+ All Categories
Home > Documents > Hard Probes in Heavy Ion Collisions at the LHC”

Hard Probes in Heavy Ion Collisions at the LHC”

Date post: 05-Jan-2016
Category:
Upload: yan
View: 19 times
Download: 0 times
Share this document with a friend
Description:
Hard Probes in Heavy Ion Collisions at the LHC”. How to Determine Medium Modifications by Comparing p+p , p+A , and A+A. Ivan Vitev Iowa State University, Ames, IA 50011. “Hard Probes in Heavy Ion Collisions at the LHC” CERN, 7-11 October 2002. Proposed Medium Induced Modifications - PowerPoint PPT Presentation
20
Ivan Vitev Hard Probes in Heavy Ion Collisions at the LHC” How to Determine Medium Modifications by Comparing p+p, p+A, and A+A Ivan Vitev Iowa State University, Ames, IA 50011 “Hard Probes in Heavy Ion Collisions at the LHC” CERN, 7-11 October 2002
Transcript
Page 1: Hard Probes in Heavy Ion Collisions at the LHC”

Ivan Vitev

Hard Probes in Heavy Ion Collisions at the LHC”

How to Determine Medium Modifications by Comparing

p+p, p+A, and A+A

Ivan Vitev Iowa State University, Ames, IA 50011

“Hard Probes in Heavy Ion Collisions at the LHC” CERN, 7-11 October 2002

Page 2: Hard Probes in Heavy Ion Collisions at the LHC”

Ivan Vitev

Outline of the Talk

Proposed Medium Induced Modifications and their Relation to High-pT

Observables: Nuclear shadowing, Cronin effect, and jet quenching Modification of the fragmentation functions Nuclear modification ratio RAA

Broadening of the jet cone Azimuthal correlations and elliptic flow v2 A systematic approach to nuclear effects in hadron production: 0 production in d+Au (Cronin effect and shadowing) 0 production in Au+Au (same + jet energy loss) Extracting the observable effect of E(Ejet)

Page 3: Hard Probes in Heavy Ion Collisions at the LHC”

Ivan Vitev

Hadrons

T~100MeV

K

B

Confinement

Mixed

T~Tc~170MeV

Experimental Probes of Dense Matter in A+A

g

QCDPlasma

T>300MeV

Jets

q

g

cc

Page 4: Hard Probes in Heavy Ion Collisions at the LHC”

Ivan Vitev

A Note on Factorization

1. Hadron-hadron collisions: - Leading twist is exact. - Twist 4 is broken. phenomenological observation: formal proof:

e.g. Collins, Soper, and Sterman, Nucl.Phys. B 261, (1985)

Doria, Frankel, and Taylor (1980) Non-cancellation of IR in Drell-Yan at

4( )/O Q*e.g. Qiu and Sterman, Nucl.Phys. B 353, (1991)At few GeV have few % correction

2. Nucleus-nucleus collisions: - Nuclear enhanced power corrections

Qiu and Guo, Phys.Lett. B 532, (2001)

( )2

21/ 3 1

22

/ 3 2 1

* 1, 0.01 , ( , )

i

i FA

s C

Ge

Q

C

B

V C

A

C

l

l

ap*

=

+ <

³ »22 1.5

critQ GeV=

0 2 4

1

0.5

Q = pT

Q = 2pT

Page 5: Hard Probes in Heavy Ion Collisions at the LHC”

Ivan Vitev

Jets: RHIC Today and LHC in the Near Future are Unique in their Capabilities

to Study Hard Processes in A+A

pT=2-4 GeV

• Huge ~5 suppression of the high-pT 0

• Huge azimuthal asymmetry V2(pT)~15% at high-pT • Indications of jet structure?

Preliminary

Preliminary

Binary scalingPreliminary

Jet Quenching

CroninEffect

Page 6: Hard Probes in Heavy Ion Collisions at the LHC”

Ivan Vitev

Nuclear Effects on Hadron Production

(From the Point of View of Relativistic

Heavy Ions) Nuclear shadowing, antishadowing, EMC effect

PxP

X

Shadowing:Partonic model A.Mueller and J.Qiu

Generalized vector dominance model

Practical approach: EKS’98 parameterizationK.Eskola,V.Kolhinen,and C.Salgado,Eur.Phys.J. C9 (1999) /

2/

2 2/( , ) ( , ) ( , )a paA Aaf x Q x Q f x QS

EMC effect:Nuclear swelling E.PredazziQuark cluster models H.Pirner and J.Vary

Antishadowing: Constructive interference J.Qiu, S.BrodskyPartonic model J.Qiu

Fermi motion:Gain from the motion inside the nucleus

Eikonal dipole approach: B.KopeliovichLeading twist approach: L.Frankfurt, M.Strikman

Au

Page 7: Hard Probes in Heavy Ion Collisions at the LHC”

Ivan Vitev

The Cronin EffectFaster than linear scaling of the p+A cross section with the number of binary collisions

p Ab

Glauber model T, = (p )collp A p pd d N

Models of the Cronin effect are based on multiple initial state scattering – helps to gain pT at moderate pT (andcompensates at small pT)

• Hadronic scattering

• Partonic scattering

• Gaussian approximation

• Deviations in the case of few collisions

M.Gyulassy, P.Levai, and I.V., Phys.Rev. D66, (2002)

1444444444444444442444444444444444443

B. Kopeliovich et al., Phys.Rev.Lett. 88, (2002)

Y. Zhang et al., Phys.Rev. C65, (2002)

Compare p+p and p+A. But both ~ A1/3

Page 8: Hard Probes in Heavy Ion Collisions at the LHC”

Ivan Vitev

Gluon Radiation and the Landau-Pomeranchuk-Migdal (LPM) Effect

• In QED the suppression of the radiative cross section relative to the Bethe-Heitler result.

vs

.

/

/

dI dw

d

w

cow tI d ns

:

:(small frequencies)

• In QCD a) Gyulassy-Wang: multiple interactions, arbitrary medium, the transverse gluon dynamics is neglected

b) Baier et al. (BDMPS): thick medium, large number of scatterings, exclusively the LPM regime

c) Zakharov; Wiedemann: thick medium, path integral formalism

d) Gyulassy et al. (GLV): thin media with small to moderate number of scatterings. Low order correlations (few scattering centers) dominate.

22

log4

sREC LLa m

l l- =D

22logsR A

R

CC E

CE q

a

p ml=- D

2 2

2

2log ...

4sR L

EC E

L

a ml m

æ ö÷ç= + ÷ç ÷ççè ø- D

÷M.Gyulassy, P.Levai,and I.V., Nucl.Phys. B 583 (2001); Phys.Rev.Lett. 85 (2000).

M.Gyulassy and X.N.Wang,Nucl. Phys. B 420 (1994).

B.G.Zhakharov, JETP Lett. 63, (1996);U.A.Wiedemann, Nucl.Phys. B 588, (2000).

R.Baier,Yu.Dokshitzer,A.Mueller,S.Peigne, and D.Schiff, Nucl.Phys. B 483, (1997); ibid 484 (1997).

Page 9: Hard Probes in Heavy Ion Collisions at the LHC”

Ivan Vitev

Modification of the Fragmentation Functions

C.Salgado and U.Wiedemann, Phys.Rev.Lett. 89, (2002)

E.Wang and X.-N.Wang, hep-ph/0202105

L2

Large # of momentum transfers and

Saddle point approximation to the integrals

/ /

12 2

0

1( , ) ,

1 1( )

h q h q

xQ PD QDx de e

e eæ ö÷ç= ÷ç ÷çè ø- -ò

After factoring the leading x6 behavior: see the scaling of the modification

Hot matter: reduces to GLV

1( )

1 1a b a bz zz

zD D® ®

æ ö÷ç= ÷ç ÷çèD D ø- -% %

2 22 1 1

6ln , A

A

Asg

c N

B

B A

x

xz x

xN Q

CC

m Ra» =D %

Find quadratic dependence 2Lµ

15130 RHIC Cold Nuclear( ) ( 20) ( )GeVr r-=

Page 10: Hard Probes in Heavy Ion Collisions at the LHC”

Ivan Vitev

Nuclear Modification Factor RAB(pT)

2

/2 21 2/ /

2 23

( , ) ( , )

( ) (

( , )( , )

)a aN

ch ccc

c c

ab cd

LO b babc

ad

A b

b

a A

h

dd

K dx dxd kt

f x Q fD z Qz

d P p

d k

x Q

dE g k g k

d

z

p

ze e

p

s s

*

®

*

´

= ´

ò

å ò

P.Levai et al.,Nucl.Phys. A 698, (2002).

R.Baier et al.,JHEP 0109 (2001).

( ) (1 )P de e» -

Static plasma limit

Opacity 3.5L

cl

= »

Fixed power law n=4

Studied the sensitivity to the cut-offrather than ̂q

1.Further studies2.Convert to the same density measure

Page 11: Hard Probes in Heavy Ion Collisions at the LHC”

Ivan Vitev

( )coneR q

( ) conec L q

VertexMedium

Broadening of the Jet Cone

Physical Picture

R.Baier et al., Phys.Rev. C60, (2002)

All calculations agree on thedominance of gluon broadening

1/ 2

( ) 4 (1/ 4) 1( )

(( ) )5 ( )conecone

outsidetota

RE

E c Ll qpq

qD G= »

D

More quantitative estimatesare likely needed!

C.Salgado and U.Wiedemann,work in progress (?)

Page 12: Hard Probes in Heavy Ion Collisions at the LHC”

Ivan Vitev

STAR June 2002 ch reacdN (p , )f y^ -

Initial spatial anisotropy

pT>2 GeV

Final momentum anisotropy

x

y

px

py

Page 13: Hard Probes in Heavy Ion Collisions at the LHC”

Ivan Vitev

X.N.Wang, Phys.Rev. C 63, (2001).

M.Gyulassy, I.V., and X.N.Wang,Phys.Rev.Lett. 86, (2001).

Asymmetric Jet Energy Loss

Radiative

Collisional

Spatial anisotropytranslates in momentum

anisotropy

• Typically off by a factor of 2• Decreases with pT

Dedicated simulations at LHC:I.Lokhtin et al.,Eur.Phys.J. C 16, (2000).

Radiative energy loss dominatesObservable effect at LHC: 100 , | | 2.5

TE GeV h> £

Page 14: Hard Probes in Heavy Ion Collisions at the LHC”

Ivan Vitev

Baseline and .(Calibrating the Jet Source for

Tomography)

p p+ p p+

Note:• Significant hardening of hadron spectra with • Local dependence of the slopeof the distributions on • Shape is most important for thekinematic effects

s

Tp

K.Eskola and H.Honkanen,hep-ph/0205048

See also:

Page 15: Hard Probes in Heavy Ion Collisions at the LHC”

Ivan Vitev

I.V. and M. Gyulassy, hep-ph/0209161

Probing the Transport Coefficient in Cold Nuclear Matter

For comparison from Drell-Yan data ~ 20.056 0.036 /GeV fm±

F.Arleo, Phys.Lett. B532, 231 (2002)

The interplay of two nuclear effects:

• Shadowing/antishadowing/EMC EKS’98 parameterization

• Multiple initial scattering in thin nuclear medium

Find:

22 0.05/ /GeV fm

2

/2 21 2/ /

2 23

( , ) ( , )

( ) (

( , )( , )

)a aN

ch ccc

c c

ab cd

LO b babc

ad

A b

b

a A

h

dd

K dx dxd kt

f x Q fD z Qz

d P p

d k

x Q

dE g k g k

d

z

p

ze e

p

s s

*

®

*

´

= ´

ò

å ò

In hot nuclear matter (QGP) strongfinal state energy loss is included

Page 16: Hard Probes in Heavy Ion Collisions at the LHC”

Ivan Vitev

Predicted (Y=0) Shadowing+Cronin in d+Au and Au+Au

at 17, 200, 5500 AGeV

SPS

RHIC

LHC

d+Au:250%

Au+Au:400%

d+Au:35%

Au+Au:65%

d+Au:4%

Au+Au:10%

1. At SPS the Cronin effect is large:does leave room for small suppressiondue to the non-Abelian energy loss.

2. At RHIC the Cronin effect is comparable (~30% larger) to estimatesby X.N.Wang and B.Kopeliovich. In A+AA.Accardi – 1.4 (2.1).

3. At LHC shadowing/antishadowing dominate. Cronin effect is reduced dueto the much harder spectra.

Page 17: Hard Probes in Heavy Ion Collisions at the LHC”

Ivan Vitev

Predicted Cronin Effect+Shadowing at Forward and Backward

Rapidities

• Note the scales: if Cronin effect is detectable (20%-40%) at Y=0then it should be detectable at Y=3

• For pT<2 GeV: suppressioncomparable to standard Croninmeasurements. For pT>2 GeV –a much broader enhancement

Qs

A.Dumitru and J.Jalilian-Marian,Phys.Rev.Lett. 89, (2002)

with Qs2=6.6 GeV2

• Strong suppression below Qs

and RAB=1 above

Compared

I.V. and M.Gyulassy

The contribution due to shadowing in the backward Y=-3 region is 100%

The contribution due to shadowing in the forward Y=+3 region is 25%

Strong Cronin effect

Page 18: Hard Probes in Heavy Ion Collisions at the LHC”

Ivan Vitev

1. At SPSSPS Cronin

effect dominates. Even with energy

loss exhibit noticeable

enhancement

2. Cronin effect, shadowing, and

jet quenching conspire to give flat

suppression pattern out to the

highest pT at RHIC RHIC

3. At LHC LHC the

nuclear modification is completely

dominated by energy loss. Predicts

below quenching, strong

dependence

The Center of Mass Energy Systematics of Mono-jet Tomography

I.V. and M.Gyulassy, hep-ph/0209161

17NNs GeV

0

200NNs GeV

5500NNs GeV

.0.2 0.3( ) /part bA inTA Np NR

.partN Tp

Feedback!

Page 19: Hard Probes in Heavy Ion Collisions at the LHC”

Ivan Vitev

An Approach to Extracting the Effect of Energy Loss

May be ~AA T

pR ED:

Baier et al. JHEP 0109033 (2001)

642

Scale extended to small pT

Authors cla

)

im:

(T

TQ E

cp

pxp

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷è-

ø:

Very different behavior!

2

( )initial stateA TA dAR p R 22 22( , ) ( , ) , ( ) ( )A Ax Q x Q kS S g g k

• From d+A and A+A isolate the contribution to

• Isolate initial state effects from the measurements of p+p and d+A(p+A): Cronin effect and shadowing/antishadowing/EMC effect

• Estimate initial state effects in A+A: 1. Naively:

2. In fact: ( ) 1 ( 1), 1.8 2 2.5initial stateAA dAT RpR

( )TAAR pE

and

Page 20: Hard Probes in Heavy Ion Collisions at the LHC”

Ivan Vitev

A wealth of experimental observables related to medium induced modifications were shown to be experimentally accessible at RHIC and LHC.

Their correlated study is able to give a highly constrained picture of the properties of the quark-gluon plasma (QGP) created in heavy-ion reactions.

The most clear cut separation is between initial and final state interactions.

Conclusions

s

Cold A SPS RHIC LHC

31g fm 35 10g fm 330 55g fm 3130 275g fm

Tomography results


Recommended