+ All Categories
Home > Documents > ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

Date post: 20-Dec-2015
Category:
View: 218 times
Download: 0 times
Share this document with a friend
Popular Tags:
55
ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009
Transcript
Page 1: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

ECOE RESEARCH GROUP

CYCHANG

NATIONAL ACADEMIES USA

June2009

ECO-ERA

bull ECO-CULTURE

bull ECO-ECONOMY

bull ECO-SCIENCES

HOW TO CTREATE

NEW CREATIVE MENTALITY

CYCHANGNATIONAL ACADEMIES USA

June2009

CYC ECO-E RESEARCH GROUP

April 232009

PROLOGUEbull GREEN MOTHER EARTHbull GREEN SCIENCEbull GREEN ECONOMYbull GREEN PHILOSOPHYGREEN CULTURE

bull GREEN PHILOSOPHYGREEN CULTUREbull GREEN ECONOMY

bull HOW

QUANTUM LOCALIZATIONIN A PERPENDICULR MAGNETIC

FIELD

QUANTUM LOCALIZATION IN

MQWmdashPRBV57N20 GOSSARD

QUANTUM LOCALIZATION IN INSULATOR

Magnetic field confined metallic particle polariztion

bull Metallic polarizability by Lindhard

bull εm= 1+(4π e2NL3) Σ∣ < n r n∣ ∣ rsquo >∣ 2

bull (En ndashEnrsquo)bull Where bull N=dm-3

bull dm=Lm 2a

B

bull Lm=magnetic length=radic2πheB (Gassard et al

bull PRBV57N201998)

Si Oxide

Ta 60nmPtMn 15nm

CoFe 3nm

CoFe 3nmTa

Al

Al

Temporary Structure(0 Cycle)

090211 6

Al2O3 = 6 nm

Si3N4 60 nm

Breakdown VoltageBreakdown Voltage

I-VI-V

Voltage (V)

00 02 04 06 08 10 12 14

Cur

rent

(A

)

1e-11

1e-10

1e-9

1e-8

1e-7

1e-6

4 data

STD 10-11~10-12

3 Cycle 10-10~10-9

9

Pasteurrsquos Quadrant Research can be Applied Practical and BasicAll at the Same

Timebull Use-inspired research ndash increases existing

understanding and creates improved technology

ndash can take existing technology to new levels but it

bull can also improve understanding of fundamental principles -NRC

Pure Pure Basic Basic Research Research (Bohr)(Bohr)

Use-Use-Inspired Inspired Research Research (Pasteur)(Pasteur)

Pure Pure Applied Applied Research Research (Edison)(Edison)

No Yes

Que

st fo

r F

unda

men

tal

Und

erst

andi

ng

Yes

No

Quadrant Model of Scientific Research

Considerations of Use

From Donald Stokes Pasteurrsquos Quadrant

1997

10

Silicon Valley vs Silicon Island

The Opportunity-Interdisciplinary

CY Chang NCTU

John Hannesey Stanford

ECO-E RESEARCH GROUPbull GREEN ILLUMINATION

120 lmW WW CAN SAVE 120 GW POWER

240 lmW SAVE MORE AND MOREbull NEPrsquos KUROSHIO POWER GENERATIONbull Green High Efficiency Thin Film Solar Cellsbull Post CMOS BEYOND 22nm CHANG-INTEL Tera Hz III-V FET on Si ULSI bull Epilogue

bull GIANT ENERGY STORAGEbull 98uF 1 um2bull CONNECTING MICRO-CELLs ON 1 CM2bull Stacked to 1cm height store 7000 amp-hr

ETCHED VOIDS AND INVERSE PARAMIDE

120 ENHANCEMENT AT NORMAL VIEW

85 gain integrated

Sapphire

Inverted Pyramids

580

(a) SEM image of etched GaN surface The inverted pyramid structures can be seen from the over etched opening holes (b) SEM cross section image of the regrown sample(c) A zoom out view of the inverted pyramid structures at GaN-sapphire interface

(a)

(b)

(c)

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

(a) Schematic of IP-LED R-LED has similar structure except a flat GaN-sapphire interface

(b) EL spectra of IP-LED and R-LED in normal direction(c) L-I-V curves of IP-LED and R-LED (d) Far field patterns of IP-LED and R-LED

(a)(b)

(c) (d)

(002)

(102)

FIG 2 X-ray diffraction rocking curves for IP-LED and R-LED samples

P-GaNMQWs

N-GaN

Sapphire

IP-GaNair

Sapphire

N-GaN

P-GaNMQWs

P-GaNMQWsN-GaNIP-GaNair

Sapphire

Al mirror

P-GaNMQWsN-GaN

Sapphire

Al mirror

Ray tracing simulations (a) and (b) are zoom in views at GaN-sapphire interface for IP-LED and R-LED (c) and (d) are full chip views Light is effectively coupled out in normal direction for IP-LED

(a) (b)

(c) (d)

ETCH OUT GRAIN BOUNDARIES-CRYSTAL

QUALITY-IQE

AIR VOIDS-TOTAL REFLECTIONS-EQE

Non-polar and Semi-polar GaN

Quantum Confined Stark Effect (QCSE)

bullNonpolar orientations of the wurtzite GaN-base materials suddenly attracted attention to be used as device growth planes to minimize QCSE

Quantum Mechanical Transition Rate

Fermirsquos golden rule

Quantum mechanical transition rate W2rarr1 Electron from state I2 > to state l1

>W2rarr1=2πħ |H rsquo21|ρf

L A Coldren and S W Corzine diode lasers and photonic integrated circuits New York Wiley 1995 p 512

ρf final density of states function

|H rsquo21|=(qA02m0) |MT|2

Transition matrix element |MT|2equiv| < μc|ecirc p|μv > |2 | < F2|F1 > |2

|μc > and |μv > Bloch function of conduction and valence band

|Гe-h |2 = | < F2|F1 > |2

Гe-h overlap ratio of wave function in electron and hole

Non-polar LED structure

Diamond Mask

lt0001gtsap

lt10-10gtsap

lt11-20gtsap

a-plane sapphire

m-plane n GaNSi

InGaNGaN

P-GaNMg

lt0001gtGaNlt11-20gtGaN

lt10-10gtGaN

CrAu

CrAuITO layer

MQW

PL Spectrum at Room Temperature

Note5320nm=266nm Laser x 2

5320

FWHM=100 nm

20 22 24 26 28 30 32 34 36 38

0

5000

10000

15000

20000

20 22 24 26 28 30 32 34 36 38

PL Inte

nsi

ty(a

u)

Photon energy(eV)

M571D

PL Spectrum at 13K

FWHM=41arcsec

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 2: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

ECO-ERA

bull ECO-CULTURE

bull ECO-ECONOMY

bull ECO-SCIENCES

HOW TO CTREATE

NEW CREATIVE MENTALITY

CYCHANGNATIONAL ACADEMIES USA

June2009

CYC ECO-E RESEARCH GROUP

April 232009

PROLOGUEbull GREEN MOTHER EARTHbull GREEN SCIENCEbull GREEN ECONOMYbull GREEN PHILOSOPHYGREEN CULTURE

bull GREEN PHILOSOPHYGREEN CULTUREbull GREEN ECONOMY

bull HOW

QUANTUM LOCALIZATIONIN A PERPENDICULR MAGNETIC

FIELD

QUANTUM LOCALIZATION IN

MQWmdashPRBV57N20 GOSSARD

QUANTUM LOCALIZATION IN INSULATOR

Magnetic field confined metallic particle polariztion

bull Metallic polarizability by Lindhard

bull εm= 1+(4π e2NL3) Σ∣ < n r n∣ ∣ rsquo >∣ 2

bull (En ndashEnrsquo)bull Where bull N=dm-3

bull dm=Lm 2a

B

bull Lm=magnetic length=radic2πheB (Gassard et al

bull PRBV57N201998)

Si Oxide

Ta 60nmPtMn 15nm

CoFe 3nm

CoFe 3nmTa

Al

Al

Temporary Structure(0 Cycle)

090211 6

Al2O3 = 6 nm

Si3N4 60 nm

Breakdown VoltageBreakdown Voltage

I-VI-V

Voltage (V)

00 02 04 06 08 10 12 14

Cur

rent

(A

)

1e-11

1e-10

1e-9

1e-8

1e-7

1e-6

4 data

STD 10-11~10-12

3 Cycle 10-10~10-9

9

Pasteurrsquos Quadrant Research can be Applied Practical and BasicAll at the Same

Timebull Use-inspired research ndash increases existing

understanding and creates improved technology

ndash can take existing technology to new levels but it

bull can also improve understanding of fundamental principles -NRC

Pure Pure Basic Basic Research Research (Bohr)(Bohr)

Use-Use-Inspired Inspired Research Research (Pasteur)(Pasteur)

Pure Pure Applied Applied Research Research (Edison)(Edison)

No Yes

Que

st fo

r F

unda

men

tal

Und

erst

andi

ng

Yes

No

Quadrant Model of Scientific Research

Considerations of Use

From Donald Stokes Pasteurrsquos Quadrant

1997

10

Silicon Valley vs Silicon Island

The Opportunity-Interdisciplinary

CY Chang NCTU

John Hannesey Stanford

ECO-E RESEARCH GROUPbull GREEN ILLUMINATION

120 lmW WW CAN SAVE 120 GW POWER

240 lmW SAVE MORE AND MOREbull NEPrsquos KUROSHIO POWER GENERATIONbull Green High Efficiency Thin Film Solar Cellsbull Post CMOS BEYOND 22nm CHANG-INTEL Tera Hz III-V FET on Si ULSI bull Epilogue

bull GIANT ENERGY STORAGEbull 98uF 1 um2bull CONNECTING MICRO-CELLs ON 1 CM2bull Stacked to 1cm height store 7000 amp-hr

ETCHED VOIDS AND INVERSE PARAMIDE

120 ENHANCEMENT AT NORMAL VIEW

85 gain integrated

Sapphire

Inverted Pyramids

580

(a) SEM image of etched GaN surface The inverted pyramid structures can be seen from the over etched opening holes (b) SEM cross section image of the regrown sample(c) A zoom out view of the inverted pyramid structures at GaN-sapphire interface

(a)

(b)

(c)

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

(a) Schematic of IP-LED R-LED has similar structure except a flat GaN-sapphire interface

(b) EL spectra of IP-LED and R-LED in normal direction(c) L-I-V curves of IP-LED and R-LED (d) Far field patterns of IP-LED and R-LED

(a)(b)

(c) (d)

(002)

(102)

FIG 2 X-ray diffraction rocking curves for IP-LED and R-LED samples

P-GaNMQWs

N-GaN

Sapphire

IP-GaNair

Sapphire

N-GaN

P-GaNMQWs

P-GaNMQWsN-GaNIP-GaNair

Sapphire

Al mirror

P-GaNMQWsN-GaN

Sapphire

Al mirror

Ray tracing simulations (a) and (b) are zoom in views at GaN-sapphire interface for IP-LED and R-LED (c) and (d) are full chip views Light is effectively coupled out in normal direction for IP-LED

(a) (b)

(c) (d)

ETCH OUT GRAIN BOUNDARIES-CRYSTAL

QUALITY-IQE

AIR VOIDS-TOTAL REFLECTIONS-EQE

Non-polar and Semi-polar GaN

Quantum Confined Stark Effect (QCSE)

bullNonpolar orientations of the wurtzite GaN-base materials suddenly attracted attention to be used as device growth planes to minimize QCSE

Quantum Mechanical Transition Rate

Fermirsquos golden rule

Quantum mechanical transition rate W2rarr1 Electron from state I2 > to state l1

>W2rarr1=2πħ |H rsquo21|ρf

L A Coldren and S W Corzine diode lasers and photonic integrated circuits New York Wiley 1995 p 512

ρf final density of states function

|H rsquo21|=(qA02m0) |MT|2

Transition matrix element |MT|2equiv| < μc|ecirc p|μv > |2 | < F2|F1 > |2

|μc > and |μv > Bloch function of conduction and valence band

|Гe-h |2 = | < F2|F1 > |2

Гe-h overlap ratio of wave function in electron and hole

Non-polar LED structure

Diamond Mask

lt0001gtsap

lt10-10gtsap

lt11-20gtsap

a-plane sapphire

m-plane n GaNSi

InGaNGaN

P-GaNMg

lt0001gtGaNlt11-20gtGaN

lt10-10gtGaN

CrAu

CrAuITO layer

MQW

PL Spectrum at Room Temperature

Note5320nm=266nm Laser x 2

5320

FWHM=100 nm

20 22 24 26 28 30 32 34 36 38

0

5000

10000

15000

20000

20 22 24 26 28 30 32 34 36 38

PL Inte

nsi

ty(a

u)

Photon energy(eV)

M571D

PL Spectrum at 13K

FWHM=41arcsec

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 3: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

PROLOGUEbull GREEN MOTHER EARTHbull GREEN SCIENCEbull GREEN ECONOMYbull GREEN PHILOSOPHYGREEN CULTURE

bull GREEN PHILOSOPHYGREEN CULTUREbull GREEN ECONOMY

bull HOW

QUANTUM LOCALIZATIONIN A PERPENDICULR MAGNETIC

FIELD

QUANTUM LOCALIZATION IN

MQWmdashPRBV57N20 GOSSARD

QUANTUM LOCALIZATION IN INSULATOR

Magnetic field confined metallic particle polariztion

bull Metallic polarizability by Lindhard

bull εm= 1+(4π e2NL3) Σ∣ < n r n∣ ∣ rsquo >∣ 2

bull (En ndashEnrsquo)bull Where bull N=dm-3

bull dm=Lm 2a

B

bull Lm=magnetic length=radic2πheB (Gassard et al

bull PRBV57N201998)

Si Oxide

Ta 60nmPtMn 15nm

CoFe 3nm

CoFe 3nmTa

Al

Al

Temporary Structure(0 Cycle)

090211 6

Al2O3 = 6 nm

Si3N4 60 nm

Breakdown VoltageBreakdown Voltage

I-VI-V

Voltage (V)

00 02 04 06 08 10 12 14

Cur

rent

(A

)

1e-11

1e-10

1e-9

1e-8

1e-7

1e-6

4 data

STD 10-11~10-12

3 Cycle 10-10~10-9

9

Pasteurrsquos Quadrant Research can be Applied Practical and BasicAll at the Same

Timebull Use-inspired research ndash increases existing

understanding and creates improved technology

ndash can take existing technology to new levels but it

bull can also improve understanding of fundamental principles -NRC

Pure Pure Basic Basic Research Research (Bohr)(Bohr)

Use-Use-Inspired Inspired Research Research (Pasteur)(Pasteur)

Pure Pure Applied Applied Research Research (Edison)(Edison)

No Yes

Que

st fo

r F

unda

men

tal

Und

erst

andi

ng

Yes

No

Quadrant Model of Scientific Research

Considerations of Use

From Donald Stokes Pasteurrsquos Quadrant

1997

10

Silicon Valley vs Silicon Island

The Opportunity-Interdisciplinary

CY Chang NCTU

John Hannesey Stanford

ECO-E RESEARCH GROUPbull GREEN ILLUMINATION

120 lmW WW CAN SAVE 120 GW POWER

240 lmW SAVE MORE AND MOREbull NEPrsquos KUROSHIO POWER GENERATIONbull Green High Efficiency Thin Film Solar Cellsbull Post CMOS BEYOND 22nm CHANG-INTEL Tera Hz III-V FET on Si ULSI bull Epilogue

bull GIANT ENERGY STORAGEbull 98uF 1 um2bull CONNECTING MICRO-CELLs ON 1 CM2bull Stacked to 1cm height store 7000 amp-hr

ETCHED VOIDS AND INVERSE PARAMIDE

120 ENHANCEMENT AT NORMAL VIEW

85 gain integrated

Sapphire

Inverted Pyramids

580

(a) SEM image of etched GaN surface The inverted pyramid structures can be seen from the over etched opening holes (b) SEM cross section image of the regrown sample(c) A zoom out view of the inverted pyramid structures at GaN-sapphire interface

(a)

(b)

(c)

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

(a) Schematic of IP-LED R-LED has similar structure except a flat GaN-sapphire interface

(b) EL spectra of IP-LED and R-LED in normal direction(c) L-I-V curves of IP-LED and R-LED (d) Far field patterns of IP-LED and R-LED

(a)(b)

(c) (d)

(002)

(102)

FIG 2 X-ray diffraction rocking curves for IP-LED and R-LED samples

P-GaNMQWs

N-GaN

Sapphire

IP-GaNair

Sapphire

N-GaN

P-GaNMQWs

P-GaNMQWsN-GaNIP-GaNair

Sapphire

Al mirror

P-GaNMQWsN-GaN

Sapphire

Al mirror

Ray tracing simulations (a) and (b) are zoom in views at GaN-sapphire interface for IP-LED and R-LED (c) and (d) are full chip views Light is effectively coupled out in normal direction for IP-LED

(a) (b)

(c) (d)

ETCH OUT GRAIN BOUNDARIES-CRYSTAL

QUALITY-IQE

AIR VOIDS-TOTAL REFLECTIONS-EQE

Non-polar and Semi-polar GaN

Quantum Confined Stark Effect (QCSE)

bullNonpolar orientations of the wurtzite GaN-base materials suddenly attracted attention to be used as device growth planes to minimize QCSE

Quantum Mechanical Transition Rate

Fermirsquos golden rule

Quantum mechanical transition rate W2rarr1 Electron from state I2 > to state l1

>W2rarr1=2πħ |H rsquo21|ρf

L A Coldren and S W Corzine diode lasers and photonic integrated circuits New York Wiley 1995 p 512

ρf final density of states function

|H rsquo21|=(qA02m0) |MT|2

Transition matrix element |MT|2equiv| < μc|ecirc p|μv > |2 | < F2|F1 > |2

|μc > and |μv > Bloch function of conduction and valence band

|Гe-h |2 = | < F2|F1 > |2

Гe-h overlap ratio of wave function in electron and hole

Non-polar LED structure

Diamond Mask

lt0001gtsap

lt10-10gtsap

lt11-20gtsap

a-plane sapphire

m-plane n GaNSi

InGaNGaN

P-GaNMg

lt0001gtGaNlt11-20gtGaN

lt10-10gtGaN

CrAu

CrAuITO layer

MQW

PL Spectrum at Room Temperature

Note5320nm=266nm Laser x 2

5320

FWHM=100 nm

20 22 24 26 28 30 32 34 36 38

0

5000

10000

15000

20000

20 22 24 26 28 30 32 34 36 38

PL Inte

nsi

ty(a

u)

Photon energy(eV)

M571D

PL Spectrum at 13K

FWHM=41arcsec

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 4: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

QUANTUM LOCALIZATIONIN A PERPENDICULR MAGNETIC

FIELD

QUANTUM LOCALIZATION IN

MQWmdashPRBV57N20 GOSSARD

QUANTUM LOCALIZATION IN INSULATOR

Magnetic field confined metallic particle polariztion

bull Metallic polarizability by Lindhard

bull εm= 1+(4π e2NL3) Σ∣ < n r n∣ ∣ rsquo >∣ 2

bull (En ndashEnrsquo)bull Where bull N=dm-3

bull dm=Lm 2a

B

bull Lm=magnetic length=radic2πheB (Gassard et al

bull PRBV57N201998)

Si Oxide

Ta 60nmPtMn 15nm

CoFe 3nm

CoFe 3nmTa

Al

Al

Temporary Structure(0 Cycle)

090211 6

Al2O3 = 6 nm

Si3N4 60 nm

Breakdown VoltageBreakdown Voltage

I-VI-V

Voltage (V)

00 02 04 06 08 10 12 14

Cur

rent

(A

)

1e-11

1e-10

1e-9

1e-8

1e-7

1e-6

4 data

STD 10-11~10-12

3 Cycle 10-10~10-9

9

Pasteurrsquos Quadrant Research can be Applied Practical and BasicAll at the Same

Timebull Use-inspired research ndash increases existing

understanding and creates improved technology

ndash can take existing technology to new levels but it

bull can also improve understanding of fundamental principles -NRC

Pure Pure Basic Basic Research Research (Bohr)(Bohr)

Use-Use-Inspired Inspired Research Research (Pasteur)(Pasteur)

Pure Pure Applied Applied Research Research (Edison)(Edison)

No Yes

Que

st fo

r F

unda

men

tal

Und

erst

andi

ng

Yes

No

Quadrant Model of Scientific Research

Considerations of Use

From Donald Stokes Pasteurrsquos Quadrant

1997

10

Silicon Valley vs Silicon Island

The Opportunity-Interdisciplinary

CY Chang NCTU

John Hannesey Stanford

ECO-E RESEARCH GROUPbull GREEN ILLUMINATION

120 lmW WW CAN SAVE 120 GW POWER

240 lmW SAVE MORE AND MOREbull NEPrsquos KUROSHIO POWER GENERATIONbull Green High Efficiency Thin Film Solar Cellsbull Post CMOS BEYOND 22nm CHANG-INTEL Tera Hz III-V FET on Si ULSI bull Epilogue

bull GIANT ENERGY STORAGEbull 98uF 1 um2bull CONNECTING MICRO-CELLs ON 1 CM2bull Stacked to 1cm height store 7000 amp-hr

ETCHED VOIDS AND INVERSE PARAMIDE

120 ENHANCEMENT AT NORMAL VIEW

85 gain integrated

Sapphire

Inverted Pyramids

580

(a) SEM image of etched GaN surface The inverted pyramid structures can be seen from the over etched opening holes (b) SEM cross section image of the regrown sample(c) A zoom out view of the inverted pyramid structures at GaN-sapphire interface

(a)

(b)

(c)

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

(a) Schematic of IP-LED R-LED has similar structure except a flat GaN-sapphire interface

(b) EL spectra of IP-LED and R-LED in normal direction(c) L-I-V curves of IP-LED and R-LED (d) Far field patterns of IP-LED and R-LED

(a)(b)

(c) (d)

(002)

(102)

FIG 2 X-ray diffraction rocking curves for IP-LED and R-LED samples

P-GaNMQWs

N-GaN

Sapphire

IP-GaNair

Sapphire

N-GaN

P-GaNMQWs

P-GaNMQWsN-GaNIP-GaNair

Sapphire

Al mirror

P-GaNMQWsN-GaN

Sapphire

Al mirror

Ray tracing simulations (a) and (b) are zoom in views at GaN-sapphire interface for IP-LED and R-LED (c) and (d) are full chip views Light is effectively coupled out in normal direction for IP-LED

(a) (b)

(c) (d)

ETCH OUT GRAIN BOUNDARIES-CRYSTAL

QUALITY-IQE

AIR VOIDS-TOTAL REFLECTIONS-EQE

Non-polar and Semi-polar GaN

Quantum Confined Stark Effect (QCSE)

bullNonpolar orientations of the wurtzite GaN-base materials suddenly attracted attention to be used as device growth planes to minimize QCSE

Quantum Mechanical Transition Rate

Fermirsquos golden rule

Quantum mechanical transition rate W2rarr1 Electron from state I2 > to state l1

>W2rarr1=2πħ |H rsquo21|ρf

L A Coldren and S W Corzine diode lasers and photonic integrated circuits New York Wiley 1995 p 512

ρf final density of states function

|H rsquo21|=(qA02m0) |MT|2

Transition matrix element |MT|2equiv| < μc|ecirc p|μv > |2 | < F2|F1 > |2

|μc > and |μv > Bloch function of conduction and valence band

|Гe-h |2 = | < F2|F1 > |2

Гe-h overlap ratio of wave function in electron and hole

Non-polar LED structure

Diamond Mask

lt0001gtsap

lt10-10gtsap

lt11-20gtsap

a-plane sapphire

m-plane n GaNSi

InGaNGaN

P-GaNMg

lt0001gtGaNlt11-20gtGaN

lt10-10gtGaN

CrAu

CrAuITO layer

MQW

PL Spectrum at Room Temperature

Note5320nm=266nm Laser x 2

5320

FWHM=100 nm

20 22 24 26 28 30 32 34 36 38

0

5000

10000

15000

20000

20 22 24 26 28 30 32 34 36 38

PL Inte

nsi

ty(a

u)

Photon energy(eV)

M571D

PL Spectrum at 13K

FWHM=41arcsec

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 5: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

Magnetic field confined metallic particle polariztion

bull Metallic polarizability by Lindhard

bull εm= 1+(4π e2NL3) Σ∣ < n r n∣ ∣ rsquo >∣ 2

bull (En ndashEnrsquo)bull Where bull N=dm-3

bull dm=Lm 2a

B

bull Lm=magnetic length=radic2πheB (Gassard et al

bull PRBV57N201998)

Si Oxide

Ta 60nmPtMn 15nm

CoFe 3nm

CoFe 3nmTa

Al

Al

Temporary Structure(0 Cycle)

090211 6

Al2O3 = 6 nm

Si3N4 60 nm

Breakdown VoltageBreakdown Voltage

I-VI-V

Voltage (V)

00 02 04 06 08 10 12 14

Cur

rent

(A

)

1e-11

1e-10

1e-9

1e-8

1e-7

1e-6

4 data

STD 10-11~10-12

3 Cycle 10-10~10-9

9

Pasteurrsquos Quadrant Research can be Applied Practical and BasicAll at the Same

Timebull Use-inspired research ndash increases existing

understanding and creates improved technology

ndash can take existing technology to new levels but it

bull can also improve understanding of fundamental principles -NRC

Pure Pure Basic Basic Research Research (Bohr)(Bohr)

Use-Use-Inspired Inspired Research Research (Pasteur)(Pasteur)

Pure Pure Applied Applied Research Research (Edison)(Edison)

No Yes

Que

st fo

r F

unda

men

tal

Und

erst

andi

ng

Yes

No

Quadrant Model of Scientific Research

Considerations of Use

From Donald Stokes Pasteurrsquos Quadrant

1997

10

Silicon Valley vs Silicon Island

The Opportunity-Interdisciplinary

CY Chang NCTU

John Hannesey Stanford

ECO-E RESEARCH GROUPbull GREEN ILLUMINATION

120 lmW WW CAN SAVE 120 GW POWER

240 lmW SAVE MORE AND MOREbull NEPrsquos KUROSHIO POWER GENERATIONbull Green High Efficiency Thin Film Solar Cellsbull Post CMOS BEYOND 22nm CHANG-INTEL Tera Hz III-V FET on Si ULSI bull Epilogue

bull GIANT ENERGY STORAGEbull 98uF 1 um2bull CONNECTING MICRO-CELLs ON 1 CM2bull Stacked to 1cm height store 7000 amp-hr

ETCHED VOIDS AND INVERSE PARAMIDE

120 ENHANCEMENT AT NORMAL VIEW

85 gain integrated

Sapphire

Inverted Pyramids

580

(a) SEM image of etched GaN surface The inverted pyramid structures can be seen from the over etched opening holes (b) SEM cross section image of the regrown sample(c) A zoom out view of the inverted pyramid structures at GaN-sapphire interface

(a)

(b)

(c)

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

(a) Schematic of IP-LED R-LED has similar structure except a flat GaN-sapphire interface

(b) EL spectra of IP-LED and R-LED in normal direction(c) L-I-V curves of IP-LED and R-LED (d) Far field patterns of IP-LED and R-LED

(a)(b)

(c) (d)

(002)

(102)

FIG 2 X-ray diffraction rocking curves for IP-LED and R-LED samples

P-GaNMQWs

N-GaN

Sapphire

IP-GaNair

Sapphire

N-GaN

P-GaNMQWs

P-GaNMQWsN-GaNIP-GaNair

Sapphire

Al mirror

P-GaNMQWsN-GaN

Sapphire

Al mirror

Ray tracing simulations (a) and (b) are zoom in views at GaN-sapphire interface for IP-LED and R-LED (c) and (d) are full chip views Light is effectively coupled out in normal direction for IP-LED

(a) (b)

(c) (d)

ETCH OUT GRAIN BOUNDARIES-CRYSTAL

QUALITY-IQE

AIR VOIDS-TOTAL REFLECTIONS-EQE

Non-polar and Semi-polar GaN

Quantum Confined Stark Effect (QCSE)

bullNonpolar orientations of the wurtzite GaN-base materials suddenly attracted attention to be used as device growth planes to minimize QCSE

Quantum Mechanical Transition Rate

Fermirsquos golden rule

Quantum mechanical transition rate W2rarr1 Electron from state I2 > to state l1

>W2rarr1=2πħ |H rsquo21|ρf

L A Coldren and S W Corzine diode lasers and photonic integrated circuits New York Wiley 1995 p 512

ρf final density of states function

|H rsquo21|=(qA02m0) |MT|2

Transition matrix element |MT|2equiv| < μc|ecirc p|μv > |2 | < F2|F1 > |2

|μc > and |μv > Bloch function of conduction and valence band

|Гe-h |2 = | < F2|F1 > |2

Гe-h overlap ratio of wave function in electron and hole

Non-polar LED structure

Diamond Mask

lt0001gtsap

lt10-10gtsap

lt11-20gtsap

a-plane sapphire

m-plane n GaNSi

InGaNGaN

P-GaNMg

lt0001gtGaNlt11-20gtGaN

lt10-10gtGaN

CrAu

CrAuITO layer

MQW

PL Spectrum at Room Temperature

Note5320nm=266nm Laser x 2

5320

FWHM=100 nm

20 22 24 26 28 30 32 34 36 38

0

5000

10000

15000

20000

20 22 24 26 28 30 32 34 36 38

PL Inte

nsi

ty(a

u)

Photon energy(eV)

M571D

PL Spectrum at 13K

FWHM=41arcsec

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 6: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

Si Oxide

Ta 60nmPtMn 15nm

CoFe 3nm

CoFe 3nmTa

Al

Al

Temporary Structure(0 Cycle)

090211 6

Al2O3 = 6 nm

Si3N4 60 nm

Breakdown VoltageBreakdown Voltage

I-VI-V

Voltage (V)

00 02 04 06 08 10 12 14

Cur

rent

(A

)

1e-11

1e-10

1e-9

1e-8

1e-7

1e-6

4 data

STD 10-11~10-12

3 Cycle 10-10~10-9

9

Pasteurrsquos Quadrant Research can be Applied Practical and BasicAll at the Same

Timebull Use-inspired research ndash increases existing

understanding and creates improved technology

ndash can take existing technology to new levels but it

bull can also improve understanding of fundamental principles -NRC

Pure Pure Basic Basic Research Research (Bohr)(Bohr)

Use-Use-Inspired Inspired Research Research (Pasteur)(Pasteur)

Pure Pure Applied Applied Research Research (Edison)(Edison)

No Yes

Que

st fo

r F

unda

men

tal

Und

erst

andi

ng

Yes

No

Quadrant Model of Scientific Research

Considerations of Use

From Donald Stokes Pasteurrsquos Quadrant

1997

10

Silicon Valley vs Silicon Island

The Opportunity-Interdisciplinary

CY Chang NCTU

John Hannesey Stanford

ECO-E RESEARCH GROUPbull GREEN ILLUMINATION

120 lmW WW CAN SAVE 120 GW POWER

240 lmW SAVE MORE AND MOREbull NEPrsquos KUROSHIO POWER GENERATIONbull Green High Efficiency Thin Film Solar Cellsbull Post CMOS BEYOND 22nm CHANG-INTEL Tera Hz III-V FET on Si ULSI bull Epilogue

bull GIANT ENERGY STORAGEbull 98uF 1 um2bull CONNECTING MICRO-CELLs ON 1 CM2bull Stacked to 1cm height store 7000 amp-hr

ETCHED VOIDS AND INVERSE PARAMIDE

120 ENHANCEMENT AT NORMAL VIEW

85 gain integrated

Sapphire

Inverted Pyramids

580

(a) SEM image of etched GaN surface The inverted pyramid structures can be seen from the over etched opening holes (b) SEM cross section image of the regrown sample(c) A zoom out view of the inverted pyramid structures at GaN-sapphire interface

(a)

(b)

(c)

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

(a) Schematic of IP-LED R-LED has similar structure except a flat GaN-sapphire interface

(b) EL spectra of IP-LED and R-LED in normal direction(c) L-I-V curves of IP-LED and R-LED (d) Far field patterns of IP-LED and R-LED

(a)(b)

(c) (d)

(002)

(102)

FIG 2 X-ray diffraction rocking curves for IP-LED and R-LED samples

P-GaNMQWs

N-GaN

Sapphire

IP-GaNair

Sapphire

N-GaN

P-GaNMQWs

P-GaNMQWsN-GaNIP-GaNair

Sapphire

Al mirror

P-GaNMQWsN-GaN

Sapphire

Al mirror

Ray tracing simulations (a) and (b) are zoom in views at GaN-sapphire interface for IP-LED and R-LED (c) and (d) are full chip views Light is effectively coupled out in normal direction for IP-LED

(a) (b)

(c) (d)

ETCH OUT GRAIN BOUNDARIES-CRYSTAL

QUALITY-IQE

AIR VOIDS-TOTAL REFLECTIONS-EQE

Non-polar and Semi-polar GaN

Quantum Confined Stark Effect (QCSE)

bullNonpolar orientations of the wurtzite GaN-base materials suddenly attracted attention to be used as device growth planes to minimize QCSE

Quantum Mechanical Transition Rate

Fermirsquos golden rule

Quantum mechanical transition rate W2rarr1 Electron from state I2 > to state l1

>W2rarr1=2πħ |H rsquo21|ρf

L A Coldren and S W Corzine diode lasers and photonic integrated circuits New York Wiley 1995 p 512

ρf final density of states function

|H rsquo21|=(qA02m0) |MT|2

Transition matrix element |MT|2equiv| < μc|ecirc p|μv > |2 | < F2|F1 > |2

|μc > and |μv > Bloch function of conduction and valence band

|Гe-h |2 = | < F2|F1 > |2

Гe-h overlap ratio of wave function in electron and hole

Non-polar LED structure

Diamond Mask

lt0001gtsap

lt10-10gtsap

lt11-20gtsap

a-plane sapphire

m-plane n GaNSi

InGaNGaN

P-GaNMg

lt0001gtGaNlt11-20gtGaN

lt10-10gtGaN

CrAu

CrAuITO layer

MQW

PL Spectrum at Room Temperature

Note5320nm=266nm Laser x 2

5320

FWHM=100 nm

20 22 24 26 28 30 32 34 36 38

0

5000

10000

15000

20000

20 22 24 26 28 30 32 34 36 38

PL Inte

nsi

ty(a

u)

Photon energy(eV)

M571D

PL Spectrum at 13K

FWHM=41arcsec

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 7: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

Breakdown VoltageBreakdown Voltage

I-VI-V

Voltage (V)

00 02 04 06 08 10 12 14

Cur

rent

(A

)

1e-11

1e-10

1e-9

1e-8

1e-7

1e-6

4 data

STD 10-11~10-12

3 Cycle 10-10~10-9

9

Pasteurrsquos Quadrant Research can be Applied Practical and BasicAll at the Same

Timebull Use-inspired research ndash increases existing

understanding and creates improved technology

ndash can take existing technology to new levels but it

bull can also improve understanding of fundamental principles -NRC

Pure Pure Basic Basic Research Research (Bohr)(Bohr)

Use-Use-Inspired Inspired Research Research (Pasteur)(Pasteur)

Pure Pure Applied Applied Research Research (Edison)(Edison)

No Yes

Que

st fo

r F

unda

men

tal

Und

erst

andi

ng

Yes

No

Quadrant Model of Scientific Research

Considerations of Use

From Donald Stokes Pasteurrsquos Quadrant

1997

10

Silicon Valley vs Silicon Island

The Opportunity-Interdisciplinary

CY Chang NCTU

John Hannesey Stanford

ECO-E RESEARCH GROUPbull GREEN ILLUMINATION

120 lmW WW CAN SAVE 120 GW POWER

240 lmW SAVE MORE AND MOREbull NEPrsquos KUROSHIO POWER GENERATIONbull Green High Efficiency Thin Film Solar Cellsbull Post CMOS BEYOND 22nm CHANG-INTEL Tera Hz III-V FET on Si ULSI bull Epilogue

bull GIANT ENERGY STORAGEbull 98uF 1 um2bull CONNECTING MICRO-CELLs ON 1 CM2bull Stacked to 1cm height store 7000 amp-hr

ETCHED VOIDS AND INVERSE PARAMIDE

120 ENHANCEMENT AT NORMAL VIEW

85 gain integrated

Sapphire

Inverted Pyramids

580

(a) SEM image of etched GaN surface The inverted pyramid structures can be seen from the over etched opening holes (b) SEM cross section image of the regrown sample(c) A zoom out view of the inverted pyramid structures at GaN-sapphire interface

(a)

(b)

(c)

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

(a) Schematic of IP-LED R-LED has similar structure except a flat GaN-sapphire interface

(b) EL spectra of IP-LED and R-LED in normal direction(c) L-I-V curves of IP-LED and R-LED (d) Far field patterns of IP-LED and R-LED

(a)(b)

(c) (d)

(002)

(102)

FIG 2 X-ray diffraction rocking curves for IP-LED and R-LED samples

P-GaNMQWs

N-GaN

Sapphire

IP-GaNair

Sapphire

N-GaN

P-GaNMQWs

P-GaNMQWsN-GaNIP-GaNair

Sapphire

Al mirror

P-GaNMQWsN-GaN

Sapphire

Al mirror

Ray tracing simulations (a) and (b) are zoom in views at GaN-sapphire interface for IP-LED and R-LED (c) and (d) are full chip views Light is effectively coupled out in normal direction for IP-LED

(a) (b)

(c) (d)

ETCH OUT GRAIN BOUNDARIES-CRYSTAL

QUALITY-IQE

AIR VOIDS-TOTAL REFLECTIONS-EQE

Non-polar and Semi-polar GaN

Quantum Confined Stark Effect (QCSE)

bullNonpolar orientations of the wurtzite GaN-base materials suddenly attracted attention to be used as device growth planes to minimize QCSE

Quantum Mechanical Transition Rate

Fermirsquos golden rule

Quantum mechanical transition rate W2rarr1 Electron from state I2 > to state l1

>W2rarr1=2πħ |H rsquo21|ρf

L A Coldren and S W Corzine diode lasers and photonic integrated circuits New York Wiley 1995 p 512

ρf final density of states function

|H rsquo21|=(qA02m0) |MT|2

Transition matrix element |MT|2equiv| < μc|ecirc p|μv > |2 | < F2|F1 > |2

|μc > and |μv > Bloch function of conduction and valence band

|Гe-h |2 = | < F2|F1 > |2

Гe-h overlap ratio of wave function in electron and hole

Non-polar LED structure

Diamond Mask

lt0001gtsap

lt10-10gtsap

lt11-20gtsap

a-plane sapphire

m-plane n GaNSi

InGaNGaN

P-GaNMg

lt0001gtGaNlt11-20gtGaN

lt10-10gtGaN

CrAu

CrAuITO layer

MQW

PL Spectrum at Room Temperature

Note5320nm=266nm Laser x 2

5320

FWHM=100 nm

20 22 24 26 28 30 32 34 36 38

0

5000

10000

15000

20000

20 22 24 26 28 30 32 34 36 38

PL Inte

nsi

ty(a

u)

Photon energy(eV)

M571D

PL Spectrum at 13K

FWHM=41arcsec

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 8: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

I-VI-V

Voltage (V)

00 02 04 06 08 10 12 14

Cur

rent

(A

)

1e-11

1e-10

1e-9

1e-8

1e-7

1e-6

4 data

STD 10-11~10-12

3 Cycle 10-10~10-9

9

Pasteurrsquos Quadrant Research can be Applied Practical and BasicAll at the Same

Timebull Use-inspired research ndash increases existing

understanding and creates improved technology

ndash can take existing technology to new levels but it

bull can also improve understanding of fundamental principles -NRC

Pure Pure Basic Basic Research Research (Bohr)(Bohr)

Use-Use-Inspired Inspired Research Research (Pasteur)(Pasteur)

Pure Pure Applied Applied Research Research (Edison)(Edison)

No Yes

Que

st fo

r F

unda

men

tal

Und

erst

andi

ng

Yes

No

Quadrant Model of Scientific Research

Considerations of Use

From Donald Stokes Pasteurrsquos Quadrant

1997

10

Silicon Valley vs Silicon Island

The Opportunity-Interdisciplinary

CY Chang NCTU

John Hannesey Stanford

ECO-E RESEARCH GROUPbull GREEN ILLUMINATION

120 lmW WW CAN SAVE 120 GW POWER

240 lmW SAVE MORE AND MOREbull NEPrsquos KUROSHIO POWER GENERATIONbull Green High Efficiency Thin Film Solar Cellsbull Post CMOS BEYOND 22nm CHANG-INTEL Tera Hz III-V FET on Si ULSI bull Epilogue

bull GIANT ENERGY STORAGEbull 98uF 1 um2bull CONNECTING MICRO-CELLs ON 1 CM2bull Stacked to 1cm height store 7000 amp-hr

ETCHED VOIDS AND INVERSE PARAMIDE

120 ENHANCEMENT AT NORMAL VIEW

85 gain integrated

Sapphire

Inverted Pyramids

580

(a) SEM image of etched GaN surface The inverted pyramid structures can be seen from the over etched opening holes (b) SEM cross section image of the regrown sample(c) A zoom out view of the inverted pyramid structures at GaN-sapphire interface

(a)

(b)

(c)

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

(a) Schematic of IP-LED R-LED has similar structure except a flat GaN-sapphire interface

(b) EL spectra of IP-LED and R-LED in normal direction(c) L-I-V curves of IP-LED and R-LED (d) Far field patterns of IP-LED and R-LED

(a)(b)

(c) (d)

(002)

(102)

FIG 2 X-ray diffraction rocking curves for IP-LED and R-LED samples

P-GaNMQWs

N-GaN

Sapphire

IP-GaNair

Sapphire

N-GaN

P-GaNMQWs

P-GaNMQWsN-GaNIP-GaNair

Sapphire

Al mirror

P-GaNMQWsN-GaN

Sapphire

Al mirror

Ray tracing simulations (a) and (b) are zoom in views at GaN-sapphire interface for IP-LED and R-LED (c) and (d) are full chip views Light is effectively coupled out in normal direction for IP-LED

(a) (b)

(c) (d)

ETCH OUT GRAIN BOUNDARIES-CRYSTAL

QUALITY-IQE

AIR VOIDS-TOTAL REFLECTIONS-EQE

Non-polar and Semi-polar GaN

Quantum Confined Stark Effect (QCSE)

bullNonpolar orientations of the wurtzite GaN-base materials suddenly attracted attention to be used as device growth planes to minimize QCSE

Quantum Mechanical Transition Rate

Fermirsquos golden rule

Quantum mechanical transition rate W2rarr1 Electron from state I2 > to state l1

>W2rarr1=2πħ |H rsquo21|ρf

L A Coldren and S W Corzine diode lasers and photonic integrated circuits New York Wiley 1995 p 512

ρf final density of states function

|H rsquo21|=(qA02m0) |MT|2

Transition matrix element |MT|2equiv| < μc|ecirc p|μv > |2 | < F2|F1 > |2

|μc > and |μv > Bloch function of conduction and valence band

|Гe-h |2 = | < F2|F1 > |2

Гe-h overlap ratio of wave function in electron and hole

Non-polar LED structure

Diamond Mask

lt0001gtsap

lt10-10gtsap

lt11-20gtsap

a-plane sapphire

m-plane n GaNSi

InGaNGaN

P-GaNMg

lt0001gtGaNlt11-20gtGaN

lt10-10gtGaN

CrAu

CrAuITO layer

MQW

PL Spectrum at Room Temperature

Note5320nm=266nm Laser x 2

5320

FWHM=100 nm

20 22 24 26 28 30 32 34 36 38

0

5000

10000

15000

20000

20 22 24 26 28 30 32 34 36 38

PL Inte

nsi

ty(a

u)

Photon energy(eV)

M571D

PL Spectrum at 13K

FWHM=41arcsec

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 9: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

9

Pasteurrsquos Quadrant Research can be Applied Practical and BasicAll at the Same

Timebull Use-inspired research ndash increases existing

understanding and creates improved technology

ndash can take existing technology to new levels but it

bull can also improve understanding of fundamental principles -NRC

Pure Pure Basic Basic Research Research (Bohr)(Bohr)

Use-Use-Inspired Inspired Research Research (Pasteur)(Pasteur)

Pure Pure Applied Applied Research Research (Edison)(Edison)

No Yes

Que

st fo

r F

unda

men

tal

Und

erst

andi

ng

Yes

No

Quadrant Model of Scientific Research

Considerations of Use

From Donald Stokes Pasteurrsquos Quadrant

1997

10

Silicon Valley vs Silicon Island

The Opportunity-Interdisciplinary

CY Chang NCTU

John Hannesey Stanford

ECO-E RESEARCH GROUPbull GREEN ILLUMINATION

120 lmW WW CAN SAVE 120 GW POWER

240 lmW SAVE MORE AND MOREbull NEPrsquos KUROSHIO POWER GENERATIONbull Green High Efficiency Thin Film Solar Cellsbull Post CMOS BEYOND 22nm CHANG-INTEL Tera Hz III-V FET on Si ULSI bull Epilogue

bull GIANT ENERGY STORAGEbull 98uF 1 um2bull CONNECTING MICRO-CELLs ON 1 CM2bull Stacked to 1cm height store 7000 amp-hr

ETCHED VOIDS AND INVERSE PARAMIDE

120 ENHANCEMENT AT NORMAL VIEW

85 gain integrated

Sapphire

Inverted Pyramids

580

(a) SEM image of etched GaN surface The inverted pyramid structures can be seen from the over etched opening holes (b) SEM cross section image of the regrown sample(c) A zoom out view of the inverted pyramid structures at GaN-sapphire interface

(a)

(b)

(c)

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

(a) Schematic of IP-LED R-LED has similar structure except a flat GaN-sapphire interface

(b) EL spectra of IP-LED and R-LED in normal direction(c) L-I-V curves of IP-LED and R-LED (d) Far field patterns of IP-LED and R-LED

(a)(b)

(c) (d)

(002)

(102)

FIG 2 X-ray diffraction rocking curves for IP-LED and R-LED samples

P-GaNMQWs

N-GaN

Sapphire

IP-GaNair

Sapphire

N-GaN

P-GaNMQWs

P-GaNMQWsN-GaNIP-GaNair

Sapphire

Al mirror

P-GaNMQWsN-GaN

Sapphire

Al mirror

Ray tracing simulations (a) and (b) are zoom in views at GaN-sapphire interface for IP-LED and R-LED (c) and (d) are full chip views Light is effectively coupled out in normal direction for IP-LED

(a) (b)

(c) (d)

ETCH OUT GRAIN BOUNDARIES-CRYSTAL

QUALITY-IQE

AIR VOIDS-TOTAL REFLECTIONS-EQE

Non-polar and Semi-polar GaN

Quantum Confined Stark Effect (QCSE)

bullNonpolar orientations of the wurtzite GaN-base materials suddenly attracted attention to be used as device growth planes to minimize QCSE

Quantum Mechanical Transition Rate

Fermirsquos golden rule

Quantum mechanical transition rate W2rarr1 Electron from state I2 > to state l1

>W2rarr1=2πħ |H rsquo21|ρf

L A Coldren and S W Corzine diode lasers and photonic integrated circuits New York Wiley 1995 p 512

ρf final density of states function

|H rsquo21|=(qA02m0) |MT|2

Transition matrix element |MT|2equiv| < μc|ecirc p|μv > |2 | < F2|F1 > |2

|μc > and |μv > Bloch function of conduction and valence band

|Гe-h |2 = | < F2|F1 > |2

Гe-h overlap ratio of wave function in electron and hole

Non-polar LED structure

Diamond Mask

lt0001gtsap

lt10-10gtsap

lt11-20gtsap

a-plane sapphire

m-plane n GaNSi

InGaNGaN

P-GaNMg

lt0001gtGaNlt11-20gtGaN

lt10-10gtGaN

CrAu

CrAuITO layer

MQW

PL Spectrum at Room Temperature

Note5320nm=266nm Laser x 2

5320

FWHM=100 nm

20 22 24 26 28 30 32 34 36 38

0

5000

10000

15000

20000

20 22 24 26 28 30 32 34 36 38

PL Inte

nsi

ty(a

u)

Photon energy(eV)

M571D

PL Spectrum at 13K

FWHM=41arcsec

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 10: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

10

Silicon Valley vs Silicon Island

The Opportunity-Interdisciplinary

CY Chang NCTU

John Hannesey Stanford

ECO-E RESEARCH GROUPbull GREEN ILLUMINATION

120 lmW WW CAN SAVE 120 GW POWER

240 lmW SAVE MORE AND MOREbull NEPrsquos KUROSHIO POWER GENERATIONbull Green High Efficiency Thin Film Solar Cellsbull Post CMOS BEYOND 22nm CHANG-INTEL Tera Hz III-V FET on Si ULSI bull Epilogue

bull GIANT ENERGY STORAGEbull 98uF 1 um2bull CONNECTING MICRO-CELLs ON 1 CM2bull Stacked to 1cm height store 7000 amp-hr

ETCHED VOIDS AND INVERSE PARAMIDE

120 ENHANCEMENT AT NORMAL VIEW

85 gain integrated

Sapphire

Inverted Pyramids

580

(a) SEM image of etched GaN surface The inverted pyramid structures can be seen from the over etched opening holes (b) SEM cross section image of the regrown sample(c) A zoom out view of the inverted pyramid structures at GaN-sapphire interface

(a)

(b)

(c)

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

(a) Schematic of IP-LED R-LED has similar structure except a flat GaN-sapphire interface

(b) EL spectra of IP-LED and R-LED in normal direction(c) L-I-V curves of IP-LED and R-LED (d) Far field patterns of IP-LED and R-LED

(a)(b)

(c) (d)

(002)

(102)

FIG 2 X-ray diffraction rocking curves for IP-LED and R-LED samples

P-GaNMQWs

N-GaN

Sapphire

IP-GaNair

Sapphire

N-GaN

P-GaNMQWs

P-GaNMQWsN-GaNIP-GaNair

Sapphire

Al mirror

P-GaNMQWsN-GaN

Sapphire

Al mirror

Ray tracing simulations (a) and (b) are zoom in views at GaN-sapphire interface for IP-LED and R-LED (c) and (d) are full chip views Light is effectively coupled out in normal direction for IP-LED

(a) (b)

(c) (d)

ETCH OUT GRAIN BOUNDARIES-CRYSTAL

QUALITY-IQE

AIR VOIDS-TOTAL REFLECTIONS-EQE

Non-polar and Semi-polar GaN

Quantum Confined Stark Effect (QCSE)

bullNonpolar orientations of the wurtzite GaN-base materials suddenly attracted attention to be used as device growth planes to minimize QCSE

Quantum Mechanical Transition Rate

Fermirsquos golden rule

Quantum mechanical transition rate W2rarr1 Electron from state I2 > to state l1

>W2rarr1=2πħ |H rsquo21|ρf

L A Coldren and S W Corzine diode lasers and photonic integrated circuits New York Wiley 1995 p 512

ρf final density of states function

|H rsquo21|=(qA02m0) |MT|2

Transition matrix element |MT|2equiv| < μc|ecirc p|μv > |2 | < F2|F1 > |2

|μc > and |μv > Bloch function of conduction and valence band

|Гe-h |2 = | < F2|F1 > |2

Гe-h overlap ratio of wave function in electron and hole

Non-polar LED structure

Diamond Mask

lt0001gtsap

lt10-10gtsap

lt11-20gtsap

a-plane sapphire

m-plane n GaNSi

InGaNGaN

P-GaNMg

lt0001gtGaNlt11-20gtGaN

lt10-10gtGaN

CrAu

CrAuITO layer

MQW

PL Spectrum at Room Temperature

Note5320nm=266nm Laser x 2

5320

FWHM=100 nm

20 22 24 26 28 30 32 34 36 38

0

5000

10000

15000

20000

20 22 24 26 28 30 32 34 36 38

PL Inte

nsi

ty(a

u)

Photon energy(eV)

M571D

PL Spectrum at 13K

FWHM=41arcsec

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 11: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

ECO-E RESEARCH GROUPbull GREEN ILLUMINATION

120 lmW WW CAN SAVE 120 GW POWER

240 lmW SAVE MORE AND MOREbull NEPrsquos KUROSHIO POWER GENERATIONbull Green High Efficiency Thin Film Solar Cellsbull Post CMOS BEYOND 22nm CHANG-INTEL Tera Hz III-V FET on Si ULSI bull Epilogue

bull GIANT ENERGY STORAGEbull 98uF 1 um2bull CONNECTING MICRO-CELLs ON 1 CM2bull Stacked to 1cm height store 7000 amp-hr

ETCHED VOIDS AND INVERSE PARAMIDE

120 ENHANCEMENT AT NORMAL VIEW

85 gain integrated

Sapphire

Inverted Pyramids

580

(a) SEM image of etched GaN surface The inverted pyramid structures can be seen from the over etched opening holes (b) SEM cross section image of the regrown sample(c) A zoom out view of the inverted pyramid structures at GaN-sapphire interface

(a)

(b)

(c)

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

(a) Schematic of IP-LED R-LED has similar structure except a flat GaN-sapphire interface

(b) EL spectra of IP-LED and R-LED in normal direction(c) L-I-V curves of IP-LED and R-LED (d) Far field patterns of IP-LED and R-LED

(a)(b)

(c) (d)

(002)

(102)

FIG 2 X-ray diffraction rocking curves for IP-LED and R-LED samples

P-GaNMQWs

N-GaN

Sapphire

IP-GaNair

Sapphire

N-GaN

P-GaNMQWs

P-GaNMQWsN-GaNIP-GaNair

Sapphire

Al mirror

P-GaNMQWsN-GaN

Sapphire

Al mirror

Ray tracing simulations (a) and (b) are zoom in views at GaN-sapphire interface for IP-LED and R-LED (c) and (d) are full chip views Light is effectively coupled out in normal direction for IP-LED

(a) (b)

(c) (d)

ETCH OUT GRAIN BOUNDARIES-CRYSTAL

QUALITY-IQE

AIR VOIDS-TOTAL REFLECTIONS-EQE

Non-polar and Semi-polar GaN

Quantum Confined Stark Effect (QCSE)

bullNonpolar orientations of the wurtzite GaN-base materials suddenly attracted attention to be used as device growth planes to minimize QCSE

Quantum Mechanical Transition Rate

Fermirsquos golden rule

Quantum mechanical transition rate W2rarr1 Electron from state I2 > to state l1

>W2rarr1=2πħ |H rsquo21|ρf

L A Coldren and S W Corzine diode lasers and photonic integrated circuits New York Wiley 1995 p 512

ρf final density of states function

|H rsquo21|=(qA02m0) |MT|2

Transition matrix element |MT|2equiv| < μc|ecirc p|μv > |2 | < F2|F1 > |2

|μc > and |μv > Bloch function of conduction and valence band

|Гe-h |2 = | < F2|F1 > |2

Гe-h overlap ratio of wave function in electron and hole

Non-polar LED structure

Diamond Mask

lt0001gtsap

lt10-10gtsap

lt11-20gtsap

a-plane sapphire

m-plane n GaNSi

InGaNGaN

P-GaNMg

lt0001gtGaNlt11-20gtGaN

lt10-10gtGaN

CrAu

CrAuITO layer

MQW

PL Spectrum at Room Temperature

Note5320nm=266nm Laser x 2

5320

FWHM=100 nm

20 22 24 26 28 30 32 34 36 38

0

5000

10000

15000

20000

20 22 24 26 28 30 32 34 36 38

PL Inte

nsi

ty(a

u)

Photon energy(eV)

M571D

PL Spectrum at 13K

FWHM=41arcsec

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 12: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

ETCHED VOIDS AND INVERSE PARAMIDE

120 ENHANCEMENT AT NORMAL VIEW

85 gain integrated

Sapphire

Inverted Pyramids

580

(a) SEM image of etched GaN surface The inverted pyramid structures can be seen from the over etched opening holes (b) SEM cross section image of the regrown sample(c) A zoom out view of the inverted pyramid structures at GaN-sapphire interface

(a)

(b)

(c)

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

(a) Schematic of IP-LED R-LED has similar structure except a flat GaN-sapphire interface

(b) EL spectra of IP-LED and R-LED in normal direction(c) L-I-V curves of IP-LED and R-LED (d) Far field patterns of IP-LED and R-LED

(a)(b)

(c) (d)

(002)

(102)

FIG 2 X-ray diffraction rocking curves for IP-LED and R-LED samples

P-GaNMQWs

N-GaN

Sapphire

IP-GaNair

Sapphire

N-GaN

P-GaNMQWs

P-GaNMQWsN-GaNIP-GaNair

Sapphire

Al mirror

P-GaNMQWsN-GaN

Sapphire

Al mirror

Ray tracing simulations (a) and (b) are zoom in views at GaN-sapphire interface for IP-LED and R-LED (c) and (d) are full chip views Light is effectively coupled out in normal direction for IP-LED

(a) (b)

(c) (d)

ETCH OUT GRAIN BOUNDARIES-CRYSTAL

QUALITY-IQE

AIR VOIDS-TOTAL REFLECTIONS-EQE

Non-polar and Semi-polar GaN

Quantum Confined Stark Effect (QCSE)

bullNonpolar orientations of the wurtzite GaN-base materials suddenly attracted attention to be used as device growth planes to minimize QCSE

Quantum Mechanical Transition Rate

Fermirsquos golden rule

Quantum mechanical transition rate W2rarr1 Electron from state I2 > to state l1

>W2rarr1=2πħ |H rsquo21|ρf

L A Coldren and S W Corzine diode lasers and photonic integrated circuits New York Wiley 1995 p 512

ρf final density of states function

|H rsquo21|=(qA02m0) |MT|2

Transition matrix element |MT|2equiv| < μc|ecirc p|μv > |2 | < F2|F1 > |2

|μc > and |μv > Bloch function of conduction and valence band

|Гe-h |2 = | < F2|F1 > |2

Гe-h overlap ratio of wave function in electron and hole

Non-polar LED structure

Diamond Mask

lt0001gtsap

lt10-10gtsap

lt11-20gtsap

a-plane sapphire

m-plane n GaNSi

InGaNGaN

P-GaNMg

lt0001gtGaNlt11-20gtGaN

lt10-10gtGaN

CrAu

CrAuITO layer

MQW

PL Spectrum at Room Temperature

Note5320nm=266nm Laser x 2

5320

FWHM=100 nm

20 22 24 26 28 30 32 34 36 38

0

5000

10000

15000

20000

20 22 24 26 28 30 32 34 36 38

PL Inte

nsi

ty(a

u)

Photon energy(eV)

M571D

PL Spectrum at 13K

FWHM=41arcsec

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 13: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

Sapphire

Inverted Pyramids

580

(a) SEM image of etched GaN surface The inverted pyramid structures can be seen from the over etched opening holes (b) SEM cross section image of the regrown sample(c) A zoom out view of the inverted pyramid structures at GaN-sapphire interface

(a)

(b)

(c)

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

(a) Schematic of IP-LED R-LED has similar structure except a flat GaN-sapphire interface

(b) EL spectra of IP-LED and R-LED in normal direction(c) L-I-V curves of IP-LED and R-LED (d) Far field patterns of IP-LED and R-LED

(a)(b)

(c) (d)

(002)

(102)

FIG 2 X-ray diffraction rocking curves for IP-LED and R-LED samples

P-GaNMQWs

N-GaN

Sapphire

IP-GaNair

Sapphire

N-GaN

P-GaNMQWs

P-GaNMQWsN-GaNIP-GaNair

Sapphire

Al mirror

P-GaNMQWsN-GaN

Sapphire

Al mirror

Ray tracing simulations (a) and (b) are zoom in views at GaN-sapphire interface for IP-LED and R-LED (c) and (d) are full chip views Light is effectively coupled out in normal direction for IP-LED

(a) (b)

(c) (d)

ETCH OUT GRAIN BOUNDARIES-CRYSTAL

QUALITY-IQE

AIR VOIDS-TOTAL REFLECTIONS-EQE

Non-polar and Semi-polar GaN

Quantum Confined Stark Effect (QCSE)

bullNonpolar orientations of the wurtzite GaN-base materials suddenly attracted attention to be used as device growth planes to minimize QCSE

Quantum Mechanical Transition Rate

Fermirsquos golden rule

Quantum mechanical transition rate W2rarr1 Electron from state I2 > to state l1

>W2rarr1=2πħ |H rsquo21|ρf

L A Coldren and S W Corzine diode lasers and photonic integrated circuits New York Wiley 1995 p 512

ρf final density of states function

|H rsquo21|=(qA02m0) |MT|2

Transition matrix element |MT|2equiv| < μc|ecirc p|μv > |2 | < F2|F1 > |2

|μc > and |μv > Bloch function of conduction and valence band

|Гe-h |2 = | < F2|F1 > |2

Гe-h overlap ratio of wave function in electron and hole

Non-polar LED structure

Diamond Mask

lt0001gtsap

lt10-10gtsap

lt11-20gtsap

a-plane sapphire

m-plane n GaNSi

InGaNGaN

P-GaNMg

lt0001gtGaNlt11-20gtGaN

lt10-10gtGaN

CrAu

CrAuITO layer

MQW

PL Spectrum at Room Temperature

Note5320nm=266nm Laser x 2

5320

FWHM=100 nm

20 22 24 26 28 30 32 34 36 38

0

5000

10000

15000

20000

20 22 24 26 28 30 32 34 36 38

PL Inte

nsi

ty(a

u)

Photon energy(eV)

M571D

PL Spectrum at 13K

FWHM=41arcsec

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 14: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

Sapphire

u-GaN

ITOp-GaN

n-GaN

10 pairs of MQWs

Al mirror

(a) Schematic of IP-LED R-LED has similar structure except a flat GaN-sapphire interface

(b) EL spectra of IP-LED and R-LED in normal direction(c) L-I-V curves of IP-LED and R-LED (d) Far field patterns of IP-LED and R-LED

(a)(b)

(c) (d)

(002)

(102)

FIG 2 X-ray diffraction rocking curves for IP-LED and R-LED samples

P-GaNMQWs

N-GaN

Sapphire

IP-GaNair

Sapphire

N-GaN

P-GaNMQWs

P-GaNMQWsN-GaNIP-GaNair

Sapphire

Al mirror

P-GaNMQWsN-GaN

Sapphire

Al mirror

Ray tracing simulations (a) and (b) are zoom in views at GaN-sapphire interface for IP-LED and R-LED (c) and (d) are full chip views Light is effectively coupled out in normal direction for IP-LED

(a) (b)

(c) (d)

ETCH OUT GRAIN BOUNDARIES-CRYSTAL

QUALITY-IQE

AIR VOIDS-TOTAL REFLECTIONS-EQE

Non-polar and Semi-polar GaN

Quantum Confined Stark Effect (QCSE)

bullNonpolar orientations of the wurtzite GaN-base materials suddenly attracted attention to be used as device growth planes to minimize QCSE

Quantum Mechanical Transition Rate

Fermirsquos golden rule

Quantum mechanical transition rate W2rarr1 Electron from state I2 > to state l1

>W2rarr1=2πħ |H rsquo21|ρf

L A Coldren and S W Corzine diode lasers and photonic integrated circuits New York Wiley 1995 p 512

ρf final density of states function

|H rsquo21|=(qA02m0) |MT|2

Transition matrix element |MT|2equiv| < μc|ecirc p|μv > |2 | < F2|F1 > |2

|μc > and |μv > Bloch function of conduction and valence band

|Гe-h |2 = | < F2|F1 > |2

Гe-h overlap ratio of wave function in electron and hole

Non-polar LED structure

Diamond Mask

lt0001gtsap

lt10-10gtsap

lt11-20gtsap

a-plane sapphire

m-plane n GaNSi

InGaNGaN

P-GaNMg

lt0001gtGaNlt11-20gtGaN

lt10-10gtGaN

CrAu

CrAuITO layer

MQW

PL Spectrum at Room Temperature

Note5320nm=266nm Laser x 2

5320

FWHM=100 nm

20 22 24 26 28 30 32 34 36 38

0

5000

10000

15000

20000

20 22 24 26 28 30 32 34 36 38

PL Inte

nsi

ty(a

u)

Photon energy(eV)

M571D

PL Spectrum at 13K

FWHM=41arcsec

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 15: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

(002)

(102)

FIG 2 X-ray diffraction rocking curves for IP-LED and R-LED samples

P-GaNMQWs

N-GaN

Sapphire

IP-GaNair

Sapphire

N-GaN

P-GaNMQWs

P-GaNMQWsN-GaNIP-GaNair

Sapphire

Al mirror

P-GaNMQWsN-GaN

Sapphire

Al mirror

Ray tracing simulations (a) and (b) are zoom in views at GaN-sapphire interface for IP-LED and R-LED (c) and (d) are full chip views Light is effectively coupled out in normal direction for IP-LED

(a) (b)

(c) (d)

ETCH OUT GRAIN BOUNDARIES-CRYSTAL

QUALITY-IQE

AIR VOIDS-TOTAL REFLECTIONS-EQE

Non-polar and Semi-polar GaN

Quantum Confined Stark Effect (QCSE)

bullNonpolar orientations of the wurtzite GaN-base materials suddenly attracted attention to be used as device growth planes to minimize QCSE

Quantum Mechanical Transition Rate

Fermirsquos golden rule

Quantum mechanical transition rate W2rarr1 Electron from state I2 > to state l1

>W2rarr1=2πħ |H rsquo21|ρf

L A Coldren and S W Corzine diode lasers and photonic integrated circuits New York Wiley 1995 p 512

ρf final density of states function

|H rsquo21|=(qA02m0) |MT|2

Transition matrix element |MT|2equiv| < μc|ecirc p|μv > |2 | < F2|F1 > |2

|μc > and |μv > Bloch function of conduction and valence band

|Гe-h |2 = | < F2|F1 > |2

Гe-h overlap ratio of wave function in electron and hole

Non-polar LED structure

Diamond Mask

lt0001gtsap

lt10-10gtsap

lt11-20gtsap

a-plane sapphire

m-plane n GaNSi

InGaNGaN

P-GaNMg

lt0001gtGaNlt11-20gtGaN

lt10-10gtGaN

CrAu

CrAuITO layer

MQW

PL Spectrum at Room Temperature

Note5320nm=266nm Laser x 2

5320

FWHM=100 nm

20 22 24 26 28 30 32 34 36 38

0

5000

10000

15000

20000

20 22 24 26 28 30 32 34 36 38

PL Inte

nsi

ty(a

u)

Photon energy(eV)

M571D

PL Spectrum at 13K

FWHM=41arcsec

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 16: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

P-GaNMQWs

N-GaN

Sapphire

IP-GaNair

Sapphire

N-GaN

P-GaNMQWs

P-GaNMQWsN-GaNIP-GaNair

Sapphire

Al mirror

P-GaNMQWsN-GaN

Sapphire

Al mirror

Ray tracing simulations (a) and (b) are zoom in views at GaN-sapphire interface for IP-LED and R-LED (c) and (d) are full chip views Light is effectively coupled out in normal direction for IP-LED

(a) (b)

(c) (d)

ETCH OUT GRAIN BOUNDARIES-CRYSTAL

QUALITY-IQE

AIR VOIDS-TOTAL REFLECTIONS-EQE

Non-polar and Semi-polar GaN

Quantum Confined Stark Effect (QCSE)

bullNonpolar orientations of the wurtzite GaN-base materials suddenly attracted attention to be used as device growth planes to minimize QCSE

Quantum Mechanical Transition Rate

Fermirsquos golden rule

Quantum mechanical transition rate W2rarr1 Electron from state I2 > to state l1

>W2rarr1=2πħ |H rsquo21|ρf

L A Coldren and S W Corzine diode lasers and photonic integrated circuits New York Wiley 1995 p 512

ρf final density of states function

|H rsquo21|=(qA02m0) |MT|2

Transition matrix element |MT|2equiv| < μc|ecirc p|μv > |2 | < F2|F1 > |2

|μc > and |μv > Bloch function of conduction and valence band

|Гe-h |2 = | < F2|F1 > |2

Гe-h overlap ratio of wave function in electron and hole

Non-polar LED structure

Diamond Mask

lt0001gtsap

lt10-10gtsap

lt11-20gtsap

a-plane sapphire

m-plane n GaNSi

InGaNGaN

P-GaNMg

lt0001gtGaNlt11-20gtGaN

lt10-10gtGaN

CrAu

CrAuITO layer

MQW

PL Spectrum at Room Temperature

Note5320nm=266nm Laser x 2

5320

FWHM=100 nm

20 22 24 26 28 30 32 34 36 38

0

5000

10000

15000

20000

20 22 24 26 28 30 32 34 36 38

PL Inte

nsi

ty(a

u)

Photon energy(eV)

M571D

PL Spectrum at 13K

FWHM=41arcsec

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 17: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

ETCH OUT GRAIN BOUNDARIES-CRYSTAL

QUALITY-IQE

AIR VOIDS-TOTAL REFLECTIONS-EQE

Non-polar and Semi-polar GaN

Quantum Confined Stark Effect (QCSE)

bullNonpolar orientations of the wurtzite GaN-base materials suddenly attracted attention to be used as device growth planes to minimize QCSE

Quantum Mechanical Transition Rate

Fermirsquos golden rule

Quantum mechanical transition rate W2rarr1 Electron from state I2 > to state l1

>W2rarr1=2πħ |H rsquo21|ρf

L A Coldren and S W Corzine diode lasers and photonic integrated circuits New York Wiley 1995 p 512

ρf final density of states function

|H rsquo21|=(qA02m0) |MT|2

Transition matrix element |MT|2equiv| < μc|ecirc p|μv > |2 | < F2|F1 > |2

|μc > and |μv > Bloch function of conduction and valence band

|Гe-h |2 = | < F2|F1 > |2

Гe-h overlap ratio of wave function in electron and hole

Non-polar LED structure

Diamond Mask

lt0001gtsap

lt10-10gtsap

lt11-20gtsap

a-plane sapphire

m-plane n GaNSi

InGaNGaN

P-GaNMg

lt0001gtGaNlt11-20gtGaN

lt10-10gtGaN

CrAu

CrAuITO layer

MQW

PL Spectrum at Room Temperature

Note5320nm=266nm Laser x 2

5320

FWHM=100 nm

20 22 24 26 28 30 32 34 36 38

0

5000

10000

15000

20000

20 22 24 26 28 30 32 34 36 38

PL Inte

nsi

ty(a

u)

Photon energy(eV)

M571D

PL Spectrum at 13K

FWHM=41arcsec

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 18: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

Non-polar and Semi-polar GaN

Quantum Confined Stark Effect (QCSE)

bullNonpolar orientations of the wurtzite GaN-base materials suddenly attracted attention to be used as device growth planes to minimize QCSE

Quantum Mechanical Transition Rate

Fermirsquos golden rule

Quantum mechanical transition rate W2rarr1 Electron from state I2 > to state l1

>W2rarr1=2πħ |H rsquo21|ρf

L A Coldren and S W Corzine diode lasers and photonic integrated circuits New York Wiley 1995 p 512

ρf final density of states function

|H rsquo21|=(qA02m0) |MT|2

Transition matrix element |MT|2equiv| < μc|ecirc p|μv > |2 | < F2|F1 > |2

|μc > and |μv > Bloch function of conduction and valence band

|Гe-h |2 = | < F2|F1 > |2

Гe-h overlap ratio of wave function in electron and hole

Non-polar LED structure

Diamond Mask

lt0001gtsap

lt10-10gtsap

lt11-20gtsap

a-plane sapphire

m-plane n GaNSi

InGaNGaN

P-GaNMg

lt0001gtGaNlt11-20gtGaN

lt10-10gtGaN

CrAu

CrAuITO layer

MQW

PL Spectrum at Room Temperature

Note5320nm=266nm Laser x 2

5320

FWHM=100 nm

20 22 24 26 28 30 32 34 36 38

0

5000

10000

15000

20000

20 22 24 26 28 30 32 34 36 38

PL Inte

nsi

ty(a

u)

Photon energy(eV)

M571D

PL Spectrum at 13K

FWHM=41arcsec

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 19: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

Quantum Confined Stark Effect (QCSE)

bullNonpolar orientations of the wurtzite GaN-base materials suddenly attracted attention to be used as device growth planes to minimize QCSE

Quantum Mechanical Transition Rate

Fermirsquos golden rule

Quantum mechanical transition rate W2rarr1 Electron from state I2 > to state l1

>W2rarr1=2πħ |H rsquo21|ρf

L A Coldren and S W Corzine diode lasers and photonic integrated circuits New York Wiley 1995 p 512

ρf final density of states function

|H rsquo21|=(qA02m0) |MT|2

Transition matrix element |MT|2equiv| < μc|ecirc p|μv > |2 | < F2|F1 > |2

|μc > and |μv > Bloch function of conduction and valence band

|Гe-h |2 = | < F2|F1 > |2

Гe-h overlap ratio of wave function in electron and hole

Non-polar LED structure

Diamond Mask

lt0001gtsap

lt10-10gtsap

lt11-20gtsap

a-plane sapphire

m-plane n GaNSi

InGaNGaN

P-GaNMg

lt0001gtGaNlt11-20gtGaN

lt10-10gtGaN

CrAu

CrAuITO layer

MQW

PL Spectrum at Room Temperature

Note5320nm=266nm Laser x 2

5320

FWHM=100 nm

20 22 24 26 28 30 32 34 36 38

0

5000

10000

15000

20000

20 22 24 26 28 30 32 34 36 38

PL Inte

nsi

ty(a

u)

Photon energy(eV)

M571D

PL Spectrum at 13K

FWHM=41arcsec

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 20: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

Quantum Mechanical Transition Rate

Fermirsquos golden rule

Quantum mechanical transition rate W2rarr1 Electron from state I2 > to state l1

>W2rarr1=2πħ |H rsquo21|ρf

L A Coldren and S W Corzine diode lasers and photonic integrated circuits New York Wiley 1995 p 512

ρf final density of states function

|H rsquo21|=(qA02m0) |MT|2

Transition matrix element |MT|2equiv| < μc|ecirc p|μv > |2 | < F2|F1 > |2

|μc > and |μv > Bloch function of conduction and valence band

|Гe-h |2 = | < F2|F1 > |2

Гe-h overlap ratio of wave function in electron and hole

Non-polar LED structure

Diamond Mask

lt0001gtsap

lt10-10gtsap

lt11-20gtsap

a-plane sapphire

m-plane n GaNSi

InGaNGaN

P-GaNMg

lt0001gtGaNlt11-20gtGaN

lt10-10gtGaN

CrAu

CrAuITO layer

MQW

PL Spectrum at Room Temperature

Note5320nm=266nm Laser x 2

5320

FWHM=100 nm

20 22 24 26 28 30 32 34 36 38

0

5000

10000

15000

20000

20 22 24 26 28 30 32 34 36 38

PL Inte

nsi

ty(a

u)

Photon energy(eV)

M571D

PL Spectrum at 13K

FWHM=41arcsec

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 21: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

Non-polar LED structure

Diamond Mask

lt0001gtsap

lt10-10gtsap

lt11-20gtsap

a-plane sapphire

m-plane n GaNSi

InGaNGaN

P-GaNMg

lt0001gtGaNlt11-20gtGaN

lt10-10gtGaN

CrAu

CrAuITO layer

MQW

PL Spectrum at Room Temperature

Note5320nm=266nm Laser x 2

5320

FWHM=100 nm

20 22 24 26 28 30 32 34 36 38

0

5000

10000

15000

20000

20 22 24 26 28 30 32 34 36 38

PL Inte

nsi

ty(a

u)

Photon energy(eV)

M571D

PL Spectrum at 13K

FWHM=41arcsec

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 22: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

PL Spectrum at Room Temperature

Note5320nm=266nm Laser x 2

5320

FWHM=100 nm

20 22 24 26 28 30 32 34 36 38

0

5000

10000

15000

20000

20 22 24 26 28 30 32 34 36 38

PL Inte

nsi

ty(a

u)

Photon energy(eV)

M571D

PL Spectrum at 13K

FWHM=41arcsec

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 23: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

20 22 24 26 28 30 32 34 36 38

0

5000

10000

15000

20000

20 22 24 26 28 30 32 34 36 38

PL Inte

nsi

ty(a

u)

Photon energy(eV)

M571D

PL Spectrum at 13K

FWHM=41arcsec

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 24: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

RHEED Pattern

AlN [001] GaN nanorods [001]

Single-crystalline

GaN [001]

Si (111)

GaN 05μm

Diamond 10 μmAlN 30nmGaN nanorods 04μm

Using GaN nanorods as nucleation layer

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 25: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

Green High Efficiency Thin Film Solar Cells

Fitst Solar CdTe less $095w CIGS 20 efficiencybut no mass

productionand shoortage of In and GaSiSiGeSiC amorphousuCpoly Green cells

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 26: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

GREEN CONCEPTAM1

ALL SILICON BASED

LARGE AREA

UNIFORMITY

MATERIAL QUALITY

TOO OPTIMISTIC BUT FEASIBLE

TECHNOLOGICALLY BREAKTHROUGH

In need

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 27: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

Compete with First Solar

NO CADNIUN

ALL SILICON

OR

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 28: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

CAN WE ACHIEVELESS 1 $ PER WATT

LARGE AREA

HIGH EFFICIENCY

UNIFORMITY

BREAK-THROUGH

NEEDED

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 29: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

EXTERNAL AND INTERNAL EFFICIENCY

ARC

TEXTURED

WITH INTERNAL EFFICIECY

CONSIDERED

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 30: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

圖三 a-Si及 poly-Si太陽電池之結構

GlassARCTEXTURED

ITOTCO

p+

N-a-Si-layer

AgAl

a-SiH

n-layer (uCpoly-Si)

n+(uCpoly-Si)

a-SiGe

SiN (passivation)

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 31: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

μc-Si or poly-SiEg=11eV

μc-Si

a-SiGeEg=14eV + 01 eVn

Ei

Ec

Ev

p+

Π-a-SiEg=17eV

n+n

δ

a-Si

a-SiGe

Eg

13eV

14eV

15eV

~ 10 nm

~ 15 nm

~ 20 nm

δ n

Nc exp(-04eVkT)

Nc exp(-06eVkT)

Nc exp(-05eVkT)

Key recombination velocity

圖五 (a) a-Sia-SiGemicroc-Si 能帶圖 (b)a-SiGe 厚度與能隙的關係

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 32: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

Ei

Ec

Ev

p+

μc-SiGeEglt11eV

n+n

δ

a-Si

(a)

d1 d2 d3

a-SiGe

反射損失

1 0 1(X) exp( X)

2 1 1 2(X) (d )exp( X)

3 2 2 3(X) (d )exp( X)

d1 d2 d3

0

0

hetrojunction-gain

lightflux

(b)

圖六 (a) a-Sia-SiGemicroc-Simicroc-SiGe 能帶圖 (b) 加入異質接面得到 Gain ( 參考資料 [4] p56)

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 33: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

圖四 J-V 圖

a-Si(p+)a-Si(n)poly-Si(n) poly-Si(n+)

2351 095 0763 1704

Dr Letha (a-SiSiGepoly-Si)

n+-na-Sia-SiGen-uC-Sip+

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 34: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

圖一成本 vs 太陽電池效率 productivity of 100MW

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 35: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

圖二 Cluster System

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 36: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

A NEW RESISTIVE RAM NON-VOLATILE MEMORY

HIGH DENSITY

HIGH SPEED

HIGH ENDURANCE

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 37: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

Process Flow

P-type Si (100) substrate P-type Si (100) substrate

SiOSiO22 Wet oxidation (500nm) Wet oxidation (500nm)

FePt (50nm) FePt (50nm)

SiOSiO2 2 (50nm) was deposited by PECVD (50nm) was deposited by PECVD

and TiN deposited (30nm) by Sputter and TiN deposited (30nm) by Sputter system and pattern TiN sizesystem and pattern TiN size

RCA cleanRCA clean

Via hole 200nm and contact hole Via hole 200nm and contact hole 250nm etching then Ti (80nm) 250nm etching then Ti (80nm)

lithography pattern lithography pattern (100umtimes100um)(100umtimes100um)

SiO2 (500 nm)

TiN (30nm)

Ti (80nm)Ti

FePt (50 nm)

SiO2 (50 nm)

SiO2 (200 nm)

A

B

(a)

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 38: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

bullForming Voltage -8V (soft breakdown PE oxide)bullBottom electrode sweep voltage up electrode groundedbull05V read ratio 56026 times 1mA Compliance current

Voltage (V)

-4 -2 0 2 4

Cur

rent

(A)

100x10-12

1x10-9

10x10-9

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

1st2nd3rd10th50th

bull1

bull2 bull3

bull4

(b)

Area 515 um2

Voltage (V)

-3 -2 -1 0 1 2 3

Cur

rent

(A

)

100x10-9

1x10-6

10x10-6

100x10-6

1x10-3

10x10-3

100x10-3

bull1

bull2bull3

bull4

bullAlSiO2Pt structure (after forming)

bullEquivalent circuit of TiTiNSiO2PtFe

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 39: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

PCJ Graat MAJ somers Applied Surface Science 100 101 (1996) 36-40

Etching Time (s)

0 50 100 150 200 250 300

Ato

mic

pe

rce

nt

()

0

10

20

30

40

50

60

70

OFeSiPt

SiO2 FePt electrodeTransition

A B

(a)Binding energy (eV)

700710720730740

Inte

rity

16000

16500

17000

17500

18000

18500

19000

Fe (2p32)

Fe2O3 (2p32)

Satellite peaks

(b)

Binding Energy (eV)

704706708710712714

Inte

nsity

(au

)

XPS analysis to transition region

AE Depth Profile and XPS Analysis

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 40: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

42

Current Fitting

Slope=1

Slope=1

Ohmic Law

Ohmic Law (Independent to Temperature)

Frenkel-Poole Emission

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 41: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

43

Size Effect

Size independent Localization

Electrode area dependent

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 42: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

44

Possible Model - Reset Process

EFEv

Ec

EF

Ev

Enhanced n - type

Ec

Fe2O3

Oxygen vacancies (donor)

Fe2O3

Lighted n - type Oxygen vacancies (donor)

EF

e-e- e- e- e- e-

+ + + + + +++ + + + +

EF VR

e-Tunneling

e- e- e- e-

VF

Frenkel-Poole Emission

++

++

LocalizationJoule heating

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 43: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

PS a lot of conductive filaments domains or anything conductive (After forming in the bulk)

control

It should be noted that the on and off of faucets does not need to occur simultaneously at both interfaces If at least one faucet exits in either of the interfaces the above scenario will hold

D Possible mechanisms for opening and closing of the faucets

1 Electromigration activation energy for diffusion is reduced2 Joule heating (local chemical reaction)

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 44: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

46

ndash TCAD simulation ndash

performance evaluation of

short channel GaAs n-MOSFET

with Ge sourcedrainndash 信淵 amp 兆欽 amp 宗佑

2009 04 24

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 45: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

47

p-GaAs

Metal

Gate

MetalHfO2 (5nm)

n+-Ge

- Simulated nano-MOSFET device structure ndash

n+-Ge

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 46: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

GIANT ENERGY GENERATION 黑潮

TURN 99 IMPORT

TO

ENERGY EXPORT NATION

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 47: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

地衡環流 水壓與科氏力的平衡產物

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 48: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

copy 2006 Naoto Iwasaka WIDE Project School of Internet httpwwwsoiwideadjpclass20060026slidesl

海表流速大深水處流速遞減

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 49: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

Western Intensification

httpsoconnellwebwesleyaneduees106lecture_noteslecture14_106ocean_cir2img003gif

httpoceanmotionorghtmlbackgroundwestern-boundary-currentshtm

大洋西邊由低緯往高緯的水流因科氏力增強而加速風向的改變也推波助瀾

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 50: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

台東綠島海底地形圖

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 51: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

黑潮流速受海底地形影響綠島與台東之間的「峽口」流速最快

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 52: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.

EPILOGUEbull POST INDUSTRIAL

REVOLUTION GREEN ECONOMICS

bull GREEN ECONOMY GREEN CULTURE

bull GREEN SCIENCE

bull NET BOOK REVOLUTION VS FINACIAL TSUNAMI NIKKEI BUSSINESS51809

bull ENERGY SAVING AND CO2 REDUCTION SAVE MOTHER EARTH

bull ECO-ENVIRNMENT

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
Page 53: ECOE RESEARCH GROUP C.Y.CHANG, NATIONAL ACADEMIES, USA June,2009.
  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56

Recommended