+ All Categories
Home > Documents > ECTC2005 Tin Whisker Formation A Stress...

ECTC2005 Tin Whisker Formation A Stress...

Date post: 10-Jul-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
66
ECTC2005 ECTC2005 Tin Whisker Formation Tin Whisker Formation A Stress Analysis A Stress Analysis Chen Xu – Cookson Electronics G. T. Galyon – IBM (presenting) S. Lal – FCI B. Notohardjono – IBM
Transcript

ECTC2005ECTC2005Tin Whisker FormationTin Whisker Formation

A Stress AnalysisA Stress Analysis

Chen Xu – Cookson ElectronicsG. T. Galyon – IBM (presenting)

S. Lal – FCIB. Notohardjono – IBM

1

Mr. WhiskerMr. Whisker

Courtesy of Peter Bush/SUNY-Buffalo

2

AgendaAgenda• Integrated Theory for Whisker Formation & Stress• Kirkendahl Effect and Stress• Intermetallic Formation and Stress• Finite Element Stress for Tin Film• Film Stress Measurements – XRD• Film Stress Measurements- Flexure Beam

– Flexure Beam Observations– Flexure Beam Limitations

• Wrap Up

3

Integrated Theory: Elements Of Integrated Theory: Elements Of

• Compressive stress- A necessary factor– Compressive stress sources

• Must be high impedance or sustaining sources, e.g.– Intermetallic formation– High humidity (oxide reactions at film surface)– Temperature cycling (differential thermal expansion)– Built in film stresses (additives/gaseous entrapment)

• Arguments to the contrary are potentially flawed– e.g., non sustaining stresses– e.g. Flexure beam observations– e.g. Bent lead-frame experiments

• Recrystallization – A necessary factor (?)– Not covered in this presentation

• Tin Self-Diffusion – A necessary factor– Not covered in this presentation

4

Stress States in FilmsStress States in Films

• Stress States in Film Structures• Kirkendahl Effect and Intermetallic Formation

• Finite Element Analysis (FEA) of zonal film structure

• Theory (FEA) reconciliation with measurement

• XRD and Flexure Beam Data must be reconciled

• Stress State and Film Microstructure• Zonal Structures

• E.g. the extent of IMC at the time of stress

measurement

5

Compressive Stress ScorecardCompressive Stress Scorecard

ProS. Madra

grain-boundary/grain growth modelConK. Tsuji

ProR. Schetty

ProHutchinson, et al.

Tin-indium samplesProM. Barsoum, et al.

grain-boundary/grain growth modelConP. Bush

ProBoettinger, et al.

ProOsenbach, et al.

Tin-manganese samplesConK. Chen, et al.

ProK.N. Tu, et al.

ProW. Choi, et al.

ProP. Oberndorff, et al.

ProC. Xu

ProS. Lal

ProGalyon/Palmer

CommentConProAuthor/s

6

Compressive Stress Scorecard (contCompressive Stress Scorecard (cont’’d)d)

1987 (internal stresses/not mechanical)ProB.D. Dunn

1998ProLee & Lee

1984ProEndicott & Kisner

1983ProKawanaka, et al.

1974, Zinc whiskersProU. Lindborg

1969ProFuruta & Hamamura

1963ProPitt & Henning

1961ProV.K. Glazunova, N.T.Kuryavtsev

1961ProV.K. Glazunova

1958ProW.C. Ellis, D. Gibbons,R.g. Treuting

1955ProR.R. Hasiguti

1954, Tin on steelProFisher,Darken,Carroll

CommentConProAuthor/s

7

copper tin

copper tin

Kirkendahl vacancies-actionzone

Shrinkage actionTensile Stress

Copper diffusion – action zoneInterstitial Cu + Cu6Sn5 +Sn

Compressive Stress

Kirkendahl Effect for Tin/Copper Couple

Reactionzone

Reactionzone

8

nickel tin

nickel tin

Tin diffusion –action zoneSn + Ni3Sn4 IMC

Compressive stress

Kirkendahl vacancies-action zoneShrinkage action

Tensile stress

Kirkendall Effect for Tin/Nickel/Copper

Reactionzone Reaction zone

9

FIB Cross Section of Sn/Cu with Kirkendahl VoidingFIB Cross Section of Sn/Cu with Kirkendahl Voiding

Put one or two FIB x-sections here

KirkendahlVoids

10

FIB Cross Section of Sn/Cu with Kirkendahl VoidingFIB Cross Section of Sn/Cu with Kirkendahl Voiding

Kirkendahl Voids

11

FIB X-sections - 0.5u immersion Sn/Cu /1 yr. oldFIB X-sections - 0.5u immersion Sn/Cu /1 yr. old

Full IMC penetration0.75 u tin film

Kirkendahl voiding underIMC

12

Sample Molar Volume CalculationsSample Molar Volume CalculationsFor Zone-2 of a Sn/Cu coupleFor Zone-2 of a Sn/Cu couple

Y ≡ gm-moles of tin per unit volume (V) in zone-2 before interdiffusionX ≡ gm-moles of copper diffusing into volume (V) & reacting to form IMC

Y (Sn) -> (X/6) (Cu6Sn5) + (Y-(5X/6)) Sn (eq. 1) Y gm-moles of tin -> X/6 gm-moles of IMC + (Y-(5X/6)) gm-moles of tin

Y (16cc/gm-mole) -> (X/6) (118 cc/gm-mole) + (Y-(5X/6)) (16cc/gm-mole)16Y ccs -> 16Y ccs + 6.6X ccs (eq. 2)

right side of equation 2 is always >> than the left hand sideTherefore; zone-2 is “expansionary” due to IMC formation (Always)

13

Molar Volume Calculations (contMolar Volume Calculations (cont’’d)d)

For example:

11Sn -> 1 Cu6Sn5 + 6Sn in molar volumes is:

176 ccs-> 118 ccs + 96 ccs 176ccs < 214 ccs (a 22% volume increase in zone-2)

For example:

12Sn-> 2 Cu6Sn5 + 2Sn

192ccs-> 236 ccs + 32 ccs 192ccs < 268 ccs (a 39% volume increase in zone-2)

14

Kirkendall zone – vacancy rich copper

Copper substrate

Cu6Sn5+Sn

Sn

SnZone 1

Zone 2

(compression)

Zone 3

(tension)

Zone 4

The 4-zone structure for a tin/copper couple after intermetallic forma tion

L L

Kirkendall zone – vacancy rich copper

Copper substrate

Cu6Sn5+Sn

Sn

SnZone 1

Zone 2

(compression)

Zone 3

(tension)

Zone 4

The 4-zone structure for a tin/copper couple after intermetallic forma tion

L L

Oxide layer

4-Zone Structure for Sn/Cu4-Zone Structure for Sn/Cu

15

4-zone Sn/Cu Structure - Stress Distribution in zone-24-zone Sn/Cu Structure - Stress Distribution in zone-2

Vacancy rich copper (Kirkendall Zone) -tension

copper substrate

Cu6Sn5

(compression)

Sn (compression)

Sn

Vacancy rich copper (Kirkendall Zone) -tension

copper substrate

Cu6Sn5

(compression)

Sn (compression)

Sn

Stress-tension at time zero -compressive over time

Stress is the same fortin and IMC in zone-2

It cannot be that tinand IMC are at

different stress levelsat or

near equilibrium

Oxide layer

16

Sample Molar Volume CalculationsSample Molar Volume CalculationsFor Zone-3 of a 4-layer Sn/Ni/Cu coupleFor Zone-3 of a 4-layer Sn/Ni/Cu couple

• 3Ni -> Ni3Sn4– Molar Volume of Ni = 6.6 cc/gm-mole– Molar Volume of Ni3Sn4 = 75.25 cc/gm-mole– The molar volume for 3Ni < molar volume for Ni3Sn4– 19.8ccs < 34ccs (an expansionary action)

• For Sn/Ni/Cu– The vacancy rich region is in the tin (tension)– The expansion action is in the nickel (compression)

There is no known visual confirmation of Kirkendahlvacancies for Sn/Ni/Cu structures at this time (5/05)

17

Zone-1

(compression)

Zone-2

(tension)

Zone-3

(compression)

Zone-4

(tension)

Ni3Sn4+ Ni

Ni

Ni

Copper substrate

Tin film

Tin film

Zone-1

(compression)

Zone-2

(tension)

Zone-3

(compression)

Zone-4

(tension)

Ni3Sn4+ Ni

Ni

Ni

Copper substrate

Tin film

Tin film

The 4-zone structure for Sn/Ni/Cu after intermetallic formation

Zonal Structure for Tin with Nickel Underlay

Oxide layer

18

Kirkendahl Effect: CuKirkendahl Effect: Cu33Sn Intermetallic FormationSn Intermetallic Formation

• Cu3Sn forms from Cu6Sn5 for T > 60 oC

• At temperatures > 60 degs. C– If Cu6Sn5 -> 2Cu3Sn + 3Sn– 118 ccs/gm-mole -> 70ccs/gm-mole +48ccs/gm-mole– 118ccs->118ccs (no expansion or contraction)

• The Above Reaction provides excess tin (Sn) atoms• Excess Sn atoms permit continued outdiffusion/relaxation

• Excess tin atoms outdiffuse towards surface

• Outdiffusion reduces stress in Cu3Sn zone• Converts compressive stress to less compressive• Can convert stresses to tensile stress• Can show evidence of Kirkendall voids in Cu3Sn

19

CuCu33Sn Intermetallic Formation ?Sn Intermetallic Formation ?

Kirkendall zone – vacancy rich copper

Copper substrate

Cu6Sn5+Sn

Sn

Sn

The 4-zone structure for a tin/copper couple after annealing

Cu3Sn

Zone -1

Zone-2

Zone-3

Zone-4

Kirkendall zone – vacancy rich copper

Copper substrate

Cu6Sn5+Sn

Sn

Sn

The 4-zone structure for a tin/copper couple after annealing

Cu3Sn

Zone -1

Zone-2

Zone-3

Zone-4

Sn Sn

Oxide layer

20

X-section of CuX-section of Cu33Sn w Kirkendall VoidsSn w Kirkendall Voids

Picture from RPI research to be inserted.

Reference: M. Glicksman / A. Lupulescu, RPI, 2002

porosity in Cu3Snrequires outdiffusion

21

X-section of CuX-section of Cu33Sn w Kirkendall VoidsSn w Kirkendall Voids

TinFilm

Cu6Sn5

Cu3Sn

Cu Substrate

Kirkendahlvoiding in Cu3SnKirkendahl voiding in Cu

Finite ElementFinite ElementAnalysisAnalysisTin FilmsTin Films

B. NotohardjonoG. Galyon (presenting)

C.XuS. Lal

23

Finite Element AnalysisFinite Element AnalysisZonal Structures For Sn/CuZonal Structures For Sn/Cu

• Objective: Correlate Theory to Measurement

• Finite Element Analysis Strategy

– Break up substrate/film into zones

– Assume expansions/contractions for each zone– Calculate stress states– Compare to experimental data

24

Kirkendall zone – vacancy rich copper

Copper substrate

Cu6Sn5+Sn

Sn

SnZone 1

Zone 2

(compression)

Zone 3

(tension)

Zone 4

The 4-zone structure for a tin/copper couple after intermetallic forma tion

L L

Kirkendall zone – vacancy rich copper

Copper substrate

Cu6Sn5+Sn

Sn

SnZone 1

Zone 2

(compression)

Zone 3

(tension)

Zone 4

The 4-zone structure for a tin/copper couple after intermetallic forma tion

L L

Oxide layer

Four Zone Structure for Sn/Cu

25

Finite Element Stress AnalysisFinite Element Stress AnalysisModel Parameters for Sn/CuModel Parameters for Sn/Cu

• Set zonal thickness and properties– E.g., Zone-1 at 5 microns: 100% tin– E.g., Zone-2 at 2 microns: mixture of tin and IMC– E. g.,Zone-3 at 2 microns: vacancy rich copper– E.g., Zone-4 at 10 microns: copper substrate

• Let active zones expand/contract– Zone-2 will expand: inter-diffusion/IMC formation– Zone-3 will shrink: Kirkendall vacancy formation– Zones1/4 will react:

• Calculate stresses in reactive zones

• Compare FEA scenario to experimental results

26

0 .9 1.8

2.8

3.8

4.8

5.8

7 8 9

10

Legend: zone-2 expansion

Distance from Surface-microns

-10

-8

-6

-4

-2

0

2

4

6

8

Stre

ss-ksi

zone-2=0

zone-2=.0001

zone-2=.001

zone 2=.00125

zone 2=.002

4-Zone Structure Stress States zone-3 shrinkage = .001

zone 1 zone 2 zone 3

The flexure beamIs concave downfor all 5 scenarios

Finite Element AnalysisFinite Element Analysis

Zone 1 Tin Stressis increasingly

tensile withincreasing IMC

Formation

27

0 .9 1.8 2.8 3.8 4.8

Legend: zone-2 expansion

Distance from Film Surface (microns)

-1

0

1

2

3

4

5

6

Stre

ss

-kp

si

zone-2=0

zone-2=.0001

zone-2=.001

zone-2=.00125

zone-2=.002

zone-2=.005

zone-2=.01

zone-2=.02

Zone-1 Stresses zone-3 shrinkage=.001An expanded presentation

for zone-1 showing how the Zone-1 stress becomes increasingly tensile with increasing zone-2 expansion

Finite Element AnalysisFinite Element Analysis

28

Out-Diffusion of Tin: Zone-2 to Zone-1Out-Diffusion of Tin: Zone-2 to Zone-1

• Tin will out-diffuse from Zone-2 to Zone-1– Diffusion driven by stress gradient / not concentration grad.– Diffusion will primarily be through grain bdries.– Bulk tin self-diffusion

• Increasingly important with increasing temperature• Very anisotropic: <001> >>> <100> or <010>• Accounts for Pedestal Structures from annealing (see Wed.

pm)

– Out-diffusion-> balances Zone-1/2 stress• Zone-2 stress decreases/Zone-1 stress decreases• Diffusion stops -> total strain energy is minimized.

29

Starting point tin in tension

Equilibrium point tin incompression

Past equilibrium-tin in highcompression

e.g. –out diffusion factor 1.2means that the 2% expansionhas been reduced 1.2% by outdiffusion from zone-2 to zone-1

Finite Element Analysis Finite Element Analysis ––outdiffusionoutdiffusion

30

0 .6 1.2 1.8 2.4 3.0

Zone-2 to Zone-1

Out-Diffusion Factor

0

2

4

En

erg

y pe

r cc (lb-in

x 10

+6

)

out-diffusion #0

2% expansion:zone-2

out-diffusion factor #3

2% expansion zone-2

out-diffusion factor #1.8

2% expansion zone-2

Note: Strain energy term is total strain energy for zones 1,2,3,4 in 4-zone model

Flexure isConcave Down with R decreasingWith increasingOut-diffusion

Strain Energy Strain Energy –– Outdiffusion Outdiffusion

31

Zone-1

(compression)

Zone-2

(tension)

Zone-3

(compression)

Zone-4

(tension)

Ni3Sn4+ Ni

Ni

Ni

Copper substrate

Tin film

Tin film

Zone-1

(compression)

Zone-2

(tension)

Zone-3

(compression)

Zone-4

(tension)

Ni3Sn4+ Ni

Ni

Ni

Copper substrate

Tin film

Tin film

The 4-zone structure for Sn/Ni/Cu after intermetallic formation

Oxide layer

Sn/Ni/Cu Zonal Structure

32

Finite Element Stress AnalysisFinite Element Stress AnalysisModel Parameters for Sn/Ni/CuModel Parameters for Sn/Ni/Cu

• Set zonal thickness and properties– zone-1 at 3 microns: 100% tin– Zone-2 at 2 microns: vacancy rich tin– Zone-3 at 2 microns: nickel plus Ni3Sn4 intermetallic– Zone-4 at 10 microns: copper substrate

• Let active zones expand/contract– Zone-2 will shrink: Kirkendall vacancy formation– Zone-3 will expand: intermetallic formation– Zones1/4 will react:

• Calculate stresses in reactive zones

33

0 1.8 3.8 5.8 8 10

distance from film surface (microns)

-200

-100

0

100

200

300

Stre

ss (psi)

zone-3= +1.0% zone-2=-0.1%

Z1 z2 z3 z4

FEA predicts that tin stress willbe tensile at the Sn/Ni interface andcompressive at the surface for a filmthickness >2-3 us.

These calculations assume that there isno built-in stress intrinsic to the tin itself. An intrinsic tin film stress would be additive.

compressive

tensile

compressive

Finite Element Analysis-Sn/Ni/CuFinite Element Analysis-Sn/Ni/Cu

34

FEA SummaryFEA Summary

• FEA of Zonal Structures– Predicts Flexure Beam and XRD σ measurement in

opposition to each other

– Predicts that XRD at time zero may be tensile andover time goes compressive

35

What Does Stress Data Say?What Does Stress Data Say?

• XRD Data– C. Xu, Y. Zhang, et al: Cookson/Enthone Y2000+

• Flexure Beam Data– Lee and Lee: Seoul National University Y1998– S. Lal: FCI Corporation – Private Communication

36

XRD XRD for for Sn/Ni/Cu Sn/Ni/Cu aged 40 days at ambientaged 40 days at ambient

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8,0

8.5

9.0

9.5

10

-10

-5

0

5

10

15

20

Stre

ss-M

Pa

Thickness of Tin Film for Sn/Ni/Cu Structure

For tin films <2.0 microns allXRD stress values are tensile

For tin films >2.0 microns allXRD stress values are compressive

These values are consistentwith FEA analysis of a zonalSn/Ni/Cu structure

Transition from tensile tocompressive

Reference: Cookson Electronics, C. Xu, et al.

37

Lee and LeeLee and Lee’’s (1998) Flexure Beam Stress Datas (1998) Flexure Beam Stress Data

0 5

10

15

20

25

30

35

40

45

50

55

60

Aging Time (Days)

-10

-5

0

5

10

15

Stre

ss M

Pa

Complex Stoney’s Equationσ= ET2 (1/R – 1/Ro) 6 6(1-γ)t)

The stress at time zero istensile and within 2 daysis compressive.

We do not know what the radiiof curvatures were…we canassume that the beam wentfrom concave up to concavedown as the stress went fromtensile to compressive. But it’spossible the radius wasconcavedown thruout the test cycle.

tensile

compressive

Tin on Phos-Bronze Substrate

38

Com

pres

sive

Tens

ile

Aging Time

XRD Stress Data Over Time-SchematicXRD Stress Data Over Time-Schematic

Sn/Ni/Cu XRD Data Ref. C. Xu

Sn/Cu XRD DataRef. C. Xu

ThisRegion

Expectedbut

MinimalData to

Date

39

Flexure Beam Data (Schematic Format)Flexure Beam Data (Schematic Format)

Concave Up “Tensile”

Time

Concave Down“Compressive”

Tin Etched Off at Time Zero

Tin Etched off at Time t

Ref. S. Lal – FCI Corporation

Tin etched off at Time t

40

Theory and Experimental DataTheory and Experimental Data

• XRD Data–zonal theory easily explains–Kirkendall Effect Sn/Ni/Cu

• Explains tensile stress in Sn• Explains tensile to comp.

transition with increasingthickness

–Kirkendall Effect Sn/Cu• Explains -σ increase with time• Consistent with IMC expansion

• Flexure Beam Data–zonal theory easily explains–Time zero flexure

• Due to built-in stresses• No Kirkendall effect yet

– Zero residual flexure

–Stress relaxation over time• Represents all zones together• Not just the tin film• Kirkendall effect not dominant• Kirkendall effects slow relax.

Wrap UpWrap UpConclusionsConclusionsChallengeChallenge

G. Galyon-IBM (presenting)Chen Xu-Cookson

S. Lal-FCIB. Notohardjono-IBM

42

Wrap Up-ConclusionWrap Up-Conclusion

• Zonal Structure Analyses-Appropriate model

• Kirkendahl Effect- Primary Stress Source

• IMC Formation & Expansion- Primary Stress Source

• Stress Measurement in Tin Films

– Requires combination of XRD/Flexure/Microstructure

– Requires a corresponding FEA zonal structure scenario

• Recrystallization- To be addressed / future work

• Oxide Reactions-To be addressed / future work

• Thermal Cycling-To be addressed / future work

43

The ChallengeThe Challenge

• Go and do Likewise:– Check out the Integrated Theory Hypotheses– Check out the reported data

• E.g. Sn/Ni/Cu Stress States• Tin Films with concave up flexure beams / i.e. “tensile”

– Synchronize Flexure Beam / XRD / Microstructure• Check intermetallic formation as a function of “stress”

• Let’s share your inputs on a real time basis– Open invitation from the iNEMI modeling group– Chairman: G. T. Galyon ([email protected])

Back Up Material Back Up Material ––ECTC 2005ECTC 2005

XRD Stress Measurement TechniqueXRD Stress Analysis

Flexure Beam Analysis Technique

XRD StressXRD StressMeasurementMeasurement

Chen Xu-CooksonG. T. Galyon-IBM (presenting)

S. Lal-FCIB. Notohardjono-IBM

46

Why using XRD for the residual stress measurement?

DetectorX-ray

Non-destructive and spatial resolvedMonitoring the stress evolutionStress measurement on real partMeasuring the stress of individual layer

47

XRD Spectra Shifts & Stress TypeXRD Spectra Shifts & Stress Type

71 72 73 74

0

100

200

300

400

500

stress-free

tensile stress

compressive stress

Diffr

actio

n I

nte

nsity

2!

70 71 72 73 74 75

0

100

200

300

400

500

low microstress

high microstress

Diffr

actio

n I

nte

nsity

2!

Macro Stress Microstress

48

Stress Measurement using XRDStress Measurement using XRD

ex(y)=

u+1E

sx sin2y - uE

(sx + sy)St

rain

sin2y

Tensile Stress

Compressive Stress

49

Shear Stress Determination with SinShear Stress Determination with Sin22ΨΨ

0.0 0.1 0.2 0.3 0.4 0.5 0.6

-0.0016

-0.0014

-0.0012

-0.0010

-0.0008

-0.0006

-0.0004

-0.0002

0.0000

0.0002

sin2!

Str

ain

+!

-!

z

xyy

NoShearStress

ShearStress

50

Biaxial Stress State sinBiaxial Stress State sin22ΨΨ Data Data

0.0 0.1 0.2 0.3 0.4 0.5-0.0020

-0.0018

-0.0016

-0.0014

-0.0012

-0.0010

-0.0008

-0.0006

-0.0004

-0.0002

0.0000

0.0002

sin2!

"x= 851 MPa

"y= 842 MPa

Str

ain

x

y

Stress MeasurementsStress MeasurementsSn/Ni/Cu Sn/Ni/Cu & & Sn/CuSn/Cu

Chen Xu-CooksonG. T. Galyon-IBM (presenting)

52

Experimental SetupExperimental Setup

• D8 Discover withGADDS by Bruker.

• Cr-radiation and 0.5mmbeam.

• Diffraction peak (312) at2q=143.8o.

• The strains were measuredat 19 different y anglesfrom –45o to 45o.

53

Stress MeasurementStress Measurement

-0.0008

-0.0007

-0.0006

0.5µ Sn/Ni/Cu

Str

ain

2µ Sn/Ni/Cu1µ Sn/Ni/Cu

0.0 0.1 0.2 0.3 0.4 0.5

-0.0008

-0.0007

-0.0006

3µ Sn/Ni/Cu

Str

ain

sin2(!)

0.0 0.1 0.2 0.3 0.4 0.5

-0.0008

-0.0007

-0.0006

10µ Sn/Ni/Cu

sin2(!)

54

Stress MeasurementStress Measurement

0 2 4 6 8 10

-5

0

5

10

15bright Sn/Ni/Cu alloy, aged at RT for 40 days

Compressive Stress

Tensile Stress

Str

ess in

Sn

Film

(M

Pa

)

Sn Film Thickness (microns)

Reference Cookson Electronics: C. Xu, et al.

55

Com

pres

sive

Tens

ile

Aging Time

XRD Stress Data Over Time-SchematicXRD Stress Data Over Time-Schematic

Sn/Ni/Cu XRD Data Ref. C. Xu

Sn/Cu XRD DataRef. C. Xu

ThisRegion

Expectedbut

MinimalData to

Date

56

Flexure Beam Data (Schematic Format)Flexure Beam Data (Schematic Format)

Concave Up “Tensile”

Time

Concave Down“Compressive”

Tin Etched Off at Time Zero

Tin Etched off at Time t

Ref. S. Lal – FCI Corporation

Tin etched off at Time t

57

XRD Stress Analysis SummaryXRD Stress Analysis Summary

• XRD on Sn/Ni/Cu– Well behaved data set

• Stresses are biaxial– Results are in synch with Zonal Structure Theory

• Show predicted tensile/compression transition– Stress over Time analysis

• Tensile Stresses Increase with time to about 15 MPa

• XRD on Sn/Cu– Historical Data Set

• Stresses are biaxial• Compressive Stresses increase with time to 15-20 MPas

– Current data set very preliminary – Work in Progress• Latest Results will be discussed in Conference• Preliminary indications of tensile to compressive transition

Flexure BeamFlexure Beam

S. Lal-FCI (Presenting)G. Galyon-IBM

C. Xu-CooksonB. Notohardjono-IBM

59

Flexure Beam ApparatusFlexure Beam Apparatus

R = L2/2δ

Schematic ref. Lee and Lee, 1998.

60

Flexure Beam Stress AnalysisFlexure Beam Stress Analysis

• Stoney’s eq. σ= ET2/6(1-γ)tR– σ is film stress– E is Young’s modulus for substrate material– γ is Poisson’s ratio for substrate material– t = film thickness– T= substrate thickness– R = curvature radius of flexure beam

• Stoney’s eq. only valid for t/T ratios ≤ 0.01(1%)

• Std. Flexure Beam thicknesses 50-200 microns– An 0.5u film has t/T = 0.01 (1%) for a 50u beam– A 2.0u film has t/T= 0.01 (1%) for a 200u beam

61

Complex StoneyComplex Stoney’’s equations equation

• Etching off the tin…based on change in radius• σ= ET2/6(1-γ)t(1/R – 1/Ro)

– R is the radius after etching off tin– Ro is the radius before etching off tin

• Etchant Removes tin with varying stress levels– Leaves any intermetallic intact

• Result is an averaging of stresses thruout tin

• Etching of the intermetallic– Also removes copper layer– Need etchant that removes only intermetallic

• No known suitable etchant for Sn/Cu systems

62

Lee and LeeLee and Lee’’s (1998) Flexure Beam Stress Datas (1998) Flexure Beam Stress Data

0 5

10

15

20

25

30

35

40

45

50

55

60

Aging Time (Days)

-10

-5

0

5

10

15

Stre

ss M

Pa

Complex Stoney’s Equationσ= ET2 (1/R – 1/Ro) 6 6(1-γ)t)

The stress at time zero istensile and within 2 daysis compressive.

We do not know what the radiiof curvatures were…we canassume that the beam wentfrom concave up to concavedown as the stress went fromtensile to compressive. But it’spossible the radius wasconcavedown thruout the test cycle.

tensile

compressive

Tin on phos-bronze substrate

63

Flexure beam with Concave Up curvature (i.e. “smiley faced)Simple Stoney’s analysis shows tensile stress in tin film

Zone-1 tin

Zone-2 imc

Zone-3Kirkendall vacs.

Zone-4Cu substrate

Note: Zone-1 (tin) may be compressive if the curvature is due to shrinkage in either zones 2/3.

Neutral axis

4-zone structure: Flexure Beam Analysis4-zone structure: Flexure Beam Analysis

64

Zone 1-tin film

Zone 2-IMC+Sn

Zone 3-Cu K.Z

Zone 4-Cu

Neutral Axis

Flexure Beam with Concave Down Curvature (i.e. “Grumpy Faced” )Simple Stoney’s analysis shows compressive stress in tin film

Note: Zone-1 may be tensile even though Stoney’s eq. says it is in compression. i.e., If Zone-1 only “reacts” to the expansionary action of underlying zones it will be in tension even though the curvature is concave down

4-Zone Structure: Flexure Beam Analysis4-Zone Structure: Flexure Beam Analysis

65

Compressive StressCompressive StressDriving Force for Whisker FormationDriving Force for Whisker Formation

• Internal compressive stress– Agreed to by great majority of published authors– These authors agree

• Applied (external) mechanical stress– Not frequently addressed by published authors– Established by Fisher, Pitt, Glazunova– Some negative results (Dunn, private communications)– These authors agree: mech. Stress can induce whiskers

• Role of intermetallic at substrate interface– Majority believe IMC compresses film– These authors agree


Recommended