the  surface  by  

QS = !KS"0E S  then  we  can  write  the   VG    expression  as  

VG = !S "

QS

Cox

 

which  is  easier  to  remember.    

QS 2!F( ) = "KS#0E S 2!F( ) = "11.8$ 8.845$10"14 $ 5.42 $105 = "5.72 $10"7 C/cm2  

Cox =

KO!0

x0

= 3.9"8.854"10#14

2"10#7 = 1.73"10#6 F/cm2    

VG 2!F( ) = 2!F "

QS 2!F( )Cox

= 0.958+ 5.72 #10"7

1.73#10"6 = 1.29 V    

VG 2!F( ) =VT = 1.29 V  

 

Page 7: ECE305#Homework#SOLUTIONS:#Week#11# …Week11HWSolutions_S15.pdfECE305#Homework#SOLUTIONS:#Week#11# # MarkLundstrom# PurdueUniversity# # # 1) InanMOScapacitor,everythingdependson#the#bandbendingin#the#

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  7  

HW11  Solutions  (continued):    Note  that  in  practice,  we  would  need  to  add  a  metal  –semiconductor  workfunction  difference,  which  would  shift  the  threshold  voltage  about  1  V  negative  and  make   VT  about  0.3  V.  

   3) Answer  the  following  questions  about  the  energy  band  diagram  sketched  below.    

Assume  that  the  zero  for  electrostatic  potential  is  in  the  semiconductor  bulk,  at  large  x  and  that  there  is  no  metal-­‐semiconductor  workfunction  difference.    Also  assume  that  the  relative  dielectric  constant  of  the  oxide  is KO = 3.9 .    

   3a)    What  it  the  surface  potential,   !S ?    

Solution:  It  is  the  bandbending  in  the  semiconductor.  Since  the  bands  bend  up,  the  surface    potential  is  negative.    From  the  figure,  we  see:    

!S = "0.24 V  

 3b)    What  gate  voltage,   VG ,  is  applied?    

Solution:  The  gate  voltage  is  the  difference  between  the  Fermi  level  in  the  metal  and  the  Fermi  level  in  the  semiconductor.    Since  the  Fermi  level  in  the  metal  is  higher  than  the  Fermi  level  in  the  semiconductor,  the  gate  voltage  is  negative.    From  the  figure,  we  see:    

VG = !0.96 V  

   

Page 8: ECE305#Homework#SOLUTIONS:#Week#11# …Week11HWSolutions_S15.pdfECE305#Homework#SOLUTIONS:#Week#11# # MarkLundstrom# PurdueUniversity# # # 1) InanMOScapacitor,everythingdependson#the#bandbendingin#the#

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  8  

HW11  Solutions  (continued):    3c)    What  is  the  voltage  across  the  oxide,   !"ox ?    

Solution:  Voltages  add  up  according  to  Kirchoff’s  Law.  

VG = !"ox +"S    

!"ox =VG #"S = #0.96+ 0.24 = #0.72 V     !"ox = #0.72 V

   Note  that

  !"ox = "ox x = #x0( )#"ox x = 0( ) ;  it  is  negative  because  the  potential  is  

more  negative  at  the  top  of  the  oxide  than  at  the  oxide-­‐Si  interface.        

3d)    What  is  the  doping  density,   N D .    

Solution:  We  determine  the  carrier  density  in  the  bulk,  which  we  assume  is  equal  to  the  doping  density,  from  

n0 = nieEF !Ei( ) kBT = N D    

 Putting  in  numbers:  

N D = nieEF !Ei( ) kBT = 1010 e0.437 0.026 = 1.99"1017    

N D = 1.99!1017 cm-3  

 3e)    What  is  the  width  of  the  depletion  region,   W ?    

Solution:  

W =

2KS!0

qN D

"#S( )$

%&

'

()

1/2

 

We  know  the  surface  potential  from  the  figure,  and  we  have  just  determined  the  doping  density,  so  

W =

2KS!0

qN D

"#S( )$

%&

'

()

1/2

= 2*11.8*8.854*10"14

1.6*10"19 *1.99*1017 * 0.24$

%&

'

()

1/2

= 3.97 *10"6 cm  

 

W = 3.97 !10"6 cm  

 3f)      What  is  the  thickness  of  the  oxide?    

Solution:  The  volt  drop  across  the  oxide  is  the  electric  field  in  the  oxide  times  the  thickness  of  the  oxide:  

Page 9: ECE305#Homework#SOLUTIONS:#Week#11# …Week11HWSolutions_S15.pdfECE305#Homework#SOLUTIONS:#Week#11# # MarkLundstrom# PurdueUniversity# # # 1) InanMOScapacitor,everythingdependson#the#bandbendingin#the#

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  9  

 HW11  Solutions  (continued):  

!"ox =E oxxo     xo =

!"ox

E ox

 

We  deduced     !"ox in  part  3c).        The  electric  field  in  the  oxide  can  be  determined  from  Gauss’s  Law  (assuming  no  charge  at  the  oxide-­‐semiconductor  interface.    

KO!0E ox = KS!0E S     E ox =

KS

KO

E S =11.83.9

E S = 3.03E S  

E S = !

2qN D

KS"0

!#S( )$

%&

'

()

1/2

  N D = 1.99!1017 cm-3    (from  part  3d)  

!S = "0.24 V   (from  part  3a)    Putting  in  numbers:  

E S = !

2qN D

KS"0

!#S( )$

%&

'

()

1/2

= !1.21*105 V/cm  

So  

E ox = 3.03E S = 3.03! "1.21!105 = "3.66!105    Finally,    

xo =

!"ox

E ox

= #0.72#3.66$105 = 1.97 $10#6 cm  

xo = 19.7 nm  

   

4) A  high-­‐frequency  MOS  capacitance  vs.  voltage  characteristic  is  sketched  below.    Answer  the  following  question  assuming  that  the  semiconductor  is  silicon  at  room  temperature.  

 

   

Page 10: ECE305#Homework#SOLUTIONS:#Week#11# …Week11HWSolutions_S15.pdfECE305#Homework#SOLUTIONS:#Week#11# # MarkLundstrom# PurdueUniversity# # # 1) InanMOScapacitor,everythingdependson#the#bandbendingin#the#

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  10  

 HW11  Solutions  (continued):    

4a)    Is  the  semiconductor  N-­‐type  or  P-­‐type?      Explain  your  answer.    

Solution:    P-­type.    Because  accumulation  occurs  for  large  negative  voltages  and  inversion  for  large,  positive  gate  voltages.    

 4b)    What  is  the  thickness  of  the  oxide?    

Solution:  In  accumulation,  the  total  capacitance  is  approximately  the  oxide  capacitance.  

C = Cox =

KO!0

xo

= 1.15"10#6 F/cm2  

xo =

KO!0

C= 3.9"8.854"10#14

1.15"10#6 = 3.0"10#7 cm  

xo = 3 nm  

 4c)    What  is  the  thickness  of  the  depletion  layer  in  inversion?    

Solution:  We  have  2  capacitors  in  series:    

1C

= 1Cox

+ 1CS

   

CS =

1C! 1

Cox

"

#$%

&'

!1

= 10.38(10!6 !

11.15(10!6

"#$

%&'

!1

= 0.57 (10!6 F/cm2  

We  also  know  that  the  semiconductor  capacitance  is  related  to  the  depletion  layer  thickness:  

CS =

KS!0

WT

 

So  

WT =

KS!0

CS

= 11.8"8.854"10#14

0.57 "10#7 = 1.84"10#6 cm   WT = 18.4 nm  

     

 

Page 11: ECE305#Homework#SOLUTIONS:#Week#11# …Week11HWSolutions_S15.pdfECE305#Homework#SOLUTIONS:#Week#11# # MarkLundstrom# PurdueUniversity# # # 1) InanMOScapacitor,everythingdependson#the#bandbendingin#the#

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  11  

HW11  Solutions  (continued):    4d)    Explain  how  you  could  calculate  the  doping  density  of  the  semiconductor.    

Solution:    

WT =

2KS!0

qN A

2"F( )#

$%

&

'(

1/2

=2KS!0

qN A

2kBTq

lnN A

ni

)*+

,-.

)

*+,

-.#

$%%

&

'((

1/2

 

WT =

KS!0 kBT q( )q

"

#$$

%

&''

1/2ln N A ni( )

N A

 

 Since   WT  is  known  from  the  measurement,  we  can  guess   N A  and  iteratively  adjust  it  until  the  above  equation  is  satisfied.  

   5) The  problem  concerns  an  MOS  capacitor  that  consists  of  a  metal  electrode,  a  2  nm  thick  

silicon  dioxide  layer  with   KO = 3.9 ,  and  a  silicon  substrate  that  begins  at   x = 0 .    The  electric  field  in  the  semiconductor  is  shown  below.  

 Answer  the  following  questions.    5a)   What  is  the  surface  potential,   !S ?  (Assume  that  the  potential  is  zero  deep  in  the  

semiconductor.    

Solution:  

!S =

12E SW = 0.5" 1.21"105( )" 3.97 "10#6( ) = 0.24  

!S = +0.24 V

 The  sign  is  positive,  because  the  electric  field  >  0,  so  the  potential  at  the  surface  much  be  greater  than  the  potential  in  the  bulk.  

Page 12: ECE305#Homework#SOLUTIONS:#Week#11# …Week11HWSolutions_S15.pdfECE305#Homework#SOLUTIONS:#Week#11# # MarkLundstrom# PurdueUniversity# # # 1) InanMOScapacitor,everythingdependson#the#bandbendingin#the#

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  12  

HW11  Solutions  (continued):    

5b)  What  is  the  doping  density  in  the  semiconductor?    

Solution:    Use  the  Poisson  equation:    

dEdx

= !KS"0

= #qN A

KS"0

 

 

dEdx

=0!E S

W= !

E S

W  

 Putting  the  above  two  equations  together,  we  fid  

N A =

KS!0

qWE S

 

N A =

11.8!8.854!10"14

1.6!10"19( ) 3.97 !10"6( )1.21!105 = 1.99!1017

 

N A = 1.99!1017 cm-3  

 5c)   What  is  the  electric  field  in  the  oxide?    

Solution:    

The  D-­‐field  is  continuous:  

KO!0E ox = KS!0E S     E ox =

KS

KO

E S =11.83.9

E S = 3.03E S  

E ox = 3.03!1.21!105 = 3.67 !105    

E ox = 3.67 !105 V/cm

   5d)   What  is  the  voltage  drop  across  the  oxide?    Solution:    

!"ox =E oxxo  

!"ox = 3.67 #105( )# 2#10$7 = 0.073  

!"ox = 0.073 V  

Page 13: ECE305#Homework#SOLUTIONS:#Week#11# …Week11HWSolutions_S15.pdfECE305#Homework#SOLUTIONS:#Week#11# # MarkLundstrom# PurdueUniversity# # # 1) InanMOScapacitor,everythingdependson#the#bandbendingin#the#

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  13  

HW11  Solutions  (continued):    

5e)   What  is  the  electrostatic  potential  in  the  metal  gate?    

Solution:      Add  the  volt  drop  across  the  semiconductor  and  the  volt  drop  across  the  oxide:    

!metal = "!ox +!S = 0.073+ 0.24 = 0.31 V    

!metal = 0.31 V  

   


Recommended