+ All Categories
Home > Documents > EELE 3332 Electromagnetic II Chapter 9

EELE 3332 Electromagnetic II Chapter 9

Date post: 06-Jan-2022
Category:
Upload: others
View: 12 times
Download: 1 times
Share this document with a friend
24
EELE 3332 Electromagnetic II Chapter 9 Maxwell’s Equations Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2013 1
Transcript
Page 1: EELE 3332 Electromagnetic II Chapter 9

EELE 3332 – Electromagnetic II

Chapter 9

Maxwell’s Equations Islamic University of Gaza

Electrical Engineering Department

Dr. Talal Skaik

2013 1

Page 2: EELE 3332 Electromagnetic II Chapter 9

2

9.6 Time Varying Potentials

For Electrostatic fields, we defined electric scalar potential (V).

For Magnetostatic fields, we defined magnetic vector potential (A).

For Electromagnetic Fields: We need to define (A and V) for time

varying fields……

2

0B=0 B= A, A= J

JA=

4 Rv

dv

2E=0 E= , V=

V=4 R

V

V

v

V

dv

Page 3: EELE 3332 Electromagnetic II Chapter 9

3

Time Varying Potentials

Since B=0 holds for time varying field, then the relation

B= A

also holds for time varying field.

Using Faraday's law, E=

E= A =0

B

t

Aor E

t t

Since the curl of the gradient of a scalar is zero, then

E (1)

AE V

t

Aor V

t

Page 4: EELE 3332 Electromagnetic II Chapter 9

So, we can determine the vector fields B and E from the potentials

A and V:

However, we still need to find some expressions for A and V

suitable for time-varying fields.

4

EA

Vt

Time Varying Potentials

B= A

Page 5: EELE 3332 Electromagnetic II Chapter 9

5

2

2

We know that D= is valid for time-varying conditions.

E=

using eq (1) E

E= A

E= V A

V+ A (2)

V

V

V

V

V

AV

t

Vt

t

or

t

Time Varying Potentials

Page 6: EELE 3332 Electromagnetic II Chapter 9

6

2

2

Now take the curl of B= A B= A= H

Dsince H J , and D= E, and E

DA= J J

A= J+ = J

Reca

AV

t t

AV

t t t

A V AV

t t t t

2 2

22

2

22

2

ll that Laplacian of a vector is given by:

A= A A A= A A

A A= J

A+ A= J (3)

V A

t t

V A

t t

Time Varying Potentials

Page 7: EELE 3332 Electromagnetic II Chapter 9

We have now reduced the set of four Maxwell eqs. to two eqs. But they are still coupled. The uncoupling can be achieved by using Lorenz condition for potentials.

7

2

22

2

V+ A (2)

A+ A= J (3)

V

t

V A

t t

Time Varying Potentials

Lorenz condition for potentials (relates V and A):

A= (4)V

t

Page 8: EELE 3332 Electromagnetic II Chapter 9

8

22

2

Using equ (4) A=

Substitute (4) in equations (2) and (3),

= (5)

V

V

t

VV

t

2

2

2 A = J (6)

which are the wave equations to be discussed in the next chapter...

A

t

Time Varying Potentials

2 2

Recall that E and B can be obtained by:

E , B= A

Notice that for static conditions (special cases of time varying potentials):

E , B= A, and = , AV

AV

t

V V

= J

Page 9: EELE 3332 Electromagnetic II Chapter 9

9

9.7 Time Harmonic Fields A time-harmonic field is one that varies periodically or sinusoidally with time.

Sinosoids are easily expressed in phasors, which are more

convenient to work with.

A phasor is a complex number that contains the amplitude and the

phase of a sinusoidal oscillation.

2 2

1

cos sin

1 is , is the real part of , is the imaginary part of

is the magnitude of given by

and is the phase of z, given by: tan

jz x jy r re r j

where

j x z y z

r z r z x y

y

x

Page 10: EELE 3332 Electromagnetic II Chapter 9

10

Time Harmonic Fields

•Addition and subtraction are better performed in rectangular form.

•Multiplication and division are better done in polar form.

Rectangular Form

Polar Formj

z x jy

z r re

1 1 1 1 1 2 2 2 2 2

1 2 1 1 1 2

1 2 1 1 1 2

1 2 1 2

, = , =

( ) ( )

( ) ( )

(

Given z x jy r z x jy r z x jy r

Addition z z x x j y y

Subtraction z z x x j y y

Multiplication z z r r

1 2

1 11 2

2 2

)

( )

( / 2)

( ) j

z rDivision

z r

Square root z r

Complex Conjugate z x jy r re

Page 11: EELE 3332 Electromagnetic II Chapter 9

11

Time Harmonic Fields

( )

To introduce the time element, we let:

where may be a function of time or space coordinates or a constant.

The real and imginary part of cos( ) sin( )

are given by:

j j t

t

re re r t jr t

0 0

0 0

Re( ) cos( )

Im( ) sin( )

: current ( ) cos( ) equals real part of

: current ( ) sin( ) equals imaginary part of

j

j

j j t

j

re r t

re r t

Example I t I t I e e

Example I t I t I e

90

0 also equals real part of because sin =cos( 90)

j t

j j t j

e

I e e e

Page 12: EELE 3332 Electromagnetic II Chapter 9

12

Time Harmonic Fields

0 0

0 0

The Phasor is defined by dropping the time factor

For example, ( ) cos( ) Re( )

The phasor current is :

and hence,

( ) Re(

j t

j j t

j

s

e

I t I t I e e

I I e I

I t I

j t

s

)

If a vector ( , , , ) is a time-harmonic field, the phasor form of A

is ( , , ). The two quantities are related by

A=Re(A e )

j t

s

s

e

A x y z t

A x y z

Page 13: EELE 3332 Electromagnetic II Chapter 9

13

Time Harmonic Fields j t

s

j t j t

s s

A=Re(A e )

ANotice that Re(A e ) Re( A e )

, taking the derivative of the instataneous quantity is equivalent

to multiplying its phasor form by

jt t

Hence

j

s

s

s s

j t

s

A A

:

instantaneous A( , , , ) time dependent

phasor A ( , , ) time invariant

It is easier to work with A and obtain A from A whenever necessary

using A=Re(A e )

jt

Notes

x y z t

x y z

Page 14: EELE 3332 Electromagnetic II Chapter 9

14

Maxwell’s Equations – phasor form

Page 15: EELE 3332 Electromagnetic II Chapter 9

15

Evaluate the complex numbers:

Example 9.5

*

1 2

1/2

2

(3 4)( ) =

( 1 6)(2 )

1( ) =

4 8

j ja z

j j

jb z

j

*

1 2

1 2 2

1

( ) Method 1 (Working in rectangular form)

(3 4) (3 4) 4 3 4 3 =

( 1 6)(2 ) ( 1 6)(4 4 1) ( 1 6)(3 4 ) 27 14

( 4 3)( 27 14) 150 25=

( 27 14)( 27 14) 27 14

=0.1622 0.027 0.1644 9

a

j j j j j jz

j j j j j j j

j j jz

j j

z j

.46

Page 16: EELE 3332 Electromagnetic II Chapter 9

16

Example 9.5 - Continued

1

1 21 1

2

1 2

1 1

1

Method 2 (Working in polar form)

1 90 5 tan ( 4 / 3) =

1 36 tan ( 6) 4 1 tan ( 1/ 2)

1 90 5 53.13 = 5 26.265 5 53.13

37 99.46 5 26.265

1 5 1 = (90 53.13 99.46 53.13) = ( 9.46)

3737 (5)

1= (cos 9.46

37

z

z

z z

z j

1

sin 9.46)

=0.1622 0.027z j

Page 17: EELE 3332 Electromagnetic II Chapter 9

17

1/2

2

1/2 1/21

2 1

2

2

1( ) =

4 8

2 tan (1) 2(45 ( 63.43)

8080 tan ( 2)

0.15811 (108.4 / 2)

0.3976 (54.2)

jb z

j

z

z

z

Example 9.5 - Continued

Page 18: EELE 3332 Electromagnetic II Chapter 9

18

8 2 /3

s

Given that 10cos(10 -10 60 ) and B (20 / ) 10

Express A in phasor form and B in instantaneous form.

o j x

z s x yA t x a j a e a

Example 9.6

( 10 60 ) 8

(60 10 )

(60 10 )

s

2 /3 2 /3

/2 2 /3

( /2)

A Re 10 , where 10 .

Hence, A Re 10

or A 10

B (20 / ) 10 20 10

B 20 10

B Re[B ] Re[20 1

o

o

o

j t x

z

j x j t

z

j x

z

j x j x

s x y x y

j j x

s x y

j t j t

s x

e a

e a e

e a

j a e a j a e a

e a e a

e e a

( 2 /3)0 ]

20cos( / 2) 10cos( 2 / 3)

20sin 10cos( 2 / 3)

j t x

y

x y

x y

e a

B t a t x a

B t a t x a

Page 19: EELE 3332 Electromagnetic II Chapter 9

19

6 60

0

The electric field and msgnetic field in free space are given by

50E= cos(10 ) V/m , H= cos(10 ) A/m

Express these in phasor form and determine the constants

and such that the fi

Ht z a t z a

H

elds satisfy Maxwell's equations

Example 9.7

j t j t 6

s s

j z j z0s s

0 0

The instantaneous forms of E and H are written as

E=Re(E e ), H=Re(H e ) , where 10

50 HE e , H e (1)

In free space, 0, =0, = and = , v

a a

0 s

0 s

0 s 0 s

So Maxwell's equations become

D= E=0 E =0 (2)

B= H=0 H =0 (3)

EH= E+ H =j E (4)

t

0 s 0 s

HE= E =- H (5)j

t

Page 20: EELE 3332 Electromagnetic II Chapter 9

s

s

j z j z0 0s

Substitution eq (1) into (2) and (3), it is verified two Maxwell's equation are verified.

1E = E 0

1H = 0

H e e (6)

Substituting equations (1)

s

sH

H jHa a

j z j z0s 0 s 0

0 0

s 0 s

and (4) into equation (6):

50H e j E j e

50 (7)

Similarly, substituting equation (1) into equation (5):

E = H

jHa a

H

j

j z j z00

00 0

0

50 He e

50 50 H (8)

j a j a

H

20

Example 9.7 continued

Page 21: EELE 3332 Electromagnetic II Chapter 9

21

Example 9.7 continued

00 0

0

2 2 00 0 0 0

0

2 2

0 0

63

0 0 8

5050 (7) , (8)

Multiplying equations (7) and (8):

50(50) 50 / 0.1326

120

Dividing equation (7) by (8):

=

10= 3.33 10

3 10

HH

H H

c

Page 22: EELE 3332 Electromagnetic II Chapter 9

Method 1 (time domain)--(the harder way!)

It is evident that gauss law is satisfied: E= 0

H 1From Faraday's law, E= E

E=

0 0

E=20 cos(1

y

x y z

y y

x z

y

E

y

H dtt

a a a

E EBut a a

x y z z x

E

8

8 8

8

0 ) 0

20 20 cos(10 ) sin(10 ) (1)

10

x

x x

t z a

Hence H t z dt a t z a

22

0 0

8

In a medium characterised by =0, = , =4 and

E=20sin(10 ) V/m

Calculate and H.

yt z a

Example 9.8

Page 23: EELE 3332 Electromagnetic II Chapter 9

23

0

28

8

2 28 8

8 16

It is verified that H= 0

E 1H= E+ E H ( =0)

20 H= cos(10 ) 0

10

0 0

20 20E cos(10 ) sin(10 )

10 10

the

x

x y z

x xy z y

x

y y

H

x

dtt

a a a

H HBut a a t z a

x y z z y

H

t z dt a t z a

Since

8

2 88 8

0 016

8

7 8

8

given is E=20sin(10 )

20 10 (2) 220 10 10 4

10 3

20(2 / 3) 2From equ (1): H= sin(10 )

4 .10 (10 ) 3

1 2H= sin(10 ) A/m

3 3

y

x

x

t z a

c

zt a

zt a

Example 9.8 continued

Page 24: EELE 3332 Electromagnetic II Chapter 9

24

j t 8

s s

s

ss s s

2

ss s s 2

Method 2 : (Using Phasors)

E=Im(E e ) E 20 where =10

Again E 0

E 1 20E = H H

H 1 20H =j E E

j j

Comp

j z

y

ys

ys j z

x x

j z

xsy y

e a

E

dy

Ej a e a

j j z

H ea a

dz

s

2 2

2 2

s 8 7

8

s

aring this with E , we have:

20 20 220 20

3

20(2 / 3) 1H

10 (4 10 ) 3

1H Im(H ) sin(10 ) A/m

3

j zj z

y y

j zj z

x x

j t

x

ea e a

ea e a

e t z a

Example 9.8 continued


Recommended