+ All Categories
Home > Documents > Electro-optic microdisk RF receiver · 2018. 4. 17. · Applications areas n Microdisk photonic RF...

Electro-optic microdisk RF receiver · 2018. 4. 17. · Applications areas n Microdisk photonic RF...

Date post: 26-Jan-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
38
1 Electro-optic microdisk RF receiver Mani Hossein-Zadeh Advanced Network Technology Lab. (www.usc.edu/alevi) 4 th photonic seminar University of Southern California August 20 th , 2004
Transcript
  • 1

    Electro-optic microdisk RF receiver

    Mani Hossein-Zadeh

    Advanced Network Technology Lab.(www.usc.edu/alevi)

    4th photonic seminar University of Southern California

    August 20th , 2004

  • 2

    Outline

    n Introduction

    n Microwave-photonics

    n Microdisk resonant optical modulators

    n LiNbO3 microdisk modulator

    n LiNbO3 microdisk photonic RF receiver

    n Integrated photonic RF receiver

  • 3

    Definitions

    Baseband (Digital data, video, voice, …..)

    Optical frequencies ( ~ 200 THz)

    Baseband (0 – 1 GHz)

    RF and mm-wave frequencies (5 GHz – 100 GHz)

    Frequency

    E-field or voltage amplitude

    Frequency

    E-field, voltage or current amplitude

    Frequency

    E-field or voltage amplitude

    Optical carrier

    RF carrier

    Data modulated RF carrier (suppressed carrier)Data modulated RF carrier ( transmitted carrier)

    Baseband modulated optical carrier RF subcarrier modulated optical carrier

  • 4

    Conventional and photonic RF receiver architecture

    n Conventional electronic homodynereceiver architecturew High-speed electronics² local oscillator at carrier

    frequency ( fRF )² low-noise amplifier²RF mixer

    w RF filters

    n Photonic RF receiver architecturew Photonic components²Microdisk optical modulator²Optical filter²Low power DFB laser²Low-speed photoreceiver

    w No high-speed electronicsw No conventional local oscillatorw No RF mixerw Reduced size and power consumptionw Insensitive to RF carrier frequencyw Optical isolation

    LO ( fRF )antenna ( fRF )

    bandpassfilter mixer

    lowpassfilter`

    low-noiseamplifier

    basebandantenna

    microdiskmodulator

    bandpassoptical filter

    low-speedphotoreceiver

    lase

    r

    baseband

    fRF

    f

    f

  • 5

    Applications areas

    n Microdisk photonic RF receiverw Indoor wirelessw Fiber feed backbone networksw Space communication² Technology transfer

    – Our 8.7 GHz LiNbO3 microdisk modulator shipped to NASA

    Mars exploration requires new, efficient Ka-band receivers for surface to surface, surface to relay, and surface to Earth communications.

    Photonic RF receiver

    Indoor wireless LAN

    Base stations

    Central office

    Customer units

    Fiber feed backbone networks

    Photonic RF receiver

    60 GHz

  • 6

    Microwave photonics

    n Microwave-photonics

    w RF modulation of optical carrier

    w High-speed optical detection

    w Photonic generation of RF signals

    w Photonic RF signal processing

    200THz

    GHz

    OM ODOSP

    OpticalElectrical (RF)

    ν1 −ν2

    200THz

    200THz

    ≈GHz

    OM

    GHz200THz

    ≈ OD

    OD

    ≈ν1

    ν2

    ff

    f

    f f

    f

    ff

    f

    f

    f

  • 7

    n External optical modulator applications:

    w High-speed optical links (10 Gb/s-40 Gb/s)

    w mm-wave/RF-optical links

    w mm-wave/RF optical receiver

    RF over fiber (RoF)

    broad band Mach-Zehnder modulator

    Resonant modulators

    Microdisk modulator(Traveling wave)

    Fabry-Perot modulator(Standing wave)

    Small optical modulator withhigh sensitivity around a highfrequency carrier

    OM

    Base band signal

    OD

    ? ? ?

    L

    OMOD

    GHz

    L

    GHz

    GHz

    ff

    f

    f

  • 8

    n Resonant optical modulatorw Long photon lifetime (τp = Q/ωres) ⇒ long interaction length ⇒ high sensitivity

    w Limited modulation bandwidth ( BW ≤ ∆νFWHM = νres /Q), centered

    around integer multiples of the optical free-spectral-range (FSR)

    Resonant optical modulators

    RF frequency

    Optical amplitude modulation

    ∆νFSR∆νFSR ∆νFSR

    ∆νFWHM∆νFWHM /2

    --- Traveling wave MZ modulatorOptically resonant modulator

    0

    0.2

    0.4

    0.6

    0.8

    1

    50 100 150 200

    Disk diameter( µm)

    FSR

    (TH

    z) LiNbO3

    Polymer

    InP, GaAs

    0

    20

    40

    60

    80

    0.5 1.5 2.5 3.5 4.5 5.5

    Disk diameter (mm)

    FSR

    (G

    Hz)

    0

    2

    4

    6

    8

    10

    5 15 25 35 45

    Disk diameter( µm)

    FSR

    (TH

    z) LiNbO3

    Polymer

    InP, GaAs

    LiNbO3

  • 9

    n Microdisk modulators

    w Semiconductor

    ²InP

    ²InGaAsP

    w Polymer

    ²APC/CPW

    ²CLD1/APC

    w Electro-optic crystals

    ²LiNbO3

    ²SBN

    ²KTN

    Bandwidth and optical quality factor

    0

    50

    100

    150

    200

    250

    1.5E+06 3.5E+06 5.5E+06 7.5E+06 9.5E+06Optical quality factor (Q)

    Dat

    a ra

    te (M

    b/s)

    Baseband modulation

    FSR modulationLiNbO3 microdisk

    02

    4

    6

    8

    10

    2.0E+04 7.0E+04 1.2E+05 1.7E+05 2.2E+05 2.7E+05

    Optical quality factor (Q)D

    ata

    rate

    (Gb/

    s) Baseband modulationFSR modulation

    Polymerand all-buried InP/InGaAsPmicrodisk

    1

    21

    41

    5000 13000 21000 29000 37000 45000

    Optical quality factor (Q)

    Dat

    a ra

    te (G

    b/s)

    BasebandmodulationFSR modulation

    semiconductormicrodisk (InP)

    BW ≤ ∆νFWHM = νres /Q

  • 10

    0

    20

    40

    60

    80

    0 0.02 0.04 0.06 0.08 0.1Wavelength ( 1550.05+...nm)

    Opt

    ical

    pow

    er (

    W

    )

    Average size LiNbO3 microdisk optical resonator

    n Optically polished electro-optic microdisk (LiNbO3) withcurved sidewall for high optical Q (>106)w Measured sidewall roughness

    ² Root mean square = 0.846 nm² Peak-peak height = 5.1 nm

    Diameter = 2.82 mm

    Thickness = 0.4 mm

    12.5 µm13.

    7 µm

    2 - 6 mm

    FSR: 7 – 22 GHz

    nm

    100-700 µm

    Interferometric surface profiler

    FSR

    Whispering Gallery (WG) modes

    nm

  • 11

    n LiNbO3 microdisk modulator w Small volume: 3 mm3 = π×3×0.4 mm3w large electro-optical coefficient

    (r33 = 30.8×10-12 m/V)w High-Q optical whispering-gallery

    (WG) resonance:2×106- 6×106 (loaded), 1.2×107 (unloaded)

    w Long photon life time : 1.6 – 5 ns (loaded), 9.5 ns (unloaded)

    w Long interaction length: 0.2-0.7 m (loaded), 1.3 m (unloaded)

    w High-Q RF resonator :70 – 90 (loaded), Gv ∝ vQRF

    n RF-photonic applicationw Optical modulation

    ² low power optical amplitude modulation

    w RF signal processing in optical domain² high-frequency operation

    – low loss in optical domain ² reduced power consumption

    – laser diode local oscillator² optical isolation

    RF-photonic LiNbO3 microdisk technology

    Simultaneous electrical and optical resonance

    Combination of microdisk and RF-photonictechnology demonstrated in LiNbO3 microdisk receiver

    1 mm1 mm

  • 12

    LiNbO3 microdisk modulator

    c-axis

    R

    TE TM RF resonator

    optical mode

    E-field

    n LiNbO3 microdisk modulatorw Increased RF sensitivity and low power² RF and optical signal in simultaneous resonance² RF resonance provides voltage gain² high-Q (> 106 ) whispering gallery(WG) mode provide long RF-photon interaction time² photons highly confined at edge allowing high RF-photon spatial overlap

    w Modulation only occurs at fRF = m ×∆νFSR with a bandwidth of ∆ν = ν0 /Q(νFSR= optical free spectral range, m : integer)

    gmicrostripline

    dielectric LiNbO3 microdisk

    incident beam

    microprism

    FSR

    Optical inputOptical inputOptical outputOptical output

    wavelength

    output

    RF inputRF output

  • 13

    RF ring resonator

    n Ring resonator controls the E-field inside the LiNbO3disk

    w Proper spatial distributionw Synchronizing the RF and the optical waves

    – fRF = m ×∆νFSR (m = 1, 2, …)w E-field amplification ( ∝√QRF)

    E-field intensity distribution in the middle of the disk

    Second-harmonic

    w R

    g

    h

    gPin = 1 W

    (Vpp = 20 V)

    400 µm

    5.13 mm

    Simulated fundamental RF resonance

    magnetic coupling

    E-f

    ield

    mag

    nitu

    de (

    V/m

    )

    0

    0.5

    11.2 ×10

    5

    fRF (GHz)5.3 5.55.4 5.6 5.7

    Emax

    GE

    Fundamental

    + - +-

    - +

  • 14

    Third harmonic modulation

    n Third harmonic modulation

    w Disk diameter = 5.13 mmw Disk thickness = 0.4 mmw ∆νFSR = 8.7 GHzw f RF = 3× ∆νFSR =26.1GHzw Optical Q = 3.5 ×106w Modulation bandwidth ≈ 50 MHz

    26 26.1 26.2 26.3

    Frequency (GHz)

    Mod

    ulat

    ed o

    ptic

    al p

    ower

    (nor

    mal

    ized

    )

    1

    0 -30

    -20

    -10

    0

    7 12 17 22 27

    Frequency(GHz)

    S11

    (dB

    )

    26.15 GHz

    LiNbO3microdisk

    RF ring resonator

    Optical output

    5 mm

    150 µm magnetic coupling gap

    RF input

    Optical input

  • 15

    14.6 GHz LiNbO3 microdisk modulator

    n 14.6 GHz LiNbO3 microdisk modulatorw 3 mm diameter LiNbO3 microdisk

    ² D = 3 mm, h = 400 µm² Q = 4 – 8 × 106, FSR = 14.6 GHz

    w Single prism optical couplingw Improved RF coupling

    ² fine tuning of the ring-microstripline coupling coefficient: Critical coupling with 350 µm gap.

    Tuning RF coupling

    RF outputRF input

    Optical mode

    Sharp edge

    Ring resonator

    Ground plane

    -10

    -8

    -6

    -4

    -2

    14.4 14.5 14.6 14.7 14.8 14.9 15

    Frequency (GHz)

    S-pa

    ram

    eter

    (dB

    ) g=250 µmg=350 µmg=450 µm

    -10

    -8

    -6

    -4

    -2

    14.4 14.5 14.6 14.7 14.8 14.9 15

    Frequency (GHz)

    S-pa

    ram

    eter

    (dB

    ) g=250 µmg=350 µmg=450 µm

    g=250 µmg=350 µmg=450 µm

    wModified E-field distribution

    ² cylindrical symmetric E-field distribution

    ² enhanced E-field intensity

  • 16

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0 0.2 0.4 0.6 0.8 1 1.2Vpp,in (V)

    Mod

    ulat

    ed o

    ptic

    al p

    ower

    at 1

    4.5

    GH

    z(

    µW )

    Linear modulation at 14.6 GHz

    Microstripline

    Microring resonator

    Microprism

    3 mm

    Output fiber

    LiNbO3 microdisk

    02468

    1012

    0.0044 0.0049 0.0054

    Wavelength 1550+… (nm)

    Tran

    smitt

    ed o

    ptic

    al p

    ower

    ( W

    )

    Q = 4×106

    n 14.6 GHz LiNbO3 microdisk modulator

    w Disk diameter = 3 mmw Disk thickness = 0.4 mmw ∆νFSR = 14.6 GHzw f RF = 14.6 GHzw Optical Q = 4 ×106w Modulation bandwidth ≈ 45 MHz

    0.7 V

  • 17

    0

    50

    100

    13 14 15 16 17 18 19Wavelength detuning (pm)

    Tra

    nsm

    itted

    opt

    ical

    po

    wer

    ( µ

    W )

    -80-70-60-50-40-30-20-10

    0

    -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10

    Input RF power (dBm)

    Dem

    odul

    ated

    RF

    pow

    er

    (dB

    m )

    Power sensitivity of single-frequency linear modulation at 14.6 GHz

    n Linear modulation sensitivityw Dynamic range : > 70 dB

    w SNR of 10 dB at -70 dBm (100 pW)

    ² SNR = 1 at – 85 dBm RF input power

    w Modulation bandwidth: 80 MHz

    w 0 dBm RF saturation power

    w Fiber-to-Fiber insertion loss ~ 10 dB

    w VHMM ~ 0.4 V

    -88-85-82

    -79-76-73

    14.45 14.65 14.85Frequency(GHz)D

    etec

    ted

    RF

    pow

    er (

    dBm

    )-70 dBm

    Noise floor

    310 µW/pm

    -85 dBm sensitivity (SNR = 1)

    Voltage

    Optical output

    VHMM

    Quantifying the modulator sensitivity Q = 3.5×106

  • 18

    n Transmitted carrier RF format

    w Nonlinear mixing of carrier and sidebands in the receiver

    w No local oscillator required

    n Photonic baseband down-conversion w Second-order nonlinear modulation with optical transfer function (Po ∝ VRF2 )

    Self-homodyne RF-photonic receiver

    f

    ipNonlinear optical

    modulation ( ) 2

    Laser (194 THz)

    Optical waveguide

    fRF

    E

    f

    Low speed photodiode+TIA

    ff

    22ffRFRFEE22

    RF signal

    Antenna

    Optical

    Electrical (baseband)Electrical (RF)

    LO

    Baseband

    Antenna

    f

    V

  • 19

    ),,,,,( ,0

    20

    2

    2 hPQGfdVPd

    N EinoVVRF RF

    βκ===

    Small signal regime (V0 < 0.1VHMM) and λ las = λ res :

    GV: voltage gainQ: optical Q-factorPo,in: input optical power βΕ: E-field correction factorh: disk thicknessκ: optical coupling factorR: photodetector responsivity

    ...21

    )( 220 ++= RFRFo VNNVP

    ωb

    2ωRF

    2ωb

    2ωRF± ωb2ωRF± 2ωb

    222 RF

    I VNm

    RIb

    ≈ω

    ω

    I

    DC term

    Received signal: )cos())cos(1(0 RFbIRF mVV ωω+=

    )2

    ()()( 220 RFRFoRF VNNRVRPVIγ

    +==

    Linear and nonlinear modulation with microdisk modulator

    Tra

    nsm

    itte

    d op

    tica

    l

    pow

    er (

    Pt )

    t Wavelength

    t

    t

    Linear (Po ∝ VRF)

    Nonlinear (Po ∝ VRF2)

    VR

    F

    Linear output

    Nonlinear output

    Inpu

    t

    Optical transfer function

  • 20

    Optical input power = 50 µWOptical coupling factor (κ)= 0.114Distributed loss (/cm) = 0.0075 (Q = 1.2×107)DC shift = 0.135 pm/VVoltage gain factor (Volt) = 6Q = 3×106

    Critical optical coupling and second-order nonlinear modulation with microdisk modulator

    n Transmission dipsw Zero DC optical power (at λ laser = λ res )

    with critical coupling

    ² reduction of optical noise generated by DC optical power

    w Large second-order nonlinearity

    λlaser = λres

    VRF (Volt)

    P o (W

    )

    2VHMM = 1.24 Volt

    … First derivative (/10)--- Second derivative (/10)

    05

    10152025303540

    85 90 95 100

    Wavelength detuning (pm)

    Det

    ecte

    d op

    tical

    pow

    er(

    W)

    Critical coupling

    Simulation

    Measured transmitted powerQ = 2.8×106

    ×10-5

  • 21

    Experimental arrangement

    Tunable laser:Tunable laser:linewidth < 0.5 MHzlinewidth < 0.5 MHzresolution < 0.3 pmresolution < 0.3 pm

    isolator

    polarizer

    Baseband output

    Low-speedPhotodetector

    Tunable laserλlaser = 1550 nm

    Signal generator (LO)

    DC power supply

    Signal/pattern generator

    RF-filterBW = 1 GHz centered at 14.5 GHzRF mixer

    Amplifier

    Variableattenuator

    Optical output

    RF input

    Baseband output

    DC

    Digital data output

  • 22

    Single tone down-conversion

    n RF input signalw Carrier frequency = 14.6 GHzw Baseband frequency = 10 MHzw Transmitted carrier format

    n Photodetector w Responsivity: 3 mV/µWw Bandwidth: 100 MHz

    14.601 GHz

    f

    14.6 GHz

    14.599 GHz

    Voltage amplitude

    )cos())cos(1( RFbIRF mV ωω+=

    05

    1015202530354045

    0.40 0.60 0.80 1.00 1.20 1.40

    RF modulation index (m I)

    Sup

    ress

    ion

    rati

    o .

    (dB

    ele

    ctri

    cal)

    f

    10 MHz

    20 MHz30 MHz

    Input RF signal

    Down-convertedsignal

    Third harmonic

    Second harmonic-20 dB

    -53

    -51

    -49

    -47

    -45

    -43

    -41

    -39

    -37

    -20 -18 -16 -14 -12 -10 -8 -6Total RF power (dBm)

    Dow

    n co

    nver

    ted

    optic

    al p

    ower

    at

    10

    MH

    z (

    dBm

    )

    30

    40

    50

    -0.4 -0.2 0 0.2 0.4Wavelength detuning (pm)

    Rec

    eive

    d op

    tical

    po

    wer

    ( W

    )

    SimulationMeasurement

    Optical mode

    mI = 0.7 (VLO/VBB = 2.8)

    Voltage amplitude

  • 23

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 0.5 1 1.5 2Modulation index (m I)

    Nor

    mal

    ized

    det

    ecte

    d ba

    seba

    nd o

    ptic

    al p

    ower

    .

    Optimizing modulation index for single frequency down-conversion efficiency

    n RF modulation format effectw Total received RF power ≈ -15 dB

    w Transmitted carrier format

    ² modulation index mI < 2

    w Optimized modulation index

    ² measurement mI ≈ 0.7

    ² calculation (square law response) mI ≈ 0.8

    Measurement Q = 4 × 106Q = 3.54 × 106

    Q = 3.15 × 106

    Calculated down-conversion efficiency and second-harmonic suppression ratio based on ideal square law response

    0

    10

    20

    30

    40

    50

    0 0.5 1 1.5 2Modulation index (m I )

    Seco

    nd-h

    arm

    onic

    sup

    pres

    sion

    . (d

    B e

    lect

    rical

    )

    0

    10

    20

    30

    40

    0 0.5 1 1.5 2Modulation index (m I )

    Pob

    /Pom

    (%

    )

    At small signal regime (PRF < -10dBm) a modulation index of mI = 0.7 results in 25% down-conversion efficiency and about 15 dB second-harmonic suppression ratio.

    (Down-conversion efficiency,Pob/Pom, is defined as the ratio of modulated optical power at baseband frequency and the total modulated optical power)

    Conclusion• 0.7< mI

  • 24

    n Time and frequency domain simulationw Input RF signal

    ² carrier frequency : 10 GHz

    ² baseband signal : 62.5 Mb/s NRZ PRBS data stream.

    ² modulation index : 0.6

    w Detector band width = 100 MHz

    Simulated signal flow in RF-photonic receiver

    Time, t (ns)

    Detected optical power (inverted)

    Time, t (ns)

    Input data

    a.u.

    a.u.

    0

    0 640

    640

    ×10 ×10

    )cos())cos(1( RFbIRF mV ωω+=

    Optical output power, a.u.

    0 180λlaser

    RF input signal

    Time, t (ns)

    Po,max(2)

    ∆λRF

    Time, t (ns)

    0

    180

    Wavelength, λ

    RF input spectrum Optical output intensity spectrum

  • 25

    Measured 10 Mb/s data down-conversion from 14.6 GHz carrier

    n Ku-band photonic RF receiverw Carrier frequency : 14.6 GHzw Baseband: 10 Mb/s NRZ 27-1 PBRSw Received RF power measured within 100

    MHz bandwidth centered at 14.6 GHz.w Digital photo receiver² sensitivity: -35 dBm² bandwidth: 100 MHz

    -70-60-50-40-30-20-10

    0

    14.58 14.6 14.62 14.64 14.66Frequency (GHz)

    RF

    pow

    er (d

    Bm

    )-70-60-50-40-30-20-10

    0

    0 10 20 30 40 50Frequency(MHz)

    Bas

    eban

    d po

    wer

    (dB

    m)

    1.E-10

    1.E-09

    1.E-08

    1.E-07

    1.E-06

    1.E-05

    1.E-04

    1.E-03

    1.E-02

    1.E-01

    -22 -21 -20 -19 -18 -17 -16 -15 -14

    Received RF power (dBm)

    BER

    Down-converted data

    Input data

    0

    5

    10

    15

    20

    25

    -0.6 -0.4 -0.2 0 0.2 0.4 0.6

    Wavelength detuning (pm)

    Rec

    eive

    d op

    tica

    l p

    ower

    ( W

    )

  • 26

    10 Mb/s, 50 Mb/s and 100 Mb/s data down-conversion from 14.6 GHz carrier

    Original eye

    Down-converted eye

    Time, t (10 ns/div)Time, t (25 ns/div)

    10 Mb/s 50 Mb/s

    n Ku-band photonic RF receiverw RF carrier frequency : 14.6 GHzw Baseband: 10 Mb/s, 50 Mb/s, 100 Mb/s NRZ PBRS 27-1w m = 0.7w Received RF power : -15 dBm (integrated power measured within 100

    MHz bandwidth centered at 14.6 GHz)

    100 Mb/s

    Time, t (5 ns/div)

  • 27

    -15

    -10

    -5

    0

    13.5 14.05 14.6 15.15 15.7

    Frequency (GHz)

    S11

    (dB

    )

    Measurement of 14.6 GHz patch array performance

    -30 dBm

    -20 dBm

    -40 dBm

    -30 dBm

    -20 dBm

    -40 dBm

    E-plane(x = 0,R = 5.5 ft)

    H-plane(y = 0 ,R = 5.5 ft)

    z

    y

    x

    -30

    -25

    -20

    -15

    -10

    -5

    0 1 2 3 4 5 6 7Z (ft)

    Receiv

    ed

    po

    wer

    (dB

    m)

    (x = 0, y = 0 , R = Z) input power to transmitting

    antenna = 10 dBm

    H-plane

    E-plane

    5.5 ft z

    y

    x

    BW= 1 GHz

    R

    R

    22 mm

    n 2×2 patch antenna array at 14.6 GHzw εr = 2.94 , tan δ = 0.00119 w Efficient and directive radiationw Low return lossw Planar structure and small size

  • 28

    14.6 GHz wireless link with microdisk optical receiver

    TransmitterReceiver

  • 29

    Wireless data communication with self-homodyne microdisk optical receiver

    n Wireless self-homodyne microdisk RF-photonic receiverw 14.6 GHz 4-patch antenna array

    w High sensitivity microdisk optical modulator

    w RF-photonic nonlinear modulationw Carrier frequency : 14.6 GHzw Modulation index: m = 0.8w Baseband: 10 Mb/s NRZ PBRS 27-1w Input RF power to transmit antenna:

    28 dBmTunable RFopen termination

    RF coupling fine tuning

    Original data

    Down-converted data

    Antenna

  • 30

    λ0

    Future: photonic RF receiver

    n Electrical stabilization and wavelength locking (dc bias on electrodes)wLocking the laser wavelength to a chosen optical transmitted power (Pol)

    Wavelength (λ)

    Po

    Pol

    ∆λdc (0.13 pm/Volt)

    sensitive low-speedphotodiodelaser

    microstripline

    optical waveguideRF signal

    data

    electro-optic microdisk

    reference voltage

    control circuit

    n Higher carrier frequenciesw Harmonic modulationw Small disks

    λ0

    0

    2

    4

    6

    8

    10

    12

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

    Wavelength (1550+... nm)

    Det

    ecte

    d op

    tica

    l po

    wer

    ( µW

    )

    FSR = 340 pm (42.5 GHz)

    Q = 1.3×106

    1 mm

    LiNbO3microdisk

  • 31

    Future: photonic RF receiver

    n Optical filteringw Reduce noise by eliminating the photocurrent from high-frequency

    components in the signal that are not used.

    RF signal from antenna

    Microdisk modulator

    n Monolithic integration of photonic RF receiver

    194 THz194 THzEE

    ////optical filter dataphotodetector

    iipp

    ff////

    194 THz194 THz

    22ffRFRF 22ffRFRFEE

    ff f

    laser

    microstripline

    optical waveguide

    data

    electro-optic microdisk

    control circuit

    passive ring resonators

    photodetector DSP

  • 32

    Future: microdisk photonic RF receiver integration

    n Electro-optic microdisk modulator for λ = 1550 nm laser lightw Electro-optic crystals

    ² LiNbO3– Electro-optic effect: r33 = 30.8 pm/V

    ² SBN– Electro-optic effect: r33 = 246 pm/V

    ² KTN– Electro-optic effect: r33 = 600 pm/V

    w Polymer (CLD1/APC, APC/CPW)² Electro-optic effect: r 33= 36-65 pm/V

    w InP/GaAs² Electro-optic effect: r41 ≈ 1.3-1.4 pm/V ² Depletion width modulation, electro-absorption (Frank- Keldish

    effect), ……………….

    Sensitive low-speedphotodiode

    Microlensesmicroprism

    laser

    Microstripline

    V-groove

    Optical waveguide

    RF signal

    data

    LiNbO3 mounted on Si optical bench

    Sensitive low-speedphotodiode

    laser

    Microstripline

    Optical waveguide

    RF signal

    data

    Semiconductor or polymer(photonic integrated chip)

    LiNbO3microdisk

    Semiconductor/polymer microdisk

    Hybrid integration (NASA) Monolithic integration

    Microphotonic receiver

    Integrated planarantenna

    Digital signal processing

  • 33

    Power efficiency

    n 60 GHz monolithic electronic receiver (LNA+LO+MX)(Ref: K. Ohata et al, IEEE MTT, Vol. 44, Dec 1996 ) w 0.15 µm N-AlGaAs/InGaAs HJFET MMIC technologyw Power consumption = 400 mWw Volume: 900 mm3

    n 60 GHz photonic receiverw No high-speed electronic devicesw Less power consumption ( 0.05 dB/pm Baseband output

    Power ≈ 6 mW Power < 50 mW (BiCMOS)Power ≈ 56 mW

  • 34

    Conclusion

    n Microwave photonic technology can provide solutions to current challenges in mm-wave electronic wireless design.

    n Nonlinear optical modulation and transmitted carrier RF modulation format may be combined in a self-homodyne architecture to realize a low-power and low-cost photonic RF receiver.

    n Microdisk resonant optical modulator is one of the best candidates for self-homodyne photonic RF receiver design

    n Proof of concept experiments with LiNbO3 microdisk modulator demonstrate the feasibility of electro-optic microdisk wireless receiver for short distance applications.

    n By employing alternative electro-optical materials such as semiconductors and polymers, the photonic RF receiver can be integrated in a single chip.

  • 35

    END

    ELECTROMAGNETIC WORLD!ELECTROMAGNETIC WORLD!in which DCin which DC--toto--light is used for communicationlight is used for communication

    Optical

    Electrical (baseband)Electrical (RF)

    Electrical (DC)

  • 36

    -10

    -8

    -6

    -4

    -2

    0

    8.5 8.7 8.9 9.1 9.3 9.5 9.7 9.9

    Frequency(GHz)

    S21(d

    B)

    RF resonant frequency tuning

    n Mechanical tuning of resonant frequency (compatible with MEMS technology)w Resonant frequency of the ring resonator can be tuned by

    varying the height of an air cylinder under the LiNbO3 disk.w Accurate tuning of fRF to optical FSR

    240MHz

    h

    4.17 mm

    5.98 mm

    LiNbO3

    Air

    Brass

    Copper ring

    RF input RF output

    99.05

    9.19.15

    9.29.25

    9.39.35

    0 1000 2000 3000 4000

    h (mm)

    Res

    onan

    t fre

    quen

    cy (G

    Hz)

  • 37

    Feedback loop stabilization

    n Microdisk modulatorw LiNbO3 disk (D = 5.13 mm , h = 400µm)w RF ring electrodew Feedback loop stabilization

    ² Tuning the resonant wavelengthsby DC voltage.

    ² Locking to maximum slopeby feedback loop.

    High-speedphotodetector

    Laser light in

    Low-speed photodetector

    Reference voltage

    10%

    90%

    RF output

    RF input

    Ring

    LiNbO3 disk

    Splitter

    ∆ ≈ 0.13 pm/V

    Time(sec)

    10 %

    det

    ecte

    d op

    tical

    po

    wer

    (µW

    )

    Feed back on

    Feed back off

    Laser light out

    Gold wire

    1.0

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    3772.1 604.2 1000.0 1500.0 2000.0 2500.0 3000.0 3500.0

    Time(sec)

    10 %

    det

    ecte

    d op

    tical

    po

    wer

    (µW

    )

    0.026 0.0265 0.027 0.0275 0.028Wavelength (1550+...nm)

    Optical mode spectrum

  • 38

    Magnetic coupling

    Second harmonic modulation

    Photons in resonance with even second harmonic moden Photon in resonance with E-field

    w fRF = 2× fFSR

    RF input

    Dielectric

    Dielectric

    Ring resonator

    Cut plane In the middle of the disk

    microstripline

    c-axis

    Air

    t = T/2= 1/(2fFSR)

    Optical traveling wave

    RF standing-wave

    RF input


Recommended