+ All Categories
Home > Documents > Effect of Magnesium and Calcium Precipitation on Coagulation

Effect of Magnesium and Calcium Precipitation on Coagulation

Date post: 02-Jun-2018
Category:
Upload: jorge-sergio-conde
View: 226 times
Download: 0 times
Share this document with a friend

of 8

Transcript
  • 8/11/2019 Effect of Magnesium and Calcium Precipitation on Coagulation

    1/8

    Water ges.

    Vol. 16. pp. 655 to 662. 1982 0043-1354/82/050655-08503.00/0

    Printed in Great Britain.All rights reserved Copyright 1982 Pergamon Press Ltd

    E F F E C T O F M A G N E S I U M A N D C A L C I U M P R E C I P I T A T I O N

    O N C O A G U L A T I O N F L O C C U L A T I O N W I T H LI M E

    J. LEENTVAAR and M. REBHUN2

    t Ministry of Transport and Public Works, Delta Department, Environmental Research Section,

    P.O. Box 439, Middelburg, The Netherlands and

    -'Division of Environmental and Water Resources Engineering, Technion-lsrael Institute of Technology,

    Haifa, Israel

    ( R e c e i t e d J u l y

    1981)

    Abstraet--Coagulation-flocculation studies were carried out to identify and quantify the organic matter

    (TOC) fraction removed by Mg (OH)2 precipitation and the fraction removed due to CaCO~ precipi-

    tation in l ime treatment of wastewater. Most experiments were carried out with domestic sewage and

    some with a tannic acid solution simulating coagulable organics in wastewater. The experiments showed

    a clear relation between the amount of TOC removed and the amount of Mg (OH)2 formed. This

    relation between TOC removal and Mg(OH)2 precipitation can be expressed in terms of an adsorption

    isotherm. The coagulation-flocculation tests of sewage with lime as a coagulant indicated that about

    26Jh of the removable TOC in sewage is eliminated by Mg(OH)2.

    I N T R O D U C T I O N

    Chemical treatment is applied in advanced treatment

    and renovation systems and lime is often used as a

    coagulant. Several authors have indicated the role of

    magnesium hydroxide as a coagulant aid in lime

    treatment. Flentje (1927)reported an increase in clari-

    fication efficiency when excess lime was used to pre-

    cipitate the magnesium in the water. Lecompte (1966)

    patented a process for using magnesium carbonate as

    a coagulant. Black & Christman (1961)showed that

    Mg 2+ ions are adsorbed on the surface of the CaCO3

    particles at pH 9.8, thereby lowering or reversing the

    potentials and corresponding mobility values. Van

    Vuuren

    e t a l .

    (1967) described the role of magnesium

    hydroxide in lime softening and found that the struc-

    ture of the Mg(OH)2 floc was most suitable to adsorb

    CaCOa, which normally tends to remain in suspen-

    sion. They concluded that (1) the characteristically

    high magnesium content of their sewage effluent

    (approx. 100 mg 1-t Ms) due to the dolomitic origin

    of their water supply appeared to be an important

    factor in lime flocculation/flotation and that (2) it

    seems that the use of dolomitic lime as a coagulant

    might have inherent advantages for this purpose.

    Folkman & Wachs (1973) reported on experiments on

    algae removal from oxidation pond effluents by lime

    treatment and showed that magnesium hydroxide

    precipitation was responsible for flocculation of the

    algae.

    Significant magnesium hydroxide precipitation can

    be expected at pH values greater than 10.5, due to its

    solubility constant . Such pH values are achieved at

    high lime treatment. However, low lime treatment is

    sometimes used, re sulting in final pH values below

    10.5 with little or no magnesium precipitation, cal-

    cium carbonate and phosphate being the main pre-

    cipitation products. Significant reduction in sus-

    pended solids, extinction (light absorbing matter) and

    TOC can be obtained by low lime treatment, how-

    ever, much better clarity and lower TOC's are

    obtained at high lime treatment. Apparently, both cal-

    cium carbonate and magnesium hydroxide play a role

    in coagulation-f locculation with lime. Both calcium

    carbonate and magnesium hydroxide precipitated in

    lime treatment effect removal of suspended solids and

    TOC, magnesium hydroxide being able to flocculate

    and remove TOC fractions not affected by calcium

    carbonate alone.

    The aim of this study was: (a) to elucidate the role

    of magnesium precipitation in TOC removal and

    reduction of extinction; (b) to quantify the TOC frac-

    tion that can be removed by calcium carbonate pre-

    cipitation (low lime treatment) and the TOC fraction

    that can be removed only by coagulation-flocculation

    with magnesium hydroxide; and (c) to find a quanti-

    tative relationship between the amou nt of magnesium

    hydroxide and TOC removed.

    P R O G R M O F S T U D I E S

    TO meet the research objectives, the experimental

    program included:

    1. Treatment at lime doses and final pH's where

    only calcium carbonate precipitates.

    2. Treatment at initial magnesium concentrations,

    lime doses and final pH's where various amounts of

    magnesium hydroxide would precipitate in addition

    to calcium carbonate. Addition of magnesium chlor-

    ide to wastewater containing little magnesium was

    planned accordingly. To find quantitative corre-

    lations, various amounts of magnesium hydroxide

    were precipitated. This was accomplished in two dif-

    655

  • 8/11/2019 Effect of Magnesium and Calcium Precipitation on Coagulation

    2/8

    (156 J l. lE h[ \ ~,AR lin d ~'|. Rt Hlll.:x

    Table 1. Typ ica l c ha rac te r i s t i c s o f the ray , sewage

    B O I ) ~

    T O C

    C O D

    Suspended so l ids

    Ext inc t ion

    pH

    Alka l in i ty

    Ca lc ium

    M a g n e s i u m

    Spec . conduc t iv i ty

    o r t h o - P

    T o t a l - P

    Kje ldah l -N

    (mg 1Oct

    ~mg ~CI

    (mg ~O21

    (rag ~)

    ( m e q " I H C O 3 )

    ( m g l - l C a a ' )

    ( m g l l

    M g 2 l

    (uS cm- ~)

    m g l - I P )

    m g

    I - ~ P )

    ( m g l ~ N )

    2(X)

    I

    70

    5 X)

    370

    1.4

    7.3

    7.O0

    34.5

    7.O

    I 1 X )

    23

    9 0

    f e r e nt w a y s, e i t h e r b y ( a ) o p t i o n a l a d d i t i o n o f M g t o

    r e a c h a c o n s t a n t h i g h i n i t i a l m a g n e s i u m c o n c e n -

    t r a t i o n a n d v a r y i n g t h e l im e d o s e a n d f i n al p H , o r b y

    ( b) w o r k i n g a t a c o n s t a n t f i na l h i g h p H a n d v a r y i n g

    t h e i n i t i a l m a g n e s i u m c o n c e n t r a t i o n .

    B o t h m e t h o d s w c r c u s e d a n d a ~ i d e r a n g e o l p r e -

    c i p i t a t e d m a g n e s i u m h y d r o x i d e w a s o b t a i n e d a n d

    c o r r e l a t e d w i th t h e r e d u c t i o n m T O C a n d e x t i n ct i o n .

    T h e p o s s i b l e e ff e ct o f f i n a l p H a s a s e p a r a t e ~ a r i a b l e

    ( n o t o n l ~ t h r o u g h i t s e f fe c t o n t h e a m o u n t o f m a g n e -

    s i u m h y d r o x i d e } c o t, l d b e t a k e n i n t o a c c o u n t . T a n n i c

    a c i d s o l u t i o n w a s s e l ec t e d t o r e p r e s e n t o r g a n i c s t h a t

    a r e r e m o v e d b y c o a g u l a t i o n - f l o c c u l a t i o n a n d t o i n v es -

    t i g a t e t h e m e c h a n i s m a n d s t o i c h i o m e t r y o f t h e p r o -

    c e s s i n a c o n t r o l l e d s y s t e m .

    E X P E R I MENTS

    T h e e x p e r i m e n t s w e r e c a r r i e d o u t w i t h r a w u n s e t t l e d

    sewage f rom the v i l l age o f Bennekom, Ne ther lands , ma in ly

    of domes t ic o r ig in . Th is was tewate r i s o f medium s t reng th ,

    a s C O D w a s a b o u t 5 0 0 m g l - ~ 0 2 , B O D 5 w a s a b o u t

    2 0 0 m g l ~ 0 2 a n d T O C w a s a b o u t 1 7 0 m g 1 - 1 C . T h e

    i n i t i a l a v e r a g e m a g n e s i u m c o n c e n t r a t i o n o f t h e s e w a g e

    a m o u n t e d t o 7 m g I- ~ M g ( T a b l e 1 ). In e x p e r i m e n t s

    w h e r e

    p H w a s v ar i ed . 8 0 m g l ~ M g w a s a d d e d t o t h e se w ag e.

    L ime was used as a coagu lan t to ob ta in d i f fe ren t pH

    o

    14e

    9 o

    8 s

    8 0

    TS

    zo

    X.

    . . . . ~ F L U t N X

    = 8 7 m Q I M Q

    0 ~ 7 m Q I - I M 0

    I 1 1 I v

    tO 10 S I~ I1S 12

    L

    g

    8

    10

    8

    O6

    O4

    02

    o

    ~ .

    8 7 m Q I - ~ MQ

    o

    2..Z

    r i r l

    i o i o 5 s 2

    D H

    F i g . I . W a s t e w a t e r f l o c c u l a te d a t d i ff e r en t p H v a l u e s w i t h l i m e a s c o a g u l a n t a n d w i t h 8 7 a n d 7 m g I -

    M g a s i n i ti a l m a g n e s i u m c o n c e n t r a t i o n .

  • 8/11/2019 Effect of Magnesium and Calcium Precipitation on Coagulation

    3/8

    Effec t o f Mg and Ca p rec ip i t a t ion on coagu la t ion - f loccu la t ion wi th l ime 657

    r_

    l o

    20

    t h e o r e h c a l

    ~ 7

    m g

    I t

    M g

    \

    \

    \

    ~ /

    l

    p H

    . . t h o o r e t l C O i

    ~

    M g

    \

    \

    i

    1o l O S 11 11s I~

    ~---

    p

    Fig . 2 . Was tewate r f loccu la ted a t d i f fe ren t pH va lues . The inh ib i t ion o f the Mg(OH)2 p rec ip i t a t ion i s

    i l l u s tr a t e d b y t h e t h e o r e t ic a l l in e a n d t h e m e a s u r e d m a g n e s i u m c o n c e n t r a t i o n w i t h a h i g h a n d a l o w

    in i t i a l conce n t ra t io n o f Mg 2 * .

    va lues. In exper im ents a t con s tan t f ina l pH var ious

    a m o u n t s o f m a g n e s i u m c h l o r i d e w e r e a d d e d t o o b t a i n i n -

    i t ia l c o n c e n t r a t i o n s r a n g i n g f r o m 5 t o 4 4 m g I - 1 M g . L i m e

    was dosed to a f ina l pH of 11 .5 .

    T h e e x p e r i m e n t s w i t h s i m u l a t e d o r g a n i c s w e r e c a r r i e d

    ou t wi th a so lu t ion o f t ann ic ac id in d i s t i l l ed wa te r a t

    con cen t r a t ion s o f 40 , 80 and 100 mg 1- t and wi th four d i f-

    fe ren t in i t i a l magnes ium ch lo r ide concen t ra t ions : 12 .1 .

    22 .1 , 32. I , 42 .1 mg l - 1 Mg. Tw o l i t r e samples were coagu la -

    ted- f loccu la ted a t d i f fe ren t pH ' s (8 .8 , 9 .5 , 10 .5 and 11 .5 ) .

    N a O H w a s u s e d t o r a i s e t h e p H t o t h e d e s i r e d v a l u e . T h e

    ba tch coagu la t ion- f loccu la t ion t e s t s were done in rec tangu-

    la r 21 . p lex ig lass t anks wi th a c ross - sec t iona l a rea o f

    10 x 10cm 2 . The fo l lowing exper imenta l p rocedu res were

    used :

    1 . Mix ing w i th tu rb ine type s t i r r e r a t 660 rev ra in - t ,

    which ga ve a m ean G va lue o f 680 s - 1 .

    2 . A d d i t i o n o f c o a g u l a n t a n d a d j u s t m e n t o f p H o v e r a

    60 s pe r io d a t 660 rev ra in - 1 ( rap id mix).

    3 . F locc u la t ion fo r 30 min wi th a p rope l le r type s t i r r e r a t

    9 0 r e v r a in - 1 ( G = 4 1 s - t ) .

    4 . Sed ime nta t ion fo r 30 min .

    T h e G v a l u e w a s m e a s u r e d w i t h a p i l o t s ca l e d y n a m o m e t e r

    as desc r ibed by Leen tv aar an d Ywem a (1980) . Af te r sed i -

    m e n t a t i o n , a s a m p l e o f a b o u t 1 00 m l w a s w i t h d r a w n a t h a l f

    h e i g h t o f t h e t a n k a n d t h e f o l l o w in g p a r a m e t e r s w e r e d e te r -

    mine d : Ex t inc t ion a t 620 nm w ave leng th in a cu ve t te (d ia -

    m e t e r = 2 c m ) , T O C , M g 2 a n d C a 2 c o n c e n t r a t i o n s . I n

    c a s e o f ta n n i c a c i d s o l u t i o n , T O C a n d M g 2 c o n c e n t r a t i o n

    were de te rmined .

    R E S U L T S

    I n th e e x p e r i m e n t s c a r r i e d o u t w i th B e n n e k o m s e w -

    a g e w i t h l im e a s a c o a g u l a n t a n d a n i n i ti a l m a g n e -

    s i u m c o n c e n t r a t i o n i n t h e w a s t e w a t e r o f 7 o r 8 0 m g

    I - 1 M g , t h e r e d u c t i o n o f e x t i n c t i o n (E ) a n d T O C

    w e r e m e a s u r e d a t d if f e re n t p H v a l u e s o b t a i n e d b y d i f-

    f e r e n t li m e d o s e s a s i l l u s t r a t e d i n F i g . 1. T h e s e e x p e r i -

    m e n t s s h o w e d t h a t f o r t h e s a m e e f f e c t a h i g h e r p H

    w a s r e q u i r e d i n c a s e o f a l o w i n i t ia l M g c o n c e n t r a t i o n

    i n t h e se w a g e a s c o m p a r e d t o a h i g h M g c o n c e n -

    t r a t i o n .

    T h i s i s d u e t o t h e d if f e re n t a m o u n t s o f p r e c i p i t a t e d

    m a g n e s i u m h y d r o x i d e - - t h e c o m p o u n d r e s p o n s ib l e

    f o r r e d u c i n g t h e c o ll o i d a l T O C f r a c ti o n a n d e x t i n c -

    t io n . T h e p r e c i p i t a t i o n o f M g ( O H ) 2 w a s f o u n d t o b e

    i n h i b i t e d i n w a s t e w a t e r , a s c a n b e s e e n i n F i g . 2 w h e r e

    r e s id u a l M g c a l c u l a t e d f r o m t h e s o l u b il i t y c o n s t a n t i s

    c o m p a r e d w i t h M g r e s i d u a l s a c t u a l l y o b t a i n e d i n th e

    e x p e r i m e n t s .

    I t s h o u l d b e n o t e d t h a t a l a r g e f ra c t i o n o f T O C i s

    r e m o v e d a n d a h i g h r e d u c t i o n i n e x t i n c t i o n i s

    o b t a i n e d b e l o w t h e i n s o l u b i l i z a ti o n p H o f M g ( O H ) 2 .

    T h i s i s d u e t o p l a i n s e t t l i n g o f t h e s e t t l e a b l e f r a c t i o n s

    a s w e ll a s t o s e t t l i n g o f d i s p e r s e d m a t t e r a i d e d b y t h e

    p r e c i p i t a t i o n o f C a C O 3 . T h e r e d u c t i o n o f T O C f r o m

    1 4 8 to 8 5 m g 1 - z s h o w n i n F i g . 1 i s d u e t o t h i s m e c h -

    a n i s m . A n y f u r t h e r r e d u c t i o n i n T O C b e l o w

    8 5 m g 1 - t c o u l d b e a c h i e v e d o n l y t h r o u g h M g ( O H ) ,

    p r e c i p i t a t i o n .

    A n o t h e r s e ri e s o f c o a g u l a t i o n - f l o c c u l a t io n e x p e r i-

    m e n t s w i t h li m e as a c o a g u l a n t w e r e c a r r i e d o u t a t a

    c o n s t a n t p H , h i g h e r t h a n 1 0.5 a n d a v a r i a b l e a d d i t i o n

    o f m a g n e s i u m c h l o r i d e t o t h e s e w a g e i n o r d e r t o

  • 8/11/2019 Effect of Magnesium and Calcium Precipitation on Coagulation

    4/8

    65S I I . I I n . I V A A R n n d M R I I I I I ( " ,.

    T o

    o

    I

    i o ~ 1 o j l o * 1 o

    ~ - / ~ M g m g l -

    Fig. 3. Sewage flocculated at pH 11.5 with lime with differ-

    ent initial Mg concentrations.

    i

    :-

    is

    I i .

    to

    " . ' ,

    i . \

    i o , s ; , ,

    a A M g m g i -

    Fig. 5. Tannic acid solution flocculated at pH 10.5 and pH

    11.5 wi th differen t initial Mg and tannic acid

    concentrations.

    obtain various amounts of magnesium precipitates

    (AMg), so as to be able to correlate TOC and extinc-

    tion reduction to the precipitated amount of

    Mg(OH):. By these experiments the stoichiometric,

    4 J 8 I N F L U E N T

    >

    nt

    O~

    nl

    w

    O2

    O

    , o / o ~ o , o

    ~ ~ M g m g l

    Fig. 4. Sewage flocculated at pit 11.5 with lime with differ-

    ent initial Mg concentrations.

    quantitative relationships between the amount of

    TOC (z~TOC) or extinction [A extinction) removed

    and the amount of magnesium hydroxide formed

    could be evaluated. An illustration of results of the

    coagulation-floccula tion experiments with lime as a

    coagulant at variable initial Mg concentrations and

    fixed pH of 11.5 is given in Fig. 3 and Fig. 4 where

    TOC and E are plotted vs AMg.

    It can also be seen in these figures that a large

    reduction in TO C (from 146 to 90 mg 1- t) and extinc-

    tion (from 0.438 to 0.07) was obta ined without any

    significant Mg precipitation. But reductions below

    these values could be accomplished only by precipi-

    tation of Mg(OH)2 and residual concentrations of

    TOC decreased with increase of AMg.

    Results of flocculation experiments with tannic acid

    at various Mg conce ntrat ions at pH 10.5 and 11.5 are

    shown in Fig. 5. In this case removal is due only to

    precipitated Mg(OH)2 since no other components

    except Mg and tannic acid were present. Experiments

    at pH 8.8 and 9.5, which are below Mg insolubiliza-

    tion, showed no tannic acid removals, except at very

    high Mg concentra tions, where some removal was

    perceptible, possibly by Mg-tannate formation.

    DISCUSSION

    Many research workers reported that the residual

    concen trati on of TOC and extinction decreased as the

    amou nt of magnesium removed during lime coagula-

    tion-floceu lation increased (Minton & Carlson, 1973;

    Mennel e t a l . 1974; van Vuuren e t a l . 1967).

  • 8/11/2019 Effect of Magnesium and Calcium Precipitation on Coagulation

    5/8

    Effect of Mg and Ca precipitation on coagulation-flocculation with lime 659

    Co

    ca

    U

    T N

    c j

    A C w q

    ~ Mg

    Fig. 6. Illustration of the method used to determine the amo unt o f TO C removed by calcium car bon ate

    (ACc,), the amo unt removed by M g(OH)z p recipitation (AC~s) and th e non-removable fraction of TO C

    (CNR).

    I t h a s b e e n o b s e r v e d ( B e r g

    e t a l .

    1970), wi th both

    raw was tewa te r and s econda ry e f f luen t , t ha t c l a r i f i c a -

    t i o n o c c u r r e d a t a n i n s o l u b i l i z a ti o n p H o f o n l y 9. 5 i n

    h i g h h a r d n e s s / h i g h a l k a l i n i t y w a s t e w a t e r . I n c o n t r a s t

    t h e t r e a t m e n t o f l o w h a r d n e s s / l o w a l k a l i n i t y w a s t e -

    wa te r s ha s requ i red a pH o f 11 -11 .5 fo r s a t i s fac to ry

    c l a r i fi c a t io n a n d i n m a n y i n s t a n c es a c o a g u l a n t a i d

    s u c h a s f e r ri c c h l o r i d e o r a n o r g a n i c p o l y m e r h a s b e e n

    requ i re d (W uhrm an , 1968).

    T h e r e s u lt s o f t h e w o r k d e s c r i b e d i n t h e p r e s e n t

    p a p e r a r e i n a g r e e m e n t w i t h a n d e x p l a i n t h e v a r i o u s

    f i n d in g s c it e d a b o v e . I n l i m e t r e a t m e n t o f w a s t e w a t e r

    bo th C aC O 3 an d M g(OH)2 a re e f fec t ive in the f loccu -

    l a t i o n - c l a ri f i c a t io n a n d r e m o v a l p r o c e s s e s :

    1. T h e p r e c i p i t a t e d C a C O 3 a c t s b y t h e " s w e e p

    c o a g u l a t i o n " m e c h a n i s m a f fe c ti n g t h e r e m o v a l o f s u s -

    p e n d e d s o l i d s a n d e a s il y c o a g u l a b l e l a r g e c o l lo i d a l

    ma te r i a l . I t a l s o a ids in se t t l i ng a s a " we igh t ing agen t "

    by inc rea s ing the dens i ty o f the s e t t l i ng aggrega te s .

    H o w e v e r , s t a b l e a n d o r g a n i c c o l l o i d s c a n n o t b e

    a f fe c te d b y c a l c i u m c a r b o n a t e . S i g n if i c an t a m o u n t s o f

    C a C O 3 p r e c i p i t a t i o n c a n b e o b t a i n e d i n h i g h

    a l k a l i n i t y ( b i c a r b o n a t e ) w a t e r s.

    2 . T h e p r e c i p i t a t i n g M g ( O H ) 2 a c t s b y a n a d s o r p t i v e

    c o a g u l a t i v e m e c h a n i s m . I t s s t ru c t u r e w h i c h p r o v i d e s a

    l a rge ads o rp t ive s u r face a rea and i t s pos i t ive e l ec t ro -

    s t a t i c s u r face cha rge enab le s i t t o a c t a s a power fu l

    and e f f i c ien t coag u lan t a l s o on s t ab le o rga n ic co l lo ids

    and g ive h igh deg ree s o f c l a r i f i c a t ion .

    S i g n i fi c a n t a m o u n t s o f M g ( O H ) 2 c a n b e e x p e c t e d a t

    h i g h l i m e d o s e s g i v i n g h i g h p H ' s a n d i n w a t e r s c o n -

    t a in ing s u f f i c i en t M g . In o rde r to s epa ra te quan t i t a t -

    w.a 16,5 K

    i ve ly the e ffec t o f M g(OH)2 fo rm a t ion f rom the e f fect

    o f C a C O 3 p r e c i p i t a t i o n t h e f ra c t io n o f T O C a n d

    e x t i n c t i o n r e m o v e d b y c a l c i u m c a r b o n a t e a l o n e

    ( A C e , ) h a s t o b e e s t i m a t e d . T h i s c a n b e d o n e b y t w o

    m e t h o d s :

    1. B a s e d o n t h e p l o t o f T O C o r e x t i n c t i o n v s p H ,

    ex t r apo la t io n to a lowe r pH ( s ee F ig . 1 ), whe re the re

    i s n o M g ( O H ) 2 p r e c i p i t a t i o n (b e l o w p H 1 0 . 0 a c c o r d -

    ing to Fig . 2) .

    2 . B a s e d o n a p l o t o f T O C o r e x t i n c t i o n v s A M g ,

    e x t r a p o l a t i o n t o A M g = 0 ( w h i c h m e a n s n o M g ( O H ) z

    prec ip i t a t ion ) .

    T h i s s e c o n d m e t h o d w a s s e l e c t e d t o d e t e r m i n e t h e

    a m o u n t o f T O C o r e x t in c t io n r e m o v e d b y c a l c iu m

    ca rbona te a lone . Th i s me thod i s i l l u s t ra t ed in F ig . 6 .

    T h e e x p e r i m e n t s w i t h s e w a g e s h o w e d t h a t o n a v e r a g e

    4 5% o f T O C a n d 8 5 ~ o f e x t in c t io n w a s r e m o v e d w i t h

    t h e a i d o f C a C O 3 .

    T h e d e t e r m i n a t i o n o f t h e a m o u n t o f n o n - r e m o v a b l e

    ( s o lu b l e ) T O C o r e x t i n c t i o n (C N R ) b y b o t h c a l c i u m

    c a r b o n a t e a n d m a g n e s iu m h y d r o x i d e w a s d o n e b y d e -

    t e r m i n a t i o n o f th e a s y m p t o t i c v a l u e o f th e T O C o r

    e x t i n c t i o n to t h e c u r v e o f T O C o r e x t i n c t i o n v e r su s

    A M g a t h ig h A M g , w h i c h i s e q u i v a l e n t t o a l a r g e

    a m o u n t o f M g ( O H ) 2 p r e c i p i t a te d . T h i s a l s o i s i ll u s -

    t r a t e d i n F i g. 6 . O n a v e r a g e th e n o n - r e m o v a b l e p o r -

    t i o n o f T O C o r e x t i n c t i o n b y l i m e c o a g u l a t i o n - f l o c c u -

    l a t i o n o f s e w a g e a m o u n t e d t o 3 9 a n d 8 ~ r e s p ec t iv e l y .

    T h e e v a l u a t i o n o f th e a d s o r p t i o n c a p a c i t y o f

    M g ( O H ) 2 w a s b a s e d o n t h e a s s u m p t i o n t h a t m a g n e -

    s i u m h y d r o x i d e r e m o v e s o n l y m a g n e s i u m r e m o v a b l e

    T O C . I n o r d e r t o ev a l u a t e th e a d s o r p t i o n c a p a c i t y o f

  • 8/11/2019 Effect of Magnesium and Calcium Precipitation on Coagulation

    6/8

    6611

    I

    [. I. I:NI\,~AI~ and

    I M R l 4 ~ l l t x

    T a b l e 2 . [ : x a m p l c o f t h e c a l c u l a t i~ m o f t h e a d s o r p t i o n c a p a c l t ' , o t 1 ( ) ( o n M g I ( ) H ) : l l o c m h n l c

    l r c a t m c n t o f s e l v a g e I ) a t a f i 't ln l ] : l g , 3 . ( , , 1 4 6 m g l ' ( " C , , : : 9 5 m g l z (. . ( - 6X m g l ' ( '

    ( ' a .3 d. ~ k \ t g , , \ l g a \ M g : V - x l~ ~ -ML2 ( 'x t ~

    I n l g l i ( ' ) [ r n g l ~ ( b I r n g l ' \ .l g~ ( m g l : M g l I m g l J M g l ( z n g ( n l g t M g l ( m g l ~ ( ,

    g9 6 "; 4 3 ,x 16 37 ~ .2"1

    8 7 ,~ q 4 3 - I ? 4 ~ 1 1 9

    9 3 7 2 4 .~ 2 4 1 .2 5 2 4

    36 9 7~ 4.7 2 3 . ;?~1 I ,S

    ~ 7 u.o 5.6 3.4 2.t~, 2o

    x2 13 ~;I 4.8 4.3 k02 14

    ,',2 13 13.1 5 2 7.9 1.65 14

    82 13 12.9 5.6 73 I.Tg 14

    7h 17 16 6 5 2 I 1.4 1.49 10

    7"7 IS

    16.6

    5.2 11.4 1.58 9

    75 2U 242 5.8 18.4 1.09 7

    74 21 24 2 6.1 18.1 I. 16 6

    73 22 34.2 6.1 28.1 0.7 ~ 5

    72 23 34 4 5.6 2 K ~ 0.~0 4

    "7,1 24 44 .0 5.9 38.1 11.63 3

    70 25 44.li 5 4 38.6 1165 2

    C t )

    CR:

    C(-. :

    NR~

    CMg :

    AC e., :

    M g I O H ) 2 t h e f o l l o w i n g p a r a m e t e r s w e r e d e l i n e d ( se e

    Fig . 6) :

    T O C o f r aw s e w a g e

    T o t a l r e s i d u a l T O C a f t e r c o a g u l a t i o n - f l o c c u -

    l a t i o n a n d s e t t l i n g

    R e s i d u a l T O C a f te r l im e t r e a t m e n t a t h i g h

    p H a t A M g i s e q u a l t o 0

    N o n - r e m o v a b l e r e si d ua l T O C = a s y m p t o t ic

    v a l u e o f C R a t h i g h A M g

    R e s i du a l M g r e m o v a b l e T O C = C R C,,R

    A m o u n t o f T O C r e m o v e d b y C a ( ' O 3 p r ec ip i -

    t a t i on a l one = Co Cc . ,

    A C ~4 g: A m o u n t o f T O C r e m o v e d b y

    M g ( O H h - f l o c = C ~ .,.- C,

    A M g : A m o u n t o f m a g n e s i u m p r e c i p i t a t ed = i n it ia l -

    r e s i d u a l m a g n e s i u m c o n c e n t r a t i o n .

    F r o m t h e d a t a o f t h e e x p e r i m e n t s c a r r ie d o u t a t p H

    v a l u e s h i g h e r t h a n 1 0 . 5 t h e a m o u n t a d s o r b e d (A C s~ g)

    p e r u n i t a d s o r b e n t M g ( O H ) 2 ( e x p r e s s e d a s A M g l w a s

    c a l c u l a t e d a t c o n s t a n t p H . T h i s v a l u e A C ~ g . . A M g i s

    r e l at e d t o t h e c o n c e n t r a t i o n o f a d s o r b a t e r e m a i n i n g i n

    s o l u t io n ( C ~ . A n e x a m p l e o f t h is c a l c u l a ti o n is g i v e n

    i n Ta b l e 2 .

    A d s o r p t i o n i s o t h e r m s , a s i l l u s t ra t e d b y F i g s 7 9 .

    s h o w t h a t i n c as e o f s e w a g e t h e m a x i m a l a d s o r p t i o n

    c a p a c i t y r a n g e s f r o m 1 .5 t o 3 .0 m g T O C m g - ~ M g ,

    i n d e p e n d e n t o f w a s t e w a t e r c o m p o s i t i o n , T O C r a n g -

    i n g f ro m 1 4 0 t o 2 2 0 m g 1 . ~ C a n d i n d e p e n d e n t o f p H .

    T h e w a s t e w a t e r s a m p l e s w e r e t a k e n i n a sp a n o f 2

    m o n t h s . T h e r e m o v a l o f o r g a n i c s u b s t a n c e s b y a d -

    s o r p t i o n b y M g ( O H ) 2 s h o w s a b e h a v i o u r s i m i l a r t o

    a n a d s o r p t i o n i s o t h e r m a n d f it s i n a F r e u n d l i c h e q u a -

    t i o n w i t h a c o r r e l a t i o n c o e f f i c ie n t ( r) r a n g i n g f r o m

    ( I. 81 t o 0 .91 . Th i s va l ue r i s s i gn i f i c a n t w i t h a s i gn i t i -

    c a nc e l e ve l o f 0 .01 .

    T h e r e m o v a l o f t a n n i c a c id b y a d s o r p t i o n c o a g u -

    l a t i o n o n M g ( O H ) 2 a l s o s h o w s a b e h a v i o u r s i m i l a r t o

    a F r e u n d l i c h a d s o r p t i o n i s o t h e r m a t p H 1 0 .5 a n d p H

    1 1 .5 a t w h i c h M g ( O H h p r e c i p i t a te d ( r - - - 0 . 8 5 a n d

    0 .9 2 re s p e c t i v e ly ) . T h e r e m o v a l o f t a n n i c a c i d a t p H

    8 . 8 a n d 9 . 5 w h e r e n o M g I O H ) 2 p r e c i p i t a t e s s h o w s n o

    s i m i l ar i ty w i t h a F r e u n d l i c h a d s o r p t i o n i s o t h e r m

    ( r = 0 . 51 a nd 0 . 28 r e s pe c t i ve l y ) .

    T h e a d s o r p t i o n i s o t h e r m s o f t h e t a n n i c a c i d o n

    M g ( O H h a t p H g r e a t e r th a n 1 0.5 s h o w a m a x i m a l

    a d s o r p t io n c a p a c i t y of a b o u t 13 m g T O C m g 1 M g

    a s i l l u s tr a t e d i n F i g . 1 0. T h e a d s o r p t i o n c a p a c i t y f o r

    t a n n i c a c i d i s a b o u t f o u r t i m e s h i g h e r t h a n t h a t f o r

    o r g a n i c s i n s e w a g e . T h i s i s p o s s i b l y d u e t o t h e d i f f e r -

    e n t n a t u r e o f t h e s p e ci fi c c o m p o u n d s i n v o l v e d , as w e l l

    a s t o t h e fa c t t h a t i n s e w a g e t r e a t m e n t p a r t o f t h e

    M g ( O H ) 2 i s u s e d f o r f l o c c u l a t i o n o f A C c t .

    C O N C I . U S I O N

    T h e s t u d y h a s sh o w n t h a t t w o m a j o r m e c h a n i s m s

    a r e e f f e c t i v e i n l i m e c o a g u l a t i o n - f l o c c u l a t i o n o f s e w -

    a g e :

    1. S w e e p c o a g u l a t i o n b y C a C O 3 .

    2 . A d s o r p t i o n - c o a g u l a t i o n o f st a b le o r g a n i c c o l l o i d s

    b 2, M g ( O H I 2 . T h e l a st m e c h a n i s m p r o v i d e s h i g h c l a r -

    i ty ef f luents .

    T h e e x p e r i m e n t s w i th s e w a g e s h o w e d t h a t o n a n

    a v e r a g e :

    4 57 1, o f T O C a n d 8 5'~ .0 o f e x t i n c t i o n c o u l d b e r e -

    m o v e d b y C a C O 3 f o r m a t i o n ;

    a n a d d i t i o n a l 1 6% o f T O C a n d 7 0 o f e x t i n c t i o n o f

    t h e ra w s e w a g e c o u l d b e r e m o v e d b y M g ( O H } 2 p r e -

    c i p i t a t i o n ;

    t h e n o n - r e m o v a b l e f r a c ti o n a m o u n t e d t o a b o u t

    3 9 % o f T O C a n d 8 %,; o f e x t i n c t i o n .

    T h e r e l a t io n b e t w e e n r e m o v a l o f T O C o r e x t i n ct i on

    a n d M g ( O H h p r e c i p i t a t io n e x p re s s e d a s a n a d s o r p -

    t i o n i s o t h e r m s h o w e d a b e h a v i o u r s i m i l a r t o t h a t o f

    a n a d s o r p t i o n p r o c e ss . T h e m a x i m a l a d s o r p t i o n c a -

    p a c i ty v a r i e d b e t w e e n 1 .5 --3 .0 m g T O C m g ~ M g f o r

    d i ff e re n t s e w a g e s am p l e s a n d a m o u n t e d t o 1 3 r a g

  • 8/11/2019 Effect of Magnesium and Calcium Precipitation on Coagulation

    7/8

  • 8/11/2019 Effect of Magnesium and Calcium Precipitation on Coagulation

    8/8

    662 I [.I I N I x, A xr an d P',I RIBHI"n

    ,1

    ik4

    o I / H

    5

    /

    S 'c

    O

    F ig . 10 . T h e a m o u n t o f T O C r e m o v e d b y M g ( O H ) 2 p r e -

    c i p it a ti o n d i v i d ed b y a m o u n t o f m a g n e s i u m r e m o v e d p l ot -

    t e d v s t h e r e s id u a l m a g n e s i u m r e m o v a b l e T O C i n c a s e o f a

    t a n n i c a c i d s o l u t i o n .

    TOC mg

    t

    Mg for a tannic acid solution. Although

    t h e c u r v e s a r e s im i l a r t o a F r e u n d l i c h a d s o r p t i o n i s o -

    t h e r m t h i s d o e s n o t p r o v e t h a t a d s o r p t i o n i s t h e o n l y

    p r o c e s s i n v o l v e d . I n p r a c t i c e c o a g u l a t i o n - f l o c c u l a t i o n

    w i t h l i m e s h o u l d g i v e b e t t er r e m o v a l s w i t h a h i g h

    i n it i a l m a g n e s i u m c o n t e n t i n t h e w a te r . I n c a s e o f a

    l o w m a g n e s i u m c o n t e n t o f t h e w a t e r t r e a tm e n t w i t h

    l i m e w h i c h c o n t a i n s m a g n e s i u m i s t o b e p r ef e rr e d .

    A e k n o w l e d . q e m e n t s T h i s r e s e a r c h w a s c a r ri e d o u t w h i l e J .

    l . e e n t v a a r w a s a s t a f f m e m b e r a t t h e D e p a r t m e n t o f W a t e r

    I ' ot l u t+ t m ( ' o n t r o l . A g r i c u l t m ' a l U n i ' , e r s it , , . W a g e m u g e n

    a n d M . R e h h u n w a s it v i s it i n g p r o f e s s o r a t t h e , , a m e

    d el '~ ar tm e i' kt . A c k n o w l e d g e m e n t i s d u e t o M r 1 S . . I

    Yv .e ma an d Mr t : A .. l . ang er e i s f l~ r t he i r t e chn ic a l axszs t -

    ; t I ' 1 C .

    R E F [ R I '~N 'ES

    Ber g I . L .. Br um me r C. A . & W i l l i am s W. T . 11970) S ing le

    s t a g e l i m e c l a r i f i c a ti o n . 1 4 ) a . W a s t e s E n g n g 7, 3 42.

    B l a c k A . P . & C h r i s t m a n R . F . [ 1 9 6 1 ) E l e c t r o p h o r e t i c

    s i t , d i e s o f s l u d g e p a r t i c l e s p r o d u c e d i n l i m e - s o d a s o f t e n -

    ing . J . Am. W a r . W k s ,,l.s.~. 53 , 7 37 747.

    F l e n tj e M . E . (1 9 27 ) C a l c i u m a n d m a g n e s i u m h y d r a t e s . J .

    .4m. Wa r. 14"k.s .,ls.s. 17, 25 3 260.

    F o l k m a n Y . & W a c h s A . M . ( 1 97 3 ) R e m o v a l o f a l g a e f r o m

    s l a b l i s a t i o n p o n d s e f f lu e n t b y l im e t r e a t m e n t . W a t e r R e s .

    7, 419- 435.

    L e e n t v a a r J . & Y w e m a T . S . J . ( 1 9 8 0 ) S o m e d i m e n s i o n l e s s

    p a r a m e t e r s o f i m p e ll e r p o w e r i n c o a g u l a t i o n - f l o c c u l a t io n

    p r o c e s s e s . I,V a t e r R e s . 14, 135 . 140.

    L e c o m p t e A . R . (1 9 66 ) W a t e r r e c l a m a t i o n b y e x c e s s li m e

    t r e a t m e n t o f e f f lu e n t . T A P P I 4 9 , 1 21 .. 12 4.

    M c n n e l M . . M e r r i l l D . T . & J o r d e n R . M . ( 1 9 74 ) T r e a t m e n t

    o f p r i m a r y e f f l u e n t b y l i m e p r e c i p i t a t i o n a n d d i s s o l v e d

    a i r f l o t a t i on . J . Wa r . Po l l u t . Co n t ro l Fed . 4 6 , 2471 2485.

    M i n i o n G . R . & C a r l s o n D . A . ( 19 7 3) P r i m a r y s l u d g e s

    p r o d u c e d b y t h e a d d i t i o n o f l i m e to r a w w a s t e w a t e r.

    W a t e r R e s . 7, 1821 1847.

    V u u r e n L . R . J . v a n , S t a n d e r G . J . , H e n z e n M . R . , M e l t i n g

    I :'. G . J . & Ble r k S . H . V . van ( 1967) Ad va nc ed p u r i f i ca -

    l i o n o f s e w a g e w o r k s e f f lu e n t u s i n g a c o m b i n e d s y s t e m

    o f l im e s o f t e n i n g a n d f l o t a t io n . W a t e r R e s . I , 4 6 3 . 4 7 4 .

    W u h r m a n K . ( 1 96 8 ) O b j e ct i v e s. t e c h n o lo g y a n d r e s ul t s o f

    n i t r o g e n a n d p h o s p h o r u s r e m o v a l p r o c e s s e s . I n

    A d v a n c e s i n W a t e r Q u a l i t y I m p r o l e m e n t pp . 21 48 . U n i -

    ve r s i t y o f T e x a s P r e s s , A u s t in .


Recommended