+ All Categories
Home > Documents > Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2...

Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2...

Date post: 28-Oct-2019
Category:
Upload: others
View: 17 times
Download: 0 times
Share this document with a friend
36
1 2006/Mar/2
Transcript
Page 1: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

1

2006/Mar/2

Page 2: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

2

Noise Margin

Page 3: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

3

VTC of an Inverter

Figure 1.29 Voltage transfer characteristic of an inverter. The VTC is approximated by three straightline segments. Note the four parameters of the VTC (VOH, VOL, VIL, and VIH) and their use in determining the noise margins (NMH and NML).

Figure 1.30 The VTC of an ideal inverter.

NMH=VOHVIH

NML=VILVOL

Page 4: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

4

Propagation Delays

Figure 10.3 Definitions of propagation delays and switching times of the logic inverter.

tP=1/2(tPLH+tPHL)

Page 5: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

5

Power Dissipation &Other Design Concern

• Static power (0 for CMOS inverter)• Dynamic power:

PD = f C(VDD)2

• Delay-Power ProductDP = PD tP

• Silicon Area (Process technology, circuit design techniques, careful layout)

• Fan-In and Fan-out

Page 6: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

6

Digital system Design

• Custom VLSI vs. gate-array chips• FPGA (field-programmable gate array)• Design Abstraction (standard cells)

• Computer Aids

Page 7: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

7

Inverter Equivalent Circuit

Figure 1.32 A more elaborate implementation of the logic inverter utilizing two complementary switches. This is the basis of the CMOS inverter studied in Section 4.10.

Page 8: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

8

CMOS Inverter

Figure 10.4 (a) The CMOS inverter and (b) its representation as a pair of switches operated in a complementary fashion.

tnDD

nnDSN VV

LWkr 1

tpDD

ppDSP VV

LWkr 1

Page 9: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

9

CMOS InverterStatic Operation (1)

tnDD

nnDSN VV

LWkr 1

Figure 4.54 Operation of the CMOS inverter when vI is high: (a) circuit with vI = VDD (logic-1 level, or VOH); (b) graphical construction to determine the operating point; (c) equivalent circuit.

Page 10: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

10

CMOS InverterStatic Operation (2)

Figure 4.55 Operation of the CMOS inverter when vI is low: (a) circuit with vI = 0 V (logic-0 level, or VOL); (b) graphical construction to determine the operating point; (c) equivalent circuit.

tpDD

ppDSP VV

LWkr 1

Page 11: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

11

CMOS InverterStatic Operation (3)

Figure 4.56 & 10.5 The voltage transfer characteristic of the CMOS inverter. (When QN and QP are matched.)

kn > kp

kp > kn

SlopetansitiongmN+gmP)(roN //roP)

pn

tnpntpDDth kk

VkkVVV

1

np

n

p LW

LWmatching

:

tDDLH VVNMNM

32

83

nLWn

pLWp

2minArea Lpn

Page 12: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

12

CMOS InverterDynamic Operation (1)

Figure 4.57 Dynamic operation of a capacitively loaded CMOS inverter: (a) circuit; (b) input and output waveforms; (c) trajectory of the operating point as the input goes high and C discharges through QN; (d) equivalent circuit during the capacitor discharge.

Page 13: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

13

CMOS InverterDynamic Operation (2)

Figure 4.57 Dynamic operation of a capacitively loaded CMOS inverter: (a) circuit; (b) input and output waveforms; (c) trajectory of the operating point as the input goes high and C discharges through QN; (d) equivalent circuit during the capacitor discharge.

Page 14: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

14

CMOS InverterDynamic Operation (3)

Figure 10.6 Circuit for analyzing the propagation delay of the inverter formed by Q1 and Q2, which is driving an identical inverter formed by Q3 and Q4.

C=2Cgd1+2Cgd2+Cdb1+Cdb2+Cg3+Cg4+Cw

tPHL=1.6C/[k’n(W/L)nVDD]

(Section 4.10) Vt~0.2VDD

Page 15: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

15

CMOS InverterDynamic Operation (4)

Figure 10.7 Equivalent circuits for determining the propagation delays (a) tPHL and (b) tPLH of the inverter.

2210 tDD

nnDN VV

LWki

2

221

2DDDD

tDDn

nPHLDNVVVV

LWkti

20

avPHLDNDN

DNtiii

av

2

DN

DDPHL i

VCt tPHL=1.7C/[k’n(W/L)nVDD] under Vt~0.2VDD

Page 16: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

16

CMOS InverterDynamic Operation (5)

Figure 10.7 Equivalent circuits for determining the propagation delays (a) tPHL and (b) tPLH of the inverter.

tPLH=1.7C/[k’p(W/L)pVDD]

under |Vtp|~0.2VDD

2 n DissipatioPower Dynamic DDD CVfP

Page 17: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

17

Example 10.1

fF 25.622fF 2.0

fF 3625.23.02

fF, 7875.03.02fF 1 fF, 1

fF, 3375.03.0 fF, 1125.03.0

. and , , Find fF. 2.0 ecapacitanc wiringThe fF. 1and fF 1 are escapacitancbody -drain of valueeffective theFurther, width.

gate of mfF/ 0.3 be tospecified are escapacitanc overlapdrain -gate and source-gate The m.m/0.251.125 is for that and m,m/0.250.375 is of ratio

/ The V. 5.2 and V, 4.0 ,A/V 115 ,mfF/ 6for which process m-0.25 ain fabricatedinverter CMOS aConsider Dynamic

432121

4

3

21

21

22

wggdbdbgdgdw

pppoxg

nnnoxg

dbdb

pgdngd

PPLHPHLwdbp

dbn

PN

DDtptnoxnox

CCCCCCCCC

WLWCC

WLWCCCC

WCWCSolution

tttCCC

QQ

LWVVVCC

Page 18: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

18

Example 10.1

ps 5.26

9.273.13.23383.33.23

matched.not isinverter the,83.3 and 3

ps 3.232

A 3492

318380

A 31822

12

A 380210

)(continued

21

av

av

2

2

PLHPHLP

PLH

pnnp

DN

DDPHL

DN

DDDDtDD

nnPHLDN

tDDn

nDN

ttt

pst

WW

iVCt

i

VVVVL

Wkti

VVL

Wki

Solution

Page 19: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

19

CMOS Logic-Gate Circuits

Figure 10.8 Representation of a three-input CMOS logic gate. The PUN comprises PMOS transistors, and the PDN comprises NMOS transistors.

Figure 10.11 Usual and alternative circuit symbols for MOSFETs.

Page 20: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

20

Pull-Down Networks

Figure 10.9 Examples of pull-down networks.

Page 21: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

21

Pull-Up Networks

Figure 10.10 Examples of pull-up networks.

Page 22: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

22

Two input NOR / NAND Gates

Figure 10.12 A two-input CMOS NOR gate. Figure 10.13 A two-input CMOS NAND gate.

Page 23: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

23

A Complex Gate

Figure 10.14 CMOS realization of a complex gate.

DCBA

CDBA

CDBA

CDBAY

BABA

BAAB

:functin logiccomplex more aConsider

:law sDeMorgan'

Page 24: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

24

The Exclusive-OR Function (XOR)

Figure 10.15 Realization of the exclusive-OR (XOR) function: (a) The PUN synthesized directly from the expression in Eq. (10.25). (b) The complete XOR realization utilizing the PUN in (a) and a PDNthat is synthesized directly from the expression in Eq. (10.26). Note that two inverters (not shown) are needed to generate the complemented variables. Also note that in this XOR realization, the PDN and the PUN are not dual networks; however, a realization based on dual networks is possible (see Problem 10.27).

(a)BAABY

BABAY

Page 25: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

25

Summary of the Synthesis Method

• The PDN can be most directly synthesized by expressingY as a function of the uncomplemented variables. If complemented variables appear in this expression, additional inverters will be required to generate them.

• The PUN can be most directly synthesized by expressingY as a function of the complemented variables and then applying the uncomplemented variables to the gates of the PMOS transistors. If uncomplemented variables appear in this expression, additional inverters will be needed.

• The PDN can be obtained from the PUN (and vice versa) using the duality property.

Page 26: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

26

Transistor Sizing

Figure 10.16 Proper transistor sizing for a four-input NOR gate. Note that n and p denote the (W/L) ratios of QN and QP, respectively, of the basic inverter.

Rseries = rDS1 + rDS2 + …

= constant________(W/L)eq

(W/L)eq;series =1_______________

1(W/L)1

_____ 1(W/L)2

_____+ +...

(W/L)eq;parallel =

(W/L)1+(W/L)2+…

Page 27: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

27

Transistor Sizing

Figure 10.17 Proper transistor sizing for a four-input NAND gate. Note that n and p denote the (W/L) ratios of QN and QP, respectively, of the basic inverter.

Page 28: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

28

Example 10.2

Figure 10.18 Circuit for Example 10.2.

Basic inverter:n = 1.5, p = 5, L = 0.25 m

Page 29: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

29

Homework #1

• Problems in Chapter 10: 4, 7, 10, 12, 15, 18, 25, 29

Page 30: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

30

Pseudo-NMOS Logic Circuits

Figure 10.19 (a) The pseudo-NMOS logic inverter. (b) The enhancement-load NMOS inverter. (c) The depletion-load NMOS inverter.

Swing

NM

Static PD

Page 31: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

31

Pseudo-NMOS Logic Circuits

Figure 10.20 Graphical construction to determine the VTC of the inverter in Fig. 10.19.

1:10~4: pn kk

pn kkr

NM

Page 32: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

32

Pseudo-NMOS InverterStatic Characteristics

n)(saturatio for ,221

tIOtInDN VvvVvki

(triode) for , 221

tIOOOtInDN VvvvvVvki

(triode) for , 221

tOODDODDtDDpDP VvvVvVVVki

n)(saturatio for ,221

tOtDDpDP VvVVki

Region QN QP ConditionI Cutoff Triode vI < VtnII Sat. Triode vO > vI VtnIII Triode Triode Vtp < vO < vI VtnIV Triode Sat. vO < Vtp

Page 33: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

33

)1(

rr

VVVV tDDtIL

22tItDDtO VvrVVVv

1)or (

r

VVVVV tDDtthM

22 1)( tDDtItIO VVr

VvVvv

tDDtIH VVr

VV 32

rVVV tDDOL

111

Figure 10.21 VTC for the pseudo-NMOS inverter. This curve is plotted for VDD = 5 V, Vtn = –Vtp = 1 V, and r = 9.

Page 34: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

34

Pseudo-NMOS Logic Circuits

• Noise Margin vs. r

• Dynamic Operation

11111rrr

VVVNM tDDtL

r

VVNM tDDH 321

DDpPLH Vk

Ct 7.1

DDn

PHL

Vr

k

Ct

46.01

7.1Asymmetrical delay

Page 35: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

35

Pseudo-NMOS Inverter Design

• The design parameters of interest:VOL, NML, NMH, Istat, PD, tPLH, tPHL

• r : VOL , NM area , tP

• W/L: small W/L small C, Istat, PDlarge W/L small tP

• Typically, Istat ~ 50 to 100Aand PD ~ 0.25 to 0.5 mW

Page 36: Electronic2 w2 - 國立中興大學web.nchu.edu.tw/~ycchiang/Electronic_2/Electronic2_w2.pdf · 0.2 fF 2 2 6.25 fF 2 0.3 2.3625 fF 2 0.3 0.7875 fF, 1 fF, 1 fF 0.3 0.1125 fF, 0.3 0.3375

36

Pseudo-NMOS Logic Circuits

Figure 10.22 NOR and NAND gates of the pseudo-NMOS type.

PDN design


Recommended