+ All Categories
Home > Documents > EDkON NUCL. EAR COMPANY,Inc. pe)YICECON(7) has been reviewed and approved by the NRC(0) for LOCA...

EDkON NUCL. EAR COMPANY,Inc. pe)YICECON(7) has been reviewed and approved by the NRC(0) for LOCA...

Date post: 30-Jan-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
36
_-__ _ _ _ _ _____ __ _ _ _ _ ._ _ _ _ _ _ . _ .._ _ _. _ _ _.____ - __. _ , _ D { . i '' : . XN NF 8107 ! ! ' 7 ; . | LOCA ECCS REANALYSIS FOR D.C. COOK . UNIT 1 USING THE ENC WREM.11A i PWR ECCS EVALUATION MODEL : ! i | . . FEBRUARY 1981 ; 4. ; , i, ' , RICHLAND, WA 99352 - i * .. 3 . q ' , ! ;,, , . ,. '_|. . _ . : * | EDkON NUCL. EAR COMPANY,Inc. i / pe)Y . .,'M .-,...--,e,.-_.---,~,...nn.-.,,,-a,mn._.,-~--.-~~n.---_~~-.. - , - - - - - -- - - , , , , . . - - - - - . , ,. - - - - - - - - - - - , - - - - - -
Transcript
  • _-__ _ _ _ _ _____ __ _ _ _ _ ._ _ _ _ _ _ . _ .._ _ _. _ _ _.____ - __. _ ,_

    D {.

    i''

    : .XN NF 8107

    !

    !

    '7

    ; .

    | LOCA ECCS REANALYSIS FOR D.C. COOK.

    UNIT 1 USING THE ENC WREM.11Ai PWR ECCS EVALUATION MODEL:

    !i

    |

    .

    .

    FEBRUARY 1981

    ;

    4. ; ,

    i,

    ',

    RICHLAND, WA 99352-

    i

    *.. 3 . . q

    '

    ,

    . ! ;,, , . ,. '_|. . _. : *

    | EDkON NUCL. EAR COMPANY,Inc.i /

    pe)Y.

    .,'M

    .-,...--,e,.-_.---,~,...nn.-.,,,-a,mn._.,-~--.-~~n.---_~~-.. - , - - - - - -- - - , , , , . . - - - - - . , ,. - - - - - - - - - - - , - - - - - -

  • .

    XN-NF-81-07

    ISSUE DATE: 02/12/81

    ,

    LOCA ECCS REANALYSIS FOR D.C. COOK

    UNIT 1 USING THE ENC WREM IIA

    -

    PWR ECCS EVALUATION MODEL

    Prepared by:

    S.E. Jensen

    J.C. Cherng

    W.V. Kayser

    D.J. Braun .

    Approved : /t / WA < # ~//' & /J{p.' Morgan,Manhser

    | Licensing & Safety Engineering

    Approved [6 "'NcpNbi el eering

    /mb

    ERON NUCLEAR COMPANY,Inc.

    I._ , . . . . - . , , . - . - - .-- - - - . . - - -

  • . _ . . _ . . _ _ ~ _ _ _ _ - - - _ - _ - . . __ -- _ . . -_. _ . - _. _. _ _ _ _ . .- ._. _ -_ _ . _ _ _ _ . . - _ . . . ._ _ _ .

    .

    *;

    1

    i

    :

    i XN-NF-81-07

    TABLE OF CONTENTS

    rl

    '

    <

    ; SECTION PAGE

    i

    1.0 INTRODUCTION AND SUPMARY . . . . . . . . . . . . . . . . . 1 >

    2.0 ANALYTICAL AND SYSTEM MODELS . . . . . . . . . . . . . . . 5

    i

    3.0 SYSTEM ANALYSIS RESULTS 7' . . . . . . . . . . . . . . . ..

    4.0 FUEL EXPOSURE ANALYSIS RESULTS . . . . . . . . . . . . . . 28

    29- 5.0 CONCLUSIONS .................... . . .

    ! 6.0 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . 30

    <

    |

    +

    .

    y v. , - , . - . - , , , , , ...,,,-,--r , , ,-,~,-...rr-- -,- -- -,, .a-, g , , , - , , ---_-n,,. r- , , - , , , - - - , . , . , - - ,

  • . . - - ._ . . . . . .

    ',

    i .

    /.

    11

    XN-NF-81-07

    LIST OF TABLES

    TABLE PAGE

    !.1 0.C. COOK UNIT 1 EXPOSURE SENSITIVITY RESULTS . . . . . 33.1 D.C. COOK UNIT 1 REANALYSIS LIMITING BREAK

    EVENT TIMES (1.0 DECLS) . . . . . . . . . . . . . . . . . 8

    LIST OF FIGURES_

    FICURE PAGE

    1.1 0.C. COOK UNIT 1, ALLOWABLE TOTAL PEAKING FACTORAS A FUNCTION OF PEAK PELLET EXPOSURE . . . . . . . . . . 4

    93.1 BLOWDOWN SYSTEM PRESSURE ................

    3.2 BLOWDOWN BREAK FLOW RATE 10................:

    3.3 PRESSURIZER SURGE LINE FLOW RATE 11............

    3.4 ACCUMULATOR FLOW RATE TO IRTACT LOOPS . . . . . . . . . . 12

    3.S BLOWDOWN CORE INLET FLOW RATE . . . . . . . . . . . . . . 13

    3.6 BLOWOOWN CORE OUTLET FLOW RATE 14.............

    3.7 BLOWDOWN HOT ASSEMBLY INLET FLOW RATE . . . . . . . . . . 15

    3.8 BLOWDOWN HOT ASSEMBLY OUTLET FLOW RATE 16.........

    3.9 BLOWDOWN PCT NODE CLADDING TEMPERATURE 17.........

    3.10 BLOWDOWN PCT N0DE VOLUME AVERAGE- FUEL TEMPERATURE . . . . 18

    3.11 PCT N0DE BLOWDOWN HEAT TRANSFER COEFFICIENT . . . . . . . 19,

    N.

    -

  • . . _

    .

    .

    iii XN-NF-81-07

    LIST OF FIGURES (contd.)i

    FIGURE PAGE

    3.12 PCT NODE BLOWDOWN DEPTH OF ZIRCONIUM-WATERREACTION . . . . . . . . . . . . . . . . . . . . . . . . 20

    4

    3.13 NORMALIZED CORE POWER 21.................

    3.14 ICECON COATAINMENT BACKPRESSURE 22............

    i 3.15 REFLOOD UPPER PLENUM PRESSURE 23.............

    3.16 CORE REFLOODING RATE , . . . . . . . . . . . . . . . . . 244

    3.17 REFLOOD DOWNCOMER MIXTURE LEVEL 25............

    3.18 REFLOOD CORE MIXTURE LEVEL . . . . . . . . . . . . . . . 26

    3.19 CLADDING SURFACE TEMPERATURE DURING HEATUPENC FUEL BOL . . . . . ... . . . . . . . . . . . . . . . 27

    ,

    .

    k

    r

    9

    e

  • .

    .

    1 XN-NF-81-07

    1.0 INTRODUCTION AND SUMMARY

    In 1976, Exxon Nuclear Company (ENC) performed a LOCA ECCS analysis for ENC

    ' fabricated fuel in the Donald C. Cook Unit 1 reactor and established limits (I)assuring conformance to NRC 10 CFR 50.46 criteria (2) The ENC WREM II PWR ECCS.

    evaluation model was used for the 1976 0.C. Cook analysis. The ENC PWR evaluation

    .model has since been updated to the ENC WREM IIA model, and the ENC ice condenser

    containment code, ICECON, has been reviewed and approved by the NRC. Several

    features of the latest ENC PWR ECCS Evaluation Model and removal of known over-

    conservatisms in input data have been shown to produce benefits with respect to

    the pravious D.C. Cook LOCA ECCS results. This report details a reanalysis for

    ENC fuel in the D.C. Cook Unit I reactor using the latest NRC approved ENC WREM

    IIA PWR ECCS evaluation model. The analysis results show compliance with NRC 10

    CFR 50.46 criteria, and establish increased allowable LOCA ECCS operating limits

    for the ENC fuel in the D.C. Cook Unit I reactor.

    The analysis consists of a recalculation of the previously established

    limiting break LOCA, the equivalent double-ended split break of the cold leg or

    reactor vessel inlet line (1.0 DECL9). A complete system calculation was

    performed including the'RELAP4-EM system blowdown, accumulator discharge, ICECON

    containment pressure, ae.d REFLEX reflood calculations. Multiple fuel heatup'

    calculations were performed fer the ENC fuel at various linear heat rates and

    exposure conditions to establish allowable ECCS limits. These analyses

    consist of GAPEX, RELAP4-EM hot channel, and T000EE2 heatup calculations.

    The effects of the NRC model for enhanced fission gas release and fuel rod

    pressure uncertainties are also considered in the analysis.

    . , .. - . . -. --

  • .

    .

    2 XN-NF-81-07

    The results of the calculations are shown in Figure 1.1 which provides

    the revised maximum LOCA ECCS allowed peaking with exposure for ENC fuel in'the'

    D.C. Cook Unit I reactor. Corresponding linear heat generation rates and

    ECCS results are given in Table 1.1.

    Details of the analytical models used and revised input are described in

    Section 2.0. Section 3.0 shows the complete calculated results for the system

    analysis and the beginning-of-life ENC fuel heatup analysis. Final fuel

    analysis results at exposed conditions are given in Section 4.0.

    The conclusion of the reanalysis is that, based on the LOCA ECCS analysis

    results shown, the D.C. Cook Unit 1 reactor can be operated with ENC fuel at

    or below the limits defined by Figure 1.1 and Table 1.1 which will assure

    conformance with the NRC 10 CFR 50.46 criteria and 10 CFR 50 Appendix K

    requi rements.

    - . . . - - _ _

  • .

    .

    Table 1.1 D.C. Cook Unit 1 Exposure Sensitivity Results

    Peak Pellet Burnup (GWD/MTM) BOL 12.0 23.5 34.5 42.2*

    T 2.07 2.10 2.04 1.98 1.89Total Peaking, Fg

    Peak Linear Heat Generation Rate 14.24 14.45 14.03 13.6213.00

    (Kw/ft)Peak Clad Temperature (PCT, *F) 2199 2177 2195 2185 2186

    Max. Local Zr/H 0-Reaction, % 6.42 6.09 6.25 5.95 .5.622

    Core Wide Zr/H 0-Reaction, %

  • - _ _ - _ - _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ ._ _______ _ ____ __ __

    .

    .

    , . , i i i

    2.20 -

    "oLA.

    C3o

    if 2.10 e (12.0,2.10)-en

    j O(0,2.07) *'2 e (t .5,2.04)-

    0 2.00 -# e (34.5,1.98)*-

    S3-

    E 1.90 _ g (42.2,1.89)

    .

    1.80 e s i i i 1 s0 10 20 30 40 50 60 &

    TPEAK PELLET EXPOSURE, GWD/MTPS E

    6"

    Figure 1.1 D.C. Cook Unit 1, Allowable Total Peaking Factoras a Function of Peak Pellet Exposure

  • .

    .

    5 XN-NF-81-07

    2.0 ANALYTICAL AND SYSTEM MODELS

    The D.C. Cook Unit i reanalysis used the ENC WREM IIA PWR ECCS Evaluation

    Model(3,4,5,6) as approved by the NRC and applied in several of the latest ENC

    PWR analyses. Only the CONTEMPT code which computes containment backpressure was

    replaced by the ICECON computer code as appropriate for the D.C. Cook Unit 1

    ice condenser containment design. ICECON(7) has been reviewed and approved by

    the NRC(0) for LOCA ECCS application with ice condenser containments.

    The 1976 LOCA ECCS analyses for D.C. Cook Unit 1 was performed with the ENC

    WREM II PWR ECCS evaluation model. During the development of the ENC WREM IIA

    model, several of the changes made were shown to give small improvements in ECCS

    margins for the D.C. Cook Unit I reactor. Model changes from the ENC WREM II

    model include: (1) RELAP4-EM updates from RELAP4-EM/ ENC 25 to RELAP4-EM/ ENC 28;

    (2) Replacing RELAP4-EM FLOOD with REFLEX; (3) Replacing the Westinghouse

    calculated reflood backpressure with the ENC ICECON calculated results; and

    (4) T00DEE2 updates from T00DEE2/76 to T00DEE2/DMAY79(9).

    In addition to the ENC WREM IIA updates, revised system input was obtained

    through ENC neutronics calculations for moderator density reactivity data.

    A correction was also made to accumulator line dimensions input. The effect of

    this correction with regard to Peak Cladding Temperature (PCT) results is

    insignificant. The initial steady-state conditions were reestablished based on

    nominal conditions for core inlet temperature and secondary pressure as per a

    previous NRC request.

  • -.

    t

    6 XN-NF-81-07

    The system and fuel nodalization for the O.C. Cook Unit 1 reanalysis

    remains as in the previous analysis or as documented for REFLEX (5) and

    ICECON(7) Only a minor change in the T00DEE2 nodalization was made ,.,

    to center the maximum power node at the peak axial power location.,,

    -

    r

    - y , . - , ,,,,e.- ,,,--~,,--,--

  • !.

    ..- )

    '

    -

    7 XN-NF-81-071

    \

    |

    3.0 SYSTEM ANALYSIS RESULTS

    The D.C. Cook Unit 1 ECCS reanalysis was performed for the previously

    identified limiting large break, the large split break of the reactor vessel

    recirculation inlet line or cold leg with the break area equal to twice the pipe&

    cross sectional flow area. This break is referred to as the equivalent double-

    ended cold leg split break (1.0 DECLS). System behavior is essentially un-

    affected by exposure and the system calculation is performed for the highest

    stored energy beginning-of-life (80L) case.

    Calculated event times for the ECCS reanalysis are given in Table 3.1..,

    RELAP4-EM system blowdown results are given in Figures 3.1 through 3.6. Figures

    3.7 through 3.12 present results of the RELAP4-EM hot channel calculation.

    Extended decay power is shown in Figure 3.13, and the ICECON computed containment

    pressure is given in Figure 3.14. REFLEX reflood results are shown in FiguresT of 2.07 are shown3.15 through 3.18. T00DEE2 results for the BOL case with Fq

    in Figure 3.19.

    ;

    I

    I

    _ _ - - . . _ _ _ . - _ ,- _ ,

  • .

    m..

    ' *

    .

    8 XN-NF-81-07

    Table 3.1 D.C. Cook Unit I Reanalysis Limiting Break EventTimes (1.0 DECLS)

    Event Calculated Event Time (sec)

    Start 0.0

    Initiation of Break 0.05

    Safety Injection Signal 0.65

    Accumulator Injection, Intact Loop 15.3

    Accumulator Injection, Broken Loop 2.1

    End-of-Bypass 24.25

    Bottom of Core Recovery 41.53

    52.2Accumulator Empty, Intact Loop -

    25.65Pumped Safety Infection

    .

  • ._.

    - !_

    .

    e x &$~

    - - - _ __ *

    ,8.3

    . 2, 3

    -

    -. 8 e .2 r

    ..

    ,.

    u) -sC s. eE4 rS P( m. 4

    2 eK tA sE y .SR ..B n .w .o

    . 0R d .2 .E woT lN F BW AO ED

    . wM1

    .WO

    i

    I 3

    L T erB ugi

    _ SF.

    L . a_C

    i l

    ED

    _ 0..

    1 .i

    _ s_.

    .

    - KOOC

    _C i

    .

    4

    D

    - .- - - - ~

    oogJ gTJ ,oa 8m o3 uM 8+ c,t

    . WOC - GHma. wmammw%n IaZwJ1 xwa..D. ._ n_

    .

    .

  • %

    c-

    %

    .

    LO XN-N3-8l-04.

    i- i i i i i ;;

    --

    M

    --

    X

    f

    .- m

    ~ e$~

    O p:mot g

    3_.

    - .

    ,X wD ,.m gZ Woe =

    _- oT gN D

    4--z 1T *'c D erO

    . o AO

    -- *1 N.g H w

    -~f dD"C S5"

    eg

    7L n-- r _ - 5OmO

    O.

    *_- -

    -.

    _.

    AOCO

    O-

    _^

    O

    . - . ., , .

    occc41 .:oc02: 00:001 ococs occec 00004- . 0002- .g

    15WJ- ')CES/MBL( WOLF NOITCNUJKAERB

    .

    . -

    /*

  • %

    . _ _ .

    .

    ll XN-Nd-8l-04

    i i , , i i *

    __

    *

    __

    m

    iEg

    __ 2

    E~aO '

    i A>u ocs~

    __

    T rxDm 9Z cm

    9-

    .- om nen "( $- I.- 9

    z m c.e roO I R m'O

    -- *IE

    H~I WDC .

    "

    OL D,(rO

    __ E E'

    -m mO

    , I

    .

    W ."

    l AO,Cnn _

    _

    !*

    ! O ,

    , ,

    i

    ecor cces 0005 0004 0003 occz ocotg

    C4WJ ) CES/MBL (WOLF ENIL EGRUS REZIRUSSERP

    - . - 7-

  • - . . .- _

    .

    ,,.

    f

    .

    s eT I=.

    -

    7:~ ' BLOWDOWND-C COOK 1 0'DECLS

    ~

    g i i i i i ii i i,,

    ts

    o-win .%

    . I -om8.Jv

    mo ''a8 -

    b- Stro&

    -G.J 8 - -De roEIooo -G8 -

    O

    a. " - ,.o ,o_J

    _

    Hg -.o nu ;i-zH

    -

    'M -3

    52

    f f I il i I I

    Im

    co e s a is 20 24 2832 x 40 y

    TIME AFTE.R BREAK ( SEC 1 S

    . Figure 3.4 Accumulator Flow Rate to Intact Loops

    --- -.

    . ..- -

    _ _ _ _ _ .

    =

  • 4

    %

    13 XN-NF-81-07

    ?. i i i i i

    - _ .

    .

    _ _ y

    W- - = *

    N 4-

    _o Ew -07 6- a

    ~ ~

    $x W-C 5wZ W

    5cav

    - - gew g& O

    Z 'a T3 C $Qa w Ea _ z-O ~* H-J . I-- Lncn -

    M

    WG7 . L-J $o . _ u* -w w

    - O

    ii- o.

    _ _

    m9

    OO

    u - -!

    .

    O

    ~t I t a t

    :cos - :: cot 00:o- aoooa :: m : c:ot- :: cot'?EMP. 033S/H81)-MO1cJ 13lNI~3803 sad

    I

  • -

    .

    -

    * x2iz y3 -5 -

    c- - - - _ o

    -

    -

    -_--

    iI n -

    -

    iI z

    2

    e-ti f s a

    1 R __) w -

    ,I

    C olE fS

    t( e

    iI

    i 4t l

    K tA uOE _R erB o ..C .

    i t oR.z E n_wT ol _ F dt _W A w

    O olD E BWO

    e i 6 M1 I

    L T 6B

    3

    e _.S r __L u .C

    i i a g .t

    i .

    E F _.D

    . _.-0

    -.

    ._.-

    .

    1i e

    s

    K'OOC

    C i i 4 .'D

    .

    .

    _..

    i _ - * , l

    as" US oo g ooGR goa uoS o W,mQn Oww Nr m)_,, - 2oJk pwa Hao maou o>E

    .

    .

    .

    .

  • -- . .. ~ . . - . = - _. - -

    i .,

    > .i

    e

    .

    .'

    D C COOK' 1 0 DECKS HOT CHANNEL FO=2.07$,, . . . . . . . , ,3

    n

    O - -oLLJgU)NT.(n

    J

    'o - ~gSo

    JLL

    H .L] g *zH

    >-~

    o t. LLJ

    *

    U)U)CI

    Ho ~

    Of1

    ,

    b~

    s

    Na";i i i i i i i , ,pl

    i 4 9 12 it; 20 24 28 32 36 40 7TIME AFTER BREAK fSEC) S

    ,

    Figure 3.7 Blowdown Hot Assembly Inlet Flow Rate

    ,

    s aw

  • ,

    L9 XN-N3-81-01

    i , , , , i a

    _ _

    M

    _ - X

    O+rus

    32:

    E- - = o

    N *--n-

    -

    +rOm ~@ +vC

    e_as - ' _ ~o ,x w-

    D Em E

    In 2 OO mye9 .m2

    _ -

    3 $ 'o'Fm *z mD $k gx mn _ _ .- 2 g- -4- sc

    Ox

    ot)U *~t wO

    _ _ 5 *m 9CC e

    2-o.

    , + - a=

    XOO

    - n

    n _ _ ^O

    . i

    CCE CG1 021 CS C( C C4- CSE

    3WJ ) CES /MBL ( WOLF TELTUO YLBMESSA TOH

    e_

    __

  • - - _. - ..

    .y e

    .

    .

    D C COOK 1 0 DECLS-' HOT CHANNEL F0=2 07gomg i i i i e i i e

    --

    u. g __ _a2wQm

    gg _ _annGE'w

    [$8- -

    G1

    O .Gjg

    -[ %_ _

    wo

    - oZ

    r8 - -ua

    -o_

    o _ _

    a| 5,

    d 5a, , , , , , , , ,,

    2 4 s 12 is 20 ze as 32 ac 40 7TIME AFTER BREAK ( SEC ) O

    Figure 3.9 Blowdown PCT Node Cladding Temperature

  • .

    .

    $sm

    O C COOK 1 0 DECLS HOT CHANNEL FO=2.07og i i i i i i i i

    -

    u.OWo8 - __awmoH oaEb _w(LrwF

    g _Jg

    _

    w -coauwO$g

    .

    _

    3w>G

    wg __

    Ex_ao>

    0 - -- -

    5Neg i i . , , i i i i

    3 4 s 12 te zo c4 as 32 36 40 T'-TIME AFTER BREAK (SEC1 O

    Figure 3.10 Blowdown PCT Node Volume Average Fuel Temperature

  • .

    "; '.eu

    .

    O C COOK 1.0 DECLS HOT CHANNEL FO=2 07-a. i i i . i i i i ietil

    Q _

    cJ -n -

    y - _mIN

    @"2 := :

    _

    - -~

    'y -.

    - W ~oH i _,p eu.u : Iwa - '

    . LfAw -

    .

    m .Z _GeH s .

    M -Fa -Lt1 -

    I -,

    -

    .

    . *~

    f4. i i i , , , i i g,,,

    W 4 s 12 tc zo 24 as 32 is 40 7TIME AFTER BREAK ( SEC ) S

    Figure 3.11 PCT Node Blowdown lleat Transfer Coefficient

    --

  • .

    .

    .

    o* x2 &7Sr

    0- _ ~ - - _ 4

    i , x

    noi

    ti . 2 c3 a

    eR

    reta

    i , s Wa -

    mu)iC n

    E oS cr( i

    7 i , 4 Z20 K fA o.2 E= R ht0 B pF e

    -

    i . 0R D2L E nE T wN F oN A d wA oH E lC i . sM B

    i I eT T oO oNH

    TS CPLC

    i, 2

    1.E

    2D 1.

    0 3 _.

    - e.1

    i, r

    s ugi

    K FOOC

    C i,

    4

    - D

    - . ~ - - -

    3$g .O 8 .o : Eh8,o .o8 H3' a o 8&ZoHWo0xOuISN(2oIWa.MO

    m889 4*889$rQ ,6L ~ '-. . .A c

  • .

    .

    .

    _

    5a hYSn _N '~

    00. . - - - - . . - . - _ . . -4

    _

    _

    _

    _

    i I06 _3 _

    _

    .

    i i023

    __

    i t0

    _8.2

    rewo

    P

    e0 ri e 4 S o2OCN dO eC z

    iE .l3S a

    i i 0 m.

    .r _, o

    L ENO M _B I' . T3

    1R e I 0 .0E L 3W eO rP ug .

    iD FEZ

    i t02 .1 .

    I _L

    .AM .RO

    i i ON SKOOC

    .

    C e i 0 _.4 _

    D._

    .

    . . . . - . . . . . . . . .

    pg -S. j' So -%WyOQ OWNHaG7EOz

    4 s e

    OZ .

    .

    -

    -.

  • .-- _ _ __ _ . .- _ _ __= . _

    .

    .

    .

    22 XN-NF-81-07

    . . _ . .

    -

    3. . . . . .

    . . g

    - -o,1 @

    Lomm@L

    *e a- - a

    .- u6 EswM p

    . . e.a - cy gG cW em ea u

    c- -

    oom o** W v

    t-' 5"z uo W wo . - s.. gz vw >-e

    ' Le s.H

    ew ~

    -d - - U Mwa 8o oeA

    - - y EM,-o

    Quo - - aO

    t f f f e

    e n a n n e

  • " :

    .

    .

    .

    y x*2MbIS

    0

    __0_ _ _ _ 4

    i-

    I003

    102

    i 3

    er0

    i1 8 u

    2 s) sC eE rS P(

    mD u

    i0 O n4 O ei 2 L l

    F PER r

    eF p *0 p =

    U ==i

    L0 G **

    02 N d

    -

    *

    o -IN o

    -N lI fG eE RB

    -i

    0i

    6 M1 O 5R 1F .

    3EM e .I r

    .

    _ T u .0_ I 2 gS i

    N-

    1 i .

    L F %C -E .O .

    0i

    1i

    0.S

    KOOC ,

    C i1 0

    4

    ,

    D ,

    ,,

    ~ , - - -)

    .* g X - N m w B MCHma. wxammWxn. IazWJ.n. Nn.wo ,Iaz + n.c

    -.w..

    #

    . - , ' . : !! ' , , ,,

  • , - .___ _ _ ,, _ ._ . _ _ _ _ - _ - -

    .

    *.

    .

    .

    D C' COOK 1 0 DECLS.. , , , i i i i i in

    >

    H, . -

    >4

    .n

    U ~ ~W9u) N INZH-

    W9 ~-

    F -4 NAEE

    OO -O rJ

    ~

    J .4LLW&

    .m "

    d

    ,

    -

    , -

    5 'xYz

    g'l; i a a a e i I I I,

    do 40 90 120 160 200 240 290 320 %C 400 y

    { TIME FROM BEGINNING 0F REFLOOD (SEC) S:,

    Figure 3.16 Core Reflooding Rate ,

    t

    r

    |

    ,_ . _ _ . - - - - ----- -- ._ ._.__. .. -. .._

    - -- - - - -

  • t

    _

    _

    .

    .

    .

    ontu 5a yS.

    _

    _

    00

    - - _ _ - - 4

    ii

    063

    ie

    023

    l

    ei

    a0 v -8 e2 L

    )C eE rS u( t

    xD i. 0 O M

    i

    , 42OL rF eE mR o .

    c mF n .0 w

    ii

    C o .

    .

    0 G D2 N .

    e I d .N o .N o ..I l

    G fE e

    - B R0i 01 M

    OR 7F 1

    .

    E 3 ..M ._I e ..

    S i i 0 Tr .

    2 u1L g .

    i ,C F .E .D

    0-

    .

    1i

    i 09

    K-OO.C

    .,

    C ia 0 .

    4

    O)

    . - _ ~ .. .

    a

    Jj>lJ UN3 XHE ELroOZ3Oa"0 % J* n cj ?>

    j 1IE n F|L -- i i LL ' FC-

    ,

  • ... . . . ._ . --. .

    .

    t

    '.

    .-

    ~D C COOK 1 0'DECLS REANALYSIS WREMIIA.

    :.i i . .- . . .

    . i

    s,

    0_

    I _u.

    -e

    >--_

    ' LL ._

    ~m

    'Jtd.>ldJ

    _

    _

    - (d ,,- m

    mE-~)F-X

    .. H -,

    E .! mg

    EOQ

    _

    s .,

    N

    .

    '_

    6_

    .

    s a... .

    n4. . , , , , , , , .

    cd 40 SC 120 160 200 240 290320 300 400 y

    o"

    TIME FROM BEGINNING 0F REFL000.(SEC)

    Figure 3.18 Reflood Core Mixture Level

    - - . . . _ -

    . . . . - . . . . . . .-. -- . _ _

  • .

    --

    e-

    d@a5o ewra5anoxw i oxwww u.- .E,, f ns g. io uy6c - ~ - - - -

    -

    --

    ..*

    - e- o. I 1 1 i. e.

    < R Pi U eP i i

    T pN s

    mC U CRO DE EE 0s D

    F e. I F 1 .IN 4C.

    i eg - A 0T 0 Au C T

    .

    G Cr 7 O.. e Oo 4 O3 F K

    _

    1 _

    FT..

    u .T 219 c.

    is

    a I 02c

    - 1E C 0NlC a D

    d EF d a,

    l, .

    Co.

    I Lu i Sen cl g T FI CB S M =

    -Ou E 2L r .-

    f - 0a 7ec S c i I 8e E c.

    Cc 0LT O. e N- m Dp Se

    ra s

    i It o.u creD _uri c

    _n a.g e.

    i I.

    . cHeatup

    .

    ci N I

    :

    o.e

    t 1

    :s

    i i

    o.e

    -

    i

    c - ' - - - _e.c

    Sy ir2.zx O-

    ._.*

    .

    .

    -

  • - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .

    *,

    .

    28 XN-NF-81-07

    [

    4.0 FUEL EXPOSURE ANALYSIS RESULTS

    Effects of exposed fuel conditions on ECCS analysis results were computed

    using RELAP4-EM for blowdown hot channel calculations and T000EE2 for fuel

    heatup and reflood analyses. BOL system boundary conditions were assumed.

    The fuel analyses used the approved ENC Cladding swelling ind flow blockage

    model. Fission gas release was computed using GAPEX, and the NRC fission gas

    enhancement was employed at appropriate fuel exposures. The effects of pressure

    uncertainties were included in these calculations as in previous ENC analyses.

    TTotal peaking, Fq , and the corresponding peak linear heat generation rate(LHGR) were adjusted until 10 CFR 50.46 criteria were achieved. The final

    heatup analyses results for the exposures calculated are presented in Table 1.1.

    The ECCS allowed peaking is limited to 2.07 at BOL due to the high initial

    stored energy. The allowed peaking increases with exposure as fuel swelling and

    cracking reduce stored energy. At high burnup, increased fuel rod swelling

    and flow blockage are calculated to occur due to increased fission gas release.

    This results in reduced heat transfer during reflood and a corresponding

    reduction of allowed peaking limit with exposure accumulation.

    i

  • . .-

    ,

    '

    s' ||i

    29 XN-NF-81-07 l

    5.0 CONCLUSIONS

    The reanalysis of the limiting break (1.0 DECLS) for the O.C. Cook Unit i

    reactor with the ENC WREM IIA PWR ECCS evaluation model shows that the reactor

    can operate at increased allowed peaking and continue to meet the NRC 10 CFR

    50.46 criteria with analyses performed in conformance to 10 CFR 50 Appendix K

    requi rements. Operation within the ECCS allowed limits as defined in Figure 1.1

    and Table 1.1 assures that the NRC acceptance criteria are met. That is:,

    (1) The calculated peak fuel cladding temperature does not

    exceed 2200'F.

    (2) The calculated local cladding oxidation does not exceed

    17% of the cladding thickness during or after quenching, and

    the temperature transient is terminated while the core geometry is

    amenable to cooling.

    (3) The calculated core-wide reaction of cladding with water or steam

    does not exceed 1% of the total mass of zircaloy in the reactor.

    (4) System long term cooling capabilities provided for previous

    cores will also cool ENC fueled cores.

    ,

    e

    , -, --

  • ='

    .

    .

    30 XN-NF-81-07

    6.0 REFERENCES

    (1) Exxon Nuclear Company, Donald C. Cook Unit 1 LOCA Analyses Usingthe ENC WREM-Based PWR ECCS Evaluation Model (ENC WREM-II) , XN-76-51,October 1976 and Supplements; Flow Blockage and Exposure SensitivityStudy for D.C. Cook Unit 1 Reload Fuel Using ENC WREM-II Model ,XN-76-51 Supplement 1, January 1977; XN-NF-76-51(P) Supplement 2January 1978; XN-NF-76-51(P) Supplement 3, March 1978.

    (2) U.S.N.R.C. Acceptance Criteria for Emergency Core Cooling Systemsfor Light Water Cooled Nuclear Power Reactors ,10 CFR 50.46 andAppendix K to 10 CFR 50. Federal Register, Volume 39, Number 3,January 4,1974.

    (3) Letter, G.F. Owsley (ENC) to D.F. Ross (NRC), Description of RELAP4-EMENC 288, dated October 30, 1978.

    (4) Letter, Thomas A. Ippolito (NRC) to Warren S. Nechodom (ENC),ENC-EM Update Evaluation, March 1979.

    (5) Exxon Nuclear Company, Exxon Nuclear Company WREM-Based GenericPWR ECCS Evaluation ?odel Update ENC WREM-IIA , XN-NF-78-30, August19'8, and XN-NF-78-30 Amendment 1 February 1979.

    (6) Letter, Thomas A. Ippolito (NRC) to Warren S. Nechodom (ENC,Topical Report Evaluation, dated March 30, 1979.

    (7) Exxon Nuclear Company, ICECON: A Computer Program Used to CalculateContainment Break Pressure for LOCA Analysis (Including Ice CondenserPlants) , XN-CC-39 Rev. 1, November 1977.

    (8) Letter,ThomasA.Ippolito(NRC)toWarrenS.Nechodom(ENC),Topical Report Evaluation, dated June 30, 1978.

    (9) Letter, G.F. Owsley (ENC) to D.F. Ross (NRC), Updates of T00DEE2Program, dated April 1, 1980.

    .

    ,- .~. e- s, - , , -

  • . . _ __

    .'.

    |

    XN-NF-81-07

    ISSUE DATE: 02/12/81

    LOCA ECCS REANALYSIS FOR D, C. COOK UNIT 1 USING THE

    ENC WREM 11A PWR ECCS EVALUATION MODEL

    4

    Distribution

    D.J. Braun

    J.C. Cherng

    R.E. Collingham

    G.C. Cooke

    S.L. Garrett

    K.P. Galbraith

    S.E. Jensen

    J.D. Kahn

    W.V. Kayser

    J.E. Krajicek

    J.N. Morgan

    G.F. Owsley

    G.A. Sofer

    H.E. Williamson

    American Electric Power (5)/H.G. Shaw

    Document Control (10)

    -.


Recommended