+ All Categories
Home > Documents > EM Disc ch1 part1

EM Disc ch1 part1

Date post: 04-Oct-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
59
1
Transcript
Page 1: EM Disc ch1 part1

1

Page 2: EM Disc ch1 part1

LOGO

LAB 3

Sampling

and

Quantization

Page 3: EM Disc ch1 part1

3

Sampling Theorem

Page 4: EM Disc ch1 part1

4

( ) ( )a sx t x nT

Page 5: EM Disc ch1 part1

5

1( )s

n

X (t) = t nTT

1

( )s

ns

X (f) = f nfT

( )SX (t) = X t X (t)1

( )* ( )s s

n

X (f) = X f X (f) X f nfT

Page 6: EM Disc ch1 part1

6

1( )

1 1 1 1 1....... ( 2 ) ( ) ( ) ( ) ( 2 ) .......

s s

n

s s s s s

X (f) = X f nfT

X f f X f f X f X f f X f fT T T T T

Sampled Signal

Page 7: EM Disc ch1 part1

7

Page 8: EM Disc ch1 part1

8

Ex: x(t)=5 cos (2pi*2000* t)3+‏ cos (2pi *3000* t)

Fs=8000 Hz

Fs> 2Fm=2*3000=6 kHZ

Page 9: EM Disc ch1 part1

9

Ex: x(t)=5 cos (2pi*2000* t)3+‏ cos (2pi *5000* t)

Fs=8000 Hz

Fs< 2Fm=2*5000=10 kHZ

Page 10: EM Disc ch1 part1

10

k k 1, 2, 3,......S = aliased baseF F F

Page 11: EM Disc ch1 part1

11

Anti-aliasing Filter

Page 12: EM Disc ch1 part1

12

Practical Parts

Part 1: Aliasing in Time Domain

a) Let Fs=10 kHz and Fo=1 kHz. Compute and

plot x[n] using stem.

Page 13: EM Disc ch1 part1

130 10 20 30 40 50 60

-1

-0.5

0

0.5

1

Page 14: EM Disc ch1 part1

14

b) Use subplot to plot x(t) for Fo=300 Hz and 700 Hz

Page 15: EM Disc ch1 part1

15

0 1 2 3 4 5

x 10-3

-1

0

1

0 1 2 3 4 5

x 10-3

-1

0

1

Page 16: EM Disc ch1 part1

16

c) Use subplot to plot x(n) for Fo=300 Hz and 700 Hz

Page 17: EM Disc ch1 part1

17

0 10 20 30 40 50 60-1

-0.5

0

0.5

1

0 10 20 30 40 50 60-1

-0.5

0

0.5

1

Page 18: EM Disc ch1 part1

18

d) Use subplot to plot x(t) for Fo=9700 Hz and 9300 Hz

Page 19: EM Disc ch1 part1

19

0 1 2 3 4 5

x 10-3

-1

0

1

0 1 2 3 4 5

x 10-3

-1

0

1

Page 20: EM Disc ch1 part1

20

c) Use subplot to plot x(n) for Fo=9700 Hz and 9300 Hz

Page 21: EM Disc ch1 part1

21

0 10 20 30 40 50 60-1

-0.5

0

0.5

1

0 10 20 30 40 50 60-1

-0.5

0

0.5

1

Page 22: EM Disc ch1 part1

22

k k 1, 2, 3,......S = aliased baseF F F

300 ( 1) 10000 =9700

700 ( 1) 10000 =9300

300 9700

700 9300

aliased

aliased

F

F

Page 23: EM Disc ch1 part1

23

Page 24: EM Disc ch1 part1

24

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

x 10-3

-1

-0.5

0

0.5

1

gives the same sample every one Ts

Page 25: EM Disc ch1 part1

25

d) Use subplot to plot x(t) for Fo=10300 Hz and 10700 Hz

Page 26: EM Disc ch1 part1

26

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10-3

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10-3

-1

-0.5

0

0.5

1

Page 27: EM Disc ch1 part1

27

c) Use subplot to plot x(n) for Fo=10300 Hz and 10700 Hz

Page 28: EM Disc ch1 part1

28

0 10 20 30 40 50 60-1

-0.5

0

0.5

1

0 10 20 30 40 50 60-1

-0.5

0

0.5

1

Page 29: EM Disc ch1 part1

29

k k 1, 2, 3,......S = aliased baseF F F

300 ( 1) 10000 =10300

700 ( 1) 10000 =10700

300 9700 10300

700 9300 10700

aliased

aliased

F

F

Page 30: EM Disc ch1 part1

30

Part 2: Aliasing in Frequency Domain

Page 31: EM Disc ch1 part1

31

Page 32: EM Disc ch1 part1

32

Page 33: EM Disc ch1 part1

33

Page 34: EM Disc ch1 part1

34

Part 3: Quantization

function y=uquant(x,n)

del=((max(max(x))-(min(min(x)))))/(n-1);

r=(x-min(min(x)))/del;

r=round(r);

y=r*del+min(min(x));

Page 35: EM Disc ch1 part1

35

Example: Quantized x=2sin (2pi*t) using 16 levels.

max min 2 ( 2)4 /15

1 16 1

X Xdel

L

2

2

4

0

Page 36: EM Disc ch1 part1

36

4

0

Page 37: EM Disc ch1 part1

37

Page 38: EM Disc ch1 part1

38

2

2

15

0

Page 39: EM Disc ch1 part1

39

t=0:.001:1;

y=2*sin(2*pi*t)

figure(1)

subplot(311)

plot(y)

q1=uquant(y,4)

subplot(312)

plot(q1)

q2=uquant(y,32)

subplot(313)

plot(q2)

Ps=mean(y.^2);

Pq1=mean(q1.^2);

Pq2=mean(q2.^2);

SQR1=Ps/Pq1

SQR2=Ps/Pq2

Page 40: EM Disc ch1 part1

40

0 200 400 600 800 1000 1200-2

0

2

0 200 400 600 800 1000 1200-2

0

2

0 200 400 600 800 1000 1200-2

0

2

Page 41: EM Disc ch1 part1

41

Image Quantization

Exercise 1

Page 42: EM Disc ch1 part1

42

clc

clear all

y1=imread('office_4.jpg');

y=rgb2gray(y1);

for i=1:7;

L=2^i;

Q=uquant(y,L);

i=i+1;

pause

L

figure(i)

imshow(Q)

end

Page 43: EM Disc ch1 part1

43

b=1

Page 44: EM Disc ch1 part1

44

b=2

Page 45: EM Disc ch1 part1

45

b=3

Page 46: EM Disc ch1 part1

46

b=4

Page 47: EM Disc ch1 part1

47

b=5

Page 48: EM Disc ch1 part1

48

b=6

Page 49: EM Disc ch1 part1

49

b=7

Page 50: EM Disc ch1 part1

50

clc

clear all

[y,fs]=wavread('speech_dft.wav');

sound(y,fs)

for b=1:7;

L=2.^b;

yQ=uquant(y,L);

pause

b

sound(yQ,fs);

end

Audio Quantization

Page 51: EM Disc ch1 part1

51

Exercise 2

Audio Quantization

Page 52: EM Disc ch1 part1

52

2 3 4 5 6 7 810

-2

10-1

100

101

102

103

104

plotting SNR

0 1 2 3 4 5 6 7 80

200

400

600

800

1000

1200

1400plotting SNR

Page 53: EM Disc ch1 part1

53

Simulink model for sampling and quantization

Page 54: EM Disc ch1 part1

54

Exercise 3

Page 55: EM Disc ch1 part1

55

Q ua ntization error : ( ) ( ) ( )q qe n x n x n

2 2error

max minQuantization step =1

x x

L

0.1 0.1

2 2error

Page 56: EM Disc ch1 part1

56

Quantization of sinusoidal signal

2 2

2 2

0 0

2 2

2

2

2

1 1P ( ) ( sin )

2 2

( ) for ( T t T )2

1 1P ( ( )) ( )

2 2

1

2 2

2

2

sig

q

T T

q q

T T

T

T

S t dt A wt dt

e t tT

e t dt t dtT T T

t dtT T

A

Average power of sinusoidal signal :

Average power of quantized signal :

2

12

Page 57: EM Disc ch1 part1

57

Signal to quantization noise ratio

2

12

2

max min

2

2

2

2

2

the signal to quantization noise ratio

P

P

( ) 2

P 2

P

2

12

4

12

3

2

sig

q

sig

q

SQNR

x x A A A

L L L

A

SQNR

A

LA

L

Page 58: EM Disc ch1 part1

58

Note:

Your report should include the following:

All Matlab program and its results with a short comment

on each result.

Answer any internal questions in practical parts.

Solve all lab exercises.

Page 59: EM Disc ch1 part1

LOGO

59


Recommended