+ All Categories
Home > Documents > Electromagnetic Probes in Heavy-Ion Collisions IIhees/dm12/dm12-2.pdf · Electromagnetic Probes in...

Electromagnetic Probes in Heavy-Ion Collisions IIhees/dm12/dm12-2.pdf · Electromagnetic Probes in...

Date post: 16-Aug-2019
Category:
Upload: duongnhu
View: 213 times
Download: 0 times
Share this document with a friend
33
Electromagnetic Probes in Heavy-Ion Collisions II Hendrik van Hees Frankfurt Institute of Advanced Studies (FIAS) September 5, 2012 Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 1 / 33
Transcript

Electromagnetic Probesin Heavy-Ion Collisions II

Hendrik van Hees

Frankfurt Institute of Advanced Studies (FIAS)

September 5, 2012

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 1 / 33

Outline

1 Electromagnetic probes and vector mesonsRelation to chiral symmetry

2 Elementary vacuum cross sections: hadrons→ `+`−

chiral symmetry constraintsElectrodynamics of pions and ρ mesons (VMD model)Dalitz decays of hadron resonances

3 Dileptons in pp and pA collisions at SIS energiesThe Transport Model GiBUUBaryon-resonance model at SIS energiesDileptons in pp and pNb reactions at HADES

4 Conclusions and Outlook

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 2 / 33

Why Electromagnetic Probes?

γ, `±: only e. m.interactionswhole matter evolution

ρ/ω γ∗

a1

e+

e−π, . . .

0 1 2 3 4 5

mass [GeV/c2]

dN

ee / d

ydm

πo,η Dalitz-decays

ρ,ω

Φ

J/Ψ

Ψl

Drell-Yan

DD

Low- Intermediate- High-Mass Region> 10 fm > 1 fm < 0.1 fm

Fig. by A. Drees (from [RW00])

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 3 / 33

Vector Mesons and electromagnetic Probes

photon and dilepton thermal emission rates given by sameelectromagnetic-current-correlation function (Jµ = ∑f Qf ψf γµψf )

Π<µν(q) =

∫d4x exp(iq · x)

⟨Jµ(0)Jν(x)

⟩T = −2nB(q0) Im Π(ret)

µν (q)

q0dNγ

d4xd3~q= −αem

2π2 gµν Im Π(ret)µν (q)

∣∣∣q0=|~q|

fB(p0)

dNe+e−

d4xd4k= −gµν

α2

3q2π3 Im Π(ret)µν (q)

∣∣∣q2=M2

e+e−fB(p0)

Caveat: NOT manifestly Lorentz covariant⇔ heat-bath rest frame!

to lowest order in α: 4παΠµν ' Σ(γ)µν

derivable from underlying thermodynamic potential, Ω!

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 4 / 33

Vector Mesons and chiral symmetry

vector and axial-vector mesons↔ respective current correlators

ΠµνV/A(p) :=

∫d4x exp(ipx)

⟨JνV/A(0)J

µV/A(x)

⟩ret

Ward-Takahashi Identities of χ symmetry⇒Weinberg-sum rules

f 2π = −

∫ ∞

0

dp20

πp20[Im ΠV(p0, 0)− Im ΠA(p0, 0)]

spectral functions of vector (e.g. ρ) and axial vector (e.g. a1) directlyrelated to order parameter of chiral symmetry!

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 5 / 33

Vector Mesons and chiral symmetry

0 1 2 3

s [GeV2]

0

0.02

0.04

0.06

0.08

-Im

ΠV

,A/(

πs)

[d

im.-

less

] V [τ −> 2nπ ντ]

A [τ −> (2n+1)π ντ]

ρ(770) + cont.

a1(1260) + cont.

from [Rap03]

Mass

Spec

tral

F

unct

ion

"a1"

"ρ"

pert. QCD

Dropping Masses?

Mass

Sp

ectr

al

Fu

nct

ion

"a1"

"ρ"pert. QCD

Melting Resonances?

from [Rap05]

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 6 / 33

Chiral-symmetry constraints

different realizations of chiral symmetryequivalent only on shell (“low-energy theorems”)model-independent conclusions only in low-temperature/density limit(chiral perturbation theory) or from lattice-QCD calculationsQCD sum rules (see Lect. I):allow for dropping-mass or melting-resonance scenariouse phenomenological hadronic many-body theory (HMBT) to assessmedium modifications of vector mesons

build models with hadrons as effective degrees of freedombased on (chiral) symmetriesconstrained by data on cross sections, branching ratios,... in vacuumin-medium properties assessed by many-body (thermal) field theory

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 7 / 33

Example: vector-meson dominance model

early model for electromagnetic interaction of charged pions[Sak60, KLZ67, GS68, Her92, Hee00]

QED like U(1)-gauge model with massive vector meson for ρ0 and π±

Stuckelberg: introduce auxiliary scalar field for free vector mesons:

Lρ = −14

VµνVµν +12

m2VµVµ +12(∂µ ϕ)(∂µ ϕ) + mϕ∂µVµ

gauge invariant under local transformation

δVµ(x) = ∂µχ(x), δϕ = mχ(x)

usual way of gauge fixing using gauge condition

∂µVµ = −ξmϕ

effective Lagrangian of free ρ meson, Stuckelberg and FP ghosts

Lρ,gf = −14

VµνVµν +m2

VµVµ − 12ξ

(∂µVµ)2 +12(∂µ ϕ)(∂µ ϕ)− ξm2

2ϕ2

+ (∂µη∗)(∂µη)− ξm2η∗η

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 8 / 33

Example: vector-meson dominance model

so far: free ρ meson and free ghostsghosts only relevant for ideal gas thermodynamics

Vµ: four bosonic field degrees(3 transverse with mass m, 1 longitudial with mass

√ξm)

ϕ: 1 bosonic Stuckelberg ghost with mass√

ξmη∗, η: 2 pseudofermionic Faddeev Popov fields with mass

√ξm

in partition sum: 3 bosons with mass m + 2 bosons with mass√

ξm − 2 FPghosts with mass

√ξm⇒ effectively three bosons with mass m

partition sum independent of gauge parameter, ξ!ξ → ∞: “unitary gauge”→ only three bosonic ρ-degrees of freedom!

Coupling to pions: obey gauge invariance! (like scalar QED)

Lπ = (Dµπ)∗(Dµπ)−m2π |π|2 −

λ

8|π|4

Dµ = ∂µ + igVµ; g: ρππ coupling

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 9 / 33

Example: vector-meson dominance model

add photons: Dµ = ∂µ + igVµ + ieAµ

Lagrangian for photons: usual gauge fixed QEDadditional direct ργ mixing [KLZ67]

Lργ = − e2gργ

VµνAµν

classical field equations: ⇒ electromagnetic current

jνem = ∂µAµν = ie(

1− ggργ

)π←→D νπ∗ +

egργ

m2Vµ +e2

g2ργ

∂µAµν

for gργ = g: jνem = eg m2Vν +O(e2): ⇒ “vector-meson dominance”

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 10 / 33

Example: vector-meson dominance model

calculate ρ selfenegy

transversality from gauge invariance:

Σµνρ (q) =

(q2gµν − qµqν

)Σ(q2)

electromagnetic form factor of pions

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 11 / 33

Example: vector-meson dominance model

fit to observables: em. form factor of π

best fit: g = 5.683, gργ = 5.171, mρ = 765 MeV/c2

strict VMD: g = gργ = 5.38, mρ = 770 MeV/c2

data: [B+85]

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 12 / 33

Example: vector-meson dominance model

ππ → ππ phase shift in I = 1 channel

δ11 = arccos

Re Gρ

|Gρ|

data: [FP77]

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 13 / 33

Example: vector-meson dominance model

ππ → ππ total cross section

π+ π−

ρ0

π−π+

+

π+

π+ ρ0

π−

π−data: [FP77]

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 14 / 33

Dalitz decays

V

γ∗

π

ℓ− ℓ+

γ∗

ℓ− ℓ+

P, S

γ

γ∗

ℓ−

γ

R

ℓ+

Dalitz decay:1 particle→ 3 particlesV: ω → π + γ∗ → π + `+ + `−

P, S:π, η → γ + γ∗ → γ + `+ + `−

R: Baryon resonances∆, N∗ → N + V → N + γ∗ →N + `+ + `−

vector-meson dominance

hadronic

γ∗

hadronic

γ∗

V

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 15 / 33

The GiBUU Model

Boltzmann-Uehling-Uhlenbeck (BUU) framework for hadronic transportreaction types: pA, πA, γA, eA, νA, AAopen-source modular Fortran 95/2003 codeversion control via Subversionpublicly available realeases: http://gibuu.physik.uni-giessen.deReview on hadronic transport (GiBUU): [BGG+12]

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 16 / 33

The Boltzmann-Uehling-Uhlenbeck Equation

time evolution of phase-space distribution functions

[∂t + (~∇pHi) · ~∇x − (~∇xHi) · ~∇p]fi(t,~x,~p) = Icoll[f1, . . . , fi, . . . , fj]

Hamiltonian Hi

selfconsistent hadronic mean fields, Coulomb potential,“off-shell potential”

collision term Icoll

two- and three-body decays/collisionsmultiple coupled-channel problemresonances described with relativistic Breit-Wigner distribution

A(x, p) = − 1π

Im Π(p2 −M2 − Re Π)2 + (Im Π)2 ; Im Π = −

√p2Γ

off-shell propagation: test particles with off-shell potential

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 17 / 33

Resonance Model

reactions dominated by resonance scattering: ab→ R→ cdBreit-Wigner cross-section formula

σab→R→cd =2sR + 1

(2sa + 1)(2sb + 1)4π

p2lab

sΓab→RΓR→cd

(s−m2R)

2 + sΓ2tot

applicable for low-energy nuclear reactions Ekin . 1.1 GeVexample: σπ−p→π−p [Teis (PhD thesis 1996), data: Baldini et al, Landolt-Bornstein 12 (1987)]

0.0 0.2 0.4 0.6 0.8 1.0 1.20

10

20

30

40

50

60

70

80

Daten

total

∆(1232)

N(1440)

N(1535)

plab (GeV/c)

σ (

mb

)

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 18 / 33

Resonance Model

further cross sections

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 19 / 33

Extension to HADES energies

[WHM12]

keep same resonances (parameters from Manley analysis)

production channels in Teis: NN → N∆, NN → NN∗, N∆∗, NN → ∆∆extension to NN → ∆N∗, ∆∆∗, NN → NNπ,NN → NNρ, NNω, NNπω, NNφ,NN → BYK (B = N, ∆, Y = Λ, Σ)

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 20 / 33

Extension to HADES energies

good description of total pp, pn (inelastic) cross section

dilepton sourcesDalitz decays: π0, η → γ`+`−; ω → π0`+`−, ∆→ N`+`−

ρ, ω, φ→ `+`−: invariant mass `+`− spectra⇒spectral properties of vector mesonsfor details, see [WHM12]

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 21 / 33

p p at HADES (Ekin = 3.5 GeV)

10-3

10-2

10-1

100

101

0 0.2 0.4 0.6 0.8 1

/dm

ee [

µb/G

eV

]

dilepton mass mee [GeV]

p + p at 3.5 GeV

dataGiBUU total

ρ → e+e

-

ω → e+e

-

φ → e+e

-

ω → π0e

+e

-

π0 → e

+e

η → e+e

∆ → Ne+e

-

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 22 / 33

p p at HADES (Ekin = 3.5 GeV)

10-3

10-2

10-1

100

101

0 0.2 0.4 0.6 0.8 1

/dp

T [

µb/G

eV

]

0 0.2 0.4 0.6 0.8 1

transverse momentum pT [GeV]

0 0.2 0.4 0.6 0.8 1

10-3

10-2

10-1

100

101

0 0.2 0.4 0.6 0.8 1

/dp

T [

µb/G

eV

]

dataGiBUU total

ρ → e+e

-

ω → e+e

-

φ → e+e

-

ω → π0e

+e

-

π0 → e

+e

η → e+e

∆ → Ne+e

-

10-4

10-3

10-2

10-1

100

0 0.5 1 1.5 2

/dy [

µb]

m < 150 MeV

0 0.5 1 1.5 2

rapidity y

150 MeV < m < 470 MeV

0 0.5 1 1.5 2

470 MeV < m < 700 MeV

0 0.5 1 1.5 2

10-4

10-3

10-2

10-1

100

/dy [

µb]

700 MeV < m

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 23 / 33

“ρ meson” in pp

production through hadron resonancesNN → NR→ NNρ, NN → N∆→ NNπρ

0

200

400

600

800

1000

1200

1400

1600

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

/dm

b/G

eV

]

m [GeV]

ρ totalD13(1520)S11(1535)S11(1650)F15(1680)P13(1720)S31(1620)D33(1700)F35(1905)

Pythia

10-3

10-2

10-1

100

0 0.2 0.4 0.6 0.8 1

/dm

ee [

µb

/Ge

V]

dilepton mass mee [GeV]

ρ → e+e

-

D13(1520)S11(1535)S11(1650)F15(1680)P13(1720)

all Res.Pythia

S31(1620)D33(1700)F35(1905)

“ρ”-line shape “modified” already in elementary hadronic reactionsdue to production mechanism via resonances

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 24 / 33

p Nb at HADES (3.5 GeV)

medium effects built in transport modelbinding effects, Fermi smearing, Pauli blockingfinal-state interactionsproduction from secondary collisions

sensitivity on medium effects of vector-meson spectral functions?p + Nb at 3.5 GeV

10-1

100

0.55 0.6 0.65 0.7 0.75 0.8 0.85

/dm

ee [

µb

/Ge

V]

prelim. datavacCB

CB+shiftshift

0.55 0.6 0.65 0.7 0.75 0.8 0.85

dilepton mass mee [GeV]

ρ

0.55 0.6 0.65 0.7 0.75 0.8 0.85

ω

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 25 / 33

Comparison to old DLS data (pp)

HADES data consistent with DLS datachecked by comparing HADES data within DLS acceptance

DLS: p+p

10-3

10-2

10-1

100

/dm

ee [

µb

/Ge

V]

1.04 GeV

dataGiBUU total

ρ → e+e

-

ω → e+e

-

φ → e+e

-

ω → π0e

+e

-

π0 → e

+e

η → e+e

∆ → Ne+e

-

1.27 GeV

10-3

10-2

10-1

100

1.61 GeV

10-3

10-2

10-1

100

0 0.2 0.4 0.6 0.8 1 1.2

/dm

ee [

µb

/Ge

V]

dilepton mass mee [GeV]

1.85 GeV

0 0.2 0.4 0.6 0.8 1 1.2

dilepton mass mee [GeV]

2.09 GeV

0 0.2 0.4 0.6 0.8 1 1.2

10-3

10-2

10-1

100

dilepton mass mee [GeV]

4.88 GeV

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 26 / 33

Comparison to old DLS data (pd)

HADES data consistent with DLS datachecked by comparing HADES data within DLS acceptance

DLS: p+d

10-3

10-2

10-1

100

/dm

ee [

µb

/Ge

V]

1.04 GeV

dataGiBUU total

ρ → e+e

-

ω → e+e

-

φ → e+e

-

ω → π0e

+e

-

π0 → e

+e

η → e+e

∆ → Ne+e

-

pn Brems.1.27 GeV

10-3

10-2

10-1

100

1.61 GeV

10-3

10-2

10-1

100

0 0.2 0.4 0.6 0.8 1 1.2

/dm

ee [

µb

/Ge

V]

dilepton mass mee [GeV]

1.85 GeV

0 0.2 0.4 0.6 0.8 1 1.2

dilepton mass mee [GeV]

2.09 GeV

0 0.2 0.4 0.6 0.8 1 1.2

10-3

10-2

10-1

100

dilepton mass mee [GeV]

4.88 GeV

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 27 / 33

Conclusions and Outlook

dilepton spectra⇔ in-medium em. current correlatoreffective hadronic models for dilepton sources

vector-meson dominance model (VMD)low-mass region 0 ≤ M . 1 GeV: j(had)µ

em ∝ Vµ (V ∈ ρ, ω, φ)direct relation between dilepton signal and VM spectral functionsinteractions with mesons and baryonsmodels constrained by phenomenology in pp, pn, pAmedium modifications predicted by finite-temperature QFT

Elementary reactions at SIS energiesGiBUU for pp, pn with resonance model for all HADES energiespn still a problem?p Nb, AA work in progress

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 28 / 33

Bibliography I

[B+85] L. M. Barkov, et al., Electromagnetic Pion Form Factor in theTimelike Region, Nucl. Phys. B 256 (1985) 365.

[BGG+12] O. Buss, et al., Transport-theoretical Description of NuclearReactions, Phys. Rept. 512 (2012) 1.http://dx.doi.org/10.1016/j.physrep.2011.12.001

[BK84] M. Bando, T. Kugo, Is the ρ Meson a Dynamical Gauge Boson ofHidden Local Symmetry, Phys. Rev. Lett. 54 (1984) 1215.http://link.aps.org/abstract/PRL/v54/p1215

[FP77] C. D. Frogatt, J. L. Petersen, Phase-Shift Analysis of π+π−

Scattering between 1.0 and 1.8 GeV Based on Fixed TransferAnalyticity (II), Nucl. Phys. B 129 (1977) 89.

[GS68] G. J. Gounaris, J. J. Sakurai, Finite-Width Corrections to theVector-Meson-Dominance Prediction for ρ eˆ+ eˆ-, Phys. Rev.Lett. 21 (1968) 244.http://link.aps.org/doi/10.1103/PhysRevLett.21.244

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 29 / 33

Bibliography II

[Hee00] H. van Hees, Renormierung selbstkonsistenter Naherungen in derQuantenfeldtheorie bei endlichen Temperaturen, Ph.D. thesis, TUDarmstadt (2000).http://fias.uni-frankfurt.de/~hees/publ/doc.pdf

[Her92] M. Herrmann, Eigenschaften des ρ-Mesons in dichterKernmaterie, Dissertation, Technische Hochschule Darmstadt,Darmstadt (1992).http://www-lib.kek.jp/cgi-bin/img_index?200038480

[HY03] M. Harada, K. Yamawaki, Hidden local symmetry at loop: A newperspective of composite gauge boson and chiral phase transition,Phys. Rept. 381 (2003) 1.http://dx.doi.org/10.1016/S0370-1573(03)00139-X

[KLZ67] N. M. Kroll, T. D. Lee, B. Zumino, Neutral Vector Mesons and theHadronic Electromagnetic Current, Phys. Rev. 157 (1967) 1376.http://link.aps.org/abstract/PR/v157/i5/p1376

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 30 / 33

Bibliography III

[LSY95] S. H. Lee, C. Song, H. Yabu, Photon - vector meson coupling andvector meson properties at low temperature pion gas, Phys. Lett. B341 (1995) 407.http:

//www.sciencedirect.com/science?_ob=GatewayURL&_origin=

SPIRES&_method=citationSearch&_volkey=03702693%23341%

23407&_version=1&md5=05053a52e85b02fde34213175c490b2a

[Mei88] U. G. Meissner, Low-Energy Hadron Physics from Effective ChiralLagrangians with Vector Mesons, Phys. Rept. 161 (1988) 213.http://dx.doi.org/10.1016/0370-1573(88)90090-7

[Pis95] R. D. Pisarski, Where does the ρ go? Chirally symmetric vectormesons in the quark - gluon plasma, Phys. Rev. D 52 (1995) 3773.http://dx.doi.org/10.1103/PhysRevD.52.R3773

[Rap03] R. Rapp, Dileptons in high-energy heavy-ion collisions, Pramana60 (2003) 675.http://dx.doi.org/10.1007/BF02705167

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 31 / 33

Bibliography IV

[Rap05] R. Rapp, The vector probe in heavy-ion reactions, J. Phys. G 31(2005) S217.http://arxiv.org/abs/nucl-th/0409054

[RW99] R. Rapp, J. Wambach, Low mass dileptons at the CERN-SPS:Evidence for chiral restoration?, Eur. Phys. J. A 6 (1999) 415.http://dx.doi.org/10.1007/s100500050364

[RW00] R. Rapp, J. Wambach, Chiral symmetry restoration and dileptonsin relativistic heavy-ion collisions, Adv. Nucl. Phys. 25 (2000) 1.http://arxiv.org/abs/hep-ph/9909229

[Sak60] J. J. Sakurai, Theory of strong interactions, Ann. Phys. (NY) 11(1960) 1.http://dx.doi.org/10.1016/0003-4916(60)90126-3

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 32 / 33

Bibliography V

[UBW02] M. Urban, M. Buballa, J. Wambach, Temperature dependence of ρand a1 meson masses and mixing of vector and axial-vectorcorrelators, Phys. Rev. Lett. 88 (2002) 042002.http://dx.doi.org/10.1103/PhysRevLett.88.042002

[WHM12] J. Weil, H. van Hees, U. Mosel, Dilepton production inproton-induced reactions at SIS energies with the GiBUUtransport model (2012).http://arxiv.org/abs/arXiv:1203.3557

Hendrik van Hees (FIAS Frankfurt) Em. Probes in HICs II September 5, 2012 33 / 33


Recommended