+ All Categories
Home > Documents > Electromagnetic Probes of Medium Effects in Heavy-Ion Collisions

Electromagnetic Probes of Medium Effects in Heavy-Ion Collisions

Date post: 11-Jan-2016
Category:
Upload: jovan
View: 18 times
Download: 1 times
Share this document with a friend
Description:
Electromagnetic Probes of Medium Effects in Heavy-Ion Collisions. Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA International on Workshop “Probing QCD with Heavy Ions” Hirschegg, 21.01.05. Outline. 1. Introduction - PowerPoint PPT Presentation
Popular Tags:
35
Electromagnetic Probes of Medium Effects in Heavy-Ion Collisions Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA International on Workshop “Probing QCD with Heavy Ions” Hirschegg, 21.01.05
Transcript
Page 1: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

Electromagnetic Probes of

Medium Effects in Heavy-Ion Collisions

Ralf RappCyclotron Institute

+ Physics Department Texas A&M University

College Station, USA

International on Workshop“Probing QCD with Heavy Ions”

Hirschegg, 21.01.05

Page 2: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

1. Introduction

2. Chiral Symmetry in QCD 3. E.M. Emission and in-Medium Effects E.M. Correlation Function + Chiral Symmetry Vector Mesons in Medium Photon and Dilepton Rates

4. Exp. Puzzles and Theoretical Attempts Low-pt “Anomalies” at SPS (WA98, CERES/NA45)

5. Perspectives for RHIC

6. Conclusions

Outline

Page 3: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

1.) Four Pillars of Thermal E.M. Radiation

low-mass eein-med →eeChiral Symmetry

restoration?

low-energy hadron decays/scatt.a1→, →Medium effects?

high-energy continuum emissionHG vs. QGP , O(s)

QGP radiation? )M(ImTdM

dRV

dMd

dNem

T/qeeFB

ee

0

3

1 e

q0≈0.5GeV Tmax≈0.17GeV , q0≈1.5GeV Tmax=0.5GeV

Thermal rate:

qq

int-mass eecontinuum emission a1→ ee , qq→eeQGP radiation?

Page 4: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

2.) Chiral Symmetry in QCD: Vacuum

2

4

1aq Gq)m̂Agi(q QCDL SU(2)L × SU(2)R

invariant (mu,d ≈ 0)

Spontaneous Breaking: strong qq attraction Bose Condensate fills QCD vacuum!

0 LRRL qqqqqq >

>

>

>qLqR

qL-qR

-[cf. Superconductor: ‹ee›≠0 Magnet ‹M›≠0 , … ]

-

Profound Consequences:• energy gap: ↔ mass generation!

• massless Goldstone bosons 0,±

• “chiral partners” split, M≈0.5GeV:

qqm*qqq 2

JP=0± 1± 1/2±

Page 5: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

3.) Electromagnetic Emission Rates

Tiqx jxjexdiqΠ )0()()( emem

4em E.M. Correlation Function:

e+

e-

γ

)T(fqd

dR Bee 24

)T(fqd

dRq B

30

Im Πem(M,q)

Im Πem(q0=q)

= O(1)= O(1)

= O(= O(ααs s ))

also: e.m susceptibility (charge fluct.): χ = Πem(q0=0,q→0)

In URHICs:• source strength: dependence on T, B, , medium effects, …• system evolution: V(), T(), B(), transverse expansion, …• nonthermal sources: Drell-Yan, open-charm, hadron decays, … • consistency!

Page 6: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

3.1 E.M. Correlator in Vacuum: (e+e-→hadrons)

)s(Im em)s(DIm

g

mV

,, V

V

22

s,d,u

Sqc

)s()e(N

s

1

122

e+

e-

h1

h2…

s ≥ (1.5GeV)2 : pQCD continuum

s < (1.5GeV)2 :V-meson spectral functs.

q

q_

qq_

Page 7: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

3.2 Low-Mass Dileptons + Chiral Symmetry

Im Πem(M) dominated by -meson → chiral partner: a1(1260)

Vacuum At Tc: Chiral Restoration

pQCD cont.

or: long chiral partner of ≡ “Vector Manifestation” [Harada+Yamawaki ’01]

)Im(Im2AVs

dsf

Page 8: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

3.3 Electromagnetic Probes at SPS: Anno ~2002Low-Mass Dileptons

MediumEffects!

10% QGP

BaryonDensity!

[RR+ Shuryak ’99]

Intermediate-Mass Dileptons

30%QGP

[Turbide,RR+Gale’04]

Direct Photons

Page 9: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

>

>

B*,a1,K1...

N,,K…

Constraints:- B,M→N, - N,A,N→N- QCDSRs, lattice

3.4. Vector Mesons in Medium

D(M,q:B,T)=[M2-m2--B-M ]-1

(a) Hadronic Many-Body Theory

medmed DvD 2

]ff[vD MMMM,B

2

Propagator:

[Chanfray etal, Herrmann etal, RR etal, Koch etal, Weise etal, Post etal, Eletsky etal, Oset etal, …]

(b) Effective Field TheoryHLS with L≡(“VM”); vacuum: loop exp. OO(p/, m/, g)

In-Med.: T-dep. of bare m(0), g via matching to OPE, match<

+ RG-running to on-shell dropping -mass

[Harada, Yamawaki, Sasaki etal]

Page 10: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

[RR+Gale ’99]

–Meson Spectral Functions

• -meson “melts” in hot and dense matter

• baryon densityB more important than temperature

B/0 0 0.1 0.7 2.6

Hot+Dense Matter Hot Meson Gas

[RR+Wambach ’99]

[Eletsky etal ’01]

Model Comparison

[RR+Wambach ’99]

Page 11: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

Dilepton Emission Rates : dRee /dM2 ~ f B Imem

• HTL much enhanced over Born rate

• “matching” of HG and QGP automatic!

• Quark-Hadron Duality ?!

[Braaten,Pisarski +Yuan ’90]

[qq→ee][qq+O(s)-HTL]

--

Page 12: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

3.5 Thermal Photons

Quark-Gluon Plasma

q

gq

But: other contributions in OO(αs)

collinear enhanced Dg=(t-mD2)-1~1/αs

[Aurenche etal ’00, Arnold,Moore+Yaffe ’01]

Bremsstrahlung Pair-ann.+scatt. + ladder resummation (LPM)

“Naïve” LO: q + q (g) → g (q) + γ

[Kapusta,Lichard+Seibert ’91, … , Turbide,RR+Gale’04]

Hot and Dense Hadron Gas

γ

a1,

Im Πem(q0=q) ~ Im Dvec(q0=q)

Low energy: vector dominance

High energy: meson exchange

Emission Rates

In-med QGP ≈ total HG ! to be understood…

Page 13: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

4.1 Direct Photon Spectra: WA98 at SPSHydrodynamics: QGP + HG

[Huovinen,Ruuskanen+Räsänen ’02]

• T0≈260MeV, QGP-dominated

• still true if pp→X included

[Turbide,RR+Gale’04]Expanding Fireball + pQCD

• pQCD+Cronin at qt >1.5GeV T0=205MeV suff., HG-dom.

Page 14: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

4.1.2 WA98 “Low-qt Anomaly”

[Turbide,RR+Gale’04]

Expanding Fireball Model

• current HG rate much below• 30% longer FB 30% increase

Include→ S-wave

• slight improvement• in-medium “” or ?!

Page 15: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

Lower pt-cut

• enhancement increases (well) above theory

4.2 Low-Mass Dileptons Again: New CERES Data

“Standard” pt-cut

• theory: 30%-central scaled by Nch ~ 375/250

• 40% longer lifetime insufficient

Page 16: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

4.2.2 Attempts at the Low-pt Anomaly II:Source Parameterization

→ LO-pQCD (QGP) emission rates (“quark-hadron duality”), space-time volume free parameter [Gallmeister+Kämpfer ’05]

• 2 sources required (shape!): T1≈170MeV + T2≈120MeV

• shapes ok, but: very large VFB∙ FB (unrealistic …)

CERES/NA45 ’00 prelim

Page 17: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

4.2.3 Attempts III:Disoriented Chiral Condensate

→ at Tc, condense in “misaligned” vacuum: ‹› ≠ 0 , annihilate thermal ’s on DCC [Kluger,Koch,Randrup+Wang ’98]

CERES/NA45acceptance with pt>60MeV

• DCC contribution ≈ Dalitz decay (much too small)

Page 18: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

4.2.4 Attempts IV: QGP-like Emission→ employ QGP-HTL rate in hadronic phase (just. at high mass)

• enhancement above almost ok ↔ NA50• low mass?! Theoretically not justified …

Page 19: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

4.3 Low-Mass Dileptons at SIS / BEVALAC

Transport Calculation [Shekhter,Fuchs etal ’03]

• Extended VDM pp→pp• “standard” calculation factor 2-3 below data• improvement due to decoherence in-medium • “optimal” values for in-med. coll. broadening

MeVcollcoll 200

consistent with [Bratkovskaya etal ’98]

Page 20: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

[RR ’01]

• low mass: thermal dominant• int. mass: cc e+X , rescatt.? e-X

-

[Averbeck ‘01]

5.) Perspectives for RHIC I: Dileptons

• Medium effects sensitive to B,tot=B+Bbar !

Page 21: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

RHIC II: Bound States in the sQGP

→ based on finite-T lattice potentials approach to “zero-binding line” ~ stable-mass-resonance

[Shuryak,Zahed, Brown, …]

• factor 2 enhancement over pQCD rate!?

Dilepton Radiationratio to pert. qq rate

Mee/mq

_

[Casalderrey+Shuryak’04]

Page 22: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

6.) Conclusions

• Thermal E.M. Radiation in QCD: em(q0,q,B,T)

- low mass: importance of baryon effects - chiral restoration ↔ -a1 degeneracy ( a1

± → ± - thermal photons • extrapolations into phase transition region in-med HG and QGP shine equally bright lattice calculations? deeper reason?

• phenomenology for URHIC’s ok until 2002; ’03/’04: low-pt anomalies in central Pb-Pb, new medium effects??

• much excitement ahead: NA60, HADES, PHENIX, ALICE,…

… and theory!

Page 23: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

Trento ECT* Workshop on

Electromagnetic Probes in Heavy-Ion Collisions

June 2-12, 2005

P. Braun-Munzinger, C. Gale+ R. Rapp (coordinator)

Page 24: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

Additional Slides

Page 25: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

(ii) Vector Mesons at RHIC

baryon effects important even at B,net=0 :sensitive to B,tot=+B , more robust ↔ OZI -

e+e- Emission Rates: dRee/dM ~ f B Imem

Quark-Hadron Duality ?!

in-med HG ≈ in-med QGP !

[qq→ee][qq+O(s)]

--

Page 26: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

4.3 Lattice Studies of Medium Effects

)2/sinh(

))2/1(cosh(),(Im),(

0

00

00 Tq

TqTqdqT

calculatedon lattice

more stable than below Tc?! (but: quenched)

MEM

1-

0-

extracted

[Laermann, Karsch ’04]

Page 27: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

4.3.2 Comparison of Hadronic Models to LGT

)2/sinh(

))2/1(cosh(),(Im),(

0

00

00 Tq

TqTqdqT

calculate

integrate

More direct!

Proof of principle, not yet meaningful (need unquenched)

Page 28: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

2.3.3 Baryonic Contributions

• use in-medium–spectral funct:

• constrained by nucl. -absorption:

)qq(DImg

mIm med 02

4

em

>

>

B*,a1,K1...

N,,K…

)qq(ImqA

)q(

N

absA 0

0

0 4em

N → N,

N →

NA

-ex

[Urban,Buballa,RR+Wambach ’98]

Page 29: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

2.3.4 HG Emission Rates: Summary

B=220MeV

[Turbide,RR+Gale ’04]

• t-channel (very) important at high energy

• formfactor suppression (2-4)

• strangeness significant

• baryons at low energy

Page 30: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

5.1 Towards a Chiral + Resonance SchemeOptions for resonance implementation:(i) generate dynamically from pion cloud [Lutz et al ‘03, …]

(ii) genuine resonances on quark level → representations of chiral group [DeTar+Kunihiro ‘89, Jido etal ’00 ,…]

e.g.

N+

N(1535)-

a1 N(1520)-

N(1900)+ (1700)-

(?) (1920)+

S

P

S

S SS

P SS (a1)S

Importance of baryon spectroscopyto identify relevant decay modes!

2

3S

2

1S

Page 31: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

5.2 Current Status of a1(1260)

>

> >

>

N(1520)…

,N(1900)…

a1 + + . . .

Exp: - HADES (A): a1→(+-) - URHICs (AA): a1→

)DImg

mDIm

g

m(

s

dsf a

a

a1

1

1

2

4

2

42

Page 32: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

7.2 Perspectives on Photon Data at RHIC

• large “pre-equilibrium” yield from parton cascade (no LPM)• thermal yields ~ consistent• QGP undersat. small effect

Predictions for Central Au-Au PHENIX Data

• consistent with pQCD only• disfavors parton cascade• not sensitive to thermal yet

Page 33: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

2.2.4 In-Medium Baryons: (1232)

long history in nuclear physics ! ( A , A )

e.g. nuclear photoabsorption: M, up by 20MeV

little attention at finite temperature

-Propagator at finite B and T [van Hees + RR ’04]

in-medium vertex corrections incl. g’-cloud, (“induced interaction”)(1+ f - f N) thermal -gas

→N(1440), N(1520), (1600)

+ + + + ...

>

>>

> >>

>> NN-1 N-1

Page 34: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

Rho Spectral Function at Future GSI

• high-density effects most prominent at low mass

Page 35: Electromagnetic Probes of  Medium Effects in Heavy-Ion Collisions

2.1 Light Hadrons: Vacuum

Tiqx jxjexdiq )0()()( 4

Correlation Function:Timelike (q2>0) : Im q0,q) → physical excitations

)Im(Im2AVs

dsf

)(Im)()(Im 22

sDg

ms

=1± (qq)

Chiral breaking: Q2 < (1.5-2 GeV)2 , J± < 5/2 (?!)

(qqq)


Recommended