+ All Categories
Home > Documents > ER@SE/August29,2001 2 - Electrochimieelectrochimie.minatec.grenoble-inp.fr/dynamique/reimth1.pdf ·...

ER@SE/August29,2001 2 - Electrochimieelectrochimie.minatec.grenoble-inp.fr/dynamique/reimth1.pdf ·...

Date post: 12-Sep-2018
Category:
Upload: duongnhu
View: 214 times
Download: 0 times
Share this document with a friend
22
Diffusion impedance 0 0.5 1 Re Z 0 0.5 Im Z Erase August 29, 2001
Transcript

Diffusion impedance

0 0.5 1Re Z

0

0.5

Im

Z

Erase

August 29, 2001

ER@SE/August 29, 2001 2

Contents

1 Nernst condition 51.1 General diffusion equations . . . . . . . . . . . . . . . . . . . . . 51.2 Semi-infinite diffusion condition . . . . . . . . . . . . . . . . . . . 6

1.2.1 Semi-infinite linear diffusion conditiond = 1, ∆c(∞) = 0 . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Semi-infinite radial cylindrical diffusion conditiond = 2, ∆c(∞) = 0 . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Semi-infinite spherical diffusion conditiond = 3, ∆c(∞) = 0 . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Bounded diffusion condition (linear diffusion) ∆c(rδ) = 0 . . . . 91.3.1 Randles circuit . . . . . . . . . . . . . . . . . . . . . . . . 91.3.2 Modified bounded diffusion impedance # 1 . . . . . . . . 101.3.3 Modified finite diffusion impedance # 2 . . . . . . . . . . 11

1.4 Radial cylindrical diffusion d = 2 . . . . . . . . . . . . . . . . . . 111.4.1 Finite outside cylinder . . . . . . . . . . . . . . . . . . . . 121.4.2 Infinite outside cylinder . . . . . . . . . . . . . . . . . . . 12

1.5 Spherical diffusion, d = 3 . . . . . . . . . . . . . . . . . . . . . . 121.5.1 Finite outside sphere, reduced impedance # 1 . . . . . . . 121.5.2 Finite outside sphere, reduced impedance # 2 . . . . . . . 131.5.3 Infinite outside sphere . . . . . . . . . . . . . . . . . . . . 13

2 Gerischer and diffusion-reaction impedance 152.1 Gerischer and modified Gerischer impedance . . . . . . . . . . . 15

2.1.1 Gerischer impedance . . . . . . . . . . . . . . . . . . . . . 152.1.2 Modified Gerischer impedance . . . . . . . . . . . . . . . 16

2.2 Diffusion-reaction impedance . . . . . . . . . . . . . . . . . . . . 162.2.1 Reduced impedance #1 . . . . . . . . . . . . . . . . . . . 162.2.2 Reduced impedance #2 . . . . . . . . . . . . . . . . . . . 17

2.3 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3

ER@SE/August 29, 2001 4

Chapter 1

Mass transfer by diffusion,Nernst boundary condition

1.1 General diffusion equations

From:∂∆c(x, t)

∂t= Dx1−d ∂

∂x

(xd−1 ∂∆c(x, t)

∂x

)

where ∆ denotes a smaller deviation (or excursion) from the initial steady-statevalue, d = 1 corresponds to a planar electrode, d = 2 to a cylindrical electrodeand d = 3 to a spherical electrode [2, 11] (Fig. 1.1), it is obtained using theNernstian boundary condition ∆c(rδ) = 0:

Z∗(u) ∝ ∆J(r0, iu)∆c(r0, iu)

=Id/2−1(

√iuρ)Kd/2−1(

√iu)− Id/2−1(

√iu)Kd/2−1(

√iuρ)

√iu (Id/2(

√iu)Kd/2−1(

√iuρ) + Id/2−1(

√iuρ)Kd/2(

√iu))

where u is a reduced frequency. In(z) gives the modified Bessel function of thefirst kind and order n and Kn(z) gives the modified Bessel function of the secondkind and order n [20]. In(z) and Kn(z) satisfy the differential equation:

−(y(n2 + z2

))+ z y′ + z2 y′′ = 0

r0

r∆

r0 r∆ r∆ r0

Figure 1.1: Planar difusion (left), outside [5] (or convex [9]) diffusion (ρ = rδ/r0 > 1,middle), and central (or concave) diffusion (ρ < 1, right).

5

1.2 Semi-infinite diffusion condition

1.2.1 Semi-infinite linear diffusion conditiond = 1, ∆c(∞) = 0

Impedance [17, 1]

Figure 1.2: Warburg element [19].

ZW(ω) =(1− i) σ√

ω=

√2σ√iω

, Re ZW(ω) =σ√ω, Im ZW(ω) = − σ√

ω

σ =1

n2 F f X∗√2DX

, f =F

RT, σ unit: Ω cm2 s−1/2

Reduced impedance

Z∗W(u) = ZW(ω) =

1√iu

, u =ω

2 σ2, Re ZW(u) =

1√2 u

, Im ZW(u) = − 1√2 u

0 1Re ZW

0

1

Im

ZW

u1

Figure 1.3: Nyquist diagram of the reduced Warburg impedance.

Randles circuit

The equivalent circuit in Fig. 1.4 was initially proposed by Randles [12].

σ = σO + σR

Impedance

Z(ω) =1

iω Cdl +1

Rct +(1− i) σ√

ω

=−i ((1− i) σ +

√ωRct)

−i√ω + (1− i) σ ω Cdl + ω

32 Cdl Rct

ER@SE/August 29, 2001 6

Rct

Cdl

Figure 1.4: Randles circuit for semi-infinite linear diffusion.

Re Z(ω) =σ +

√ω Rct

√ω(1 + 2 σ

√ωCdl + 2 σ2 ωCdl

2 + 2 σ ω32 Cdl

2 Rct + ω2 Cdl2 Rct

2)

Im Z(ω) =−σ − 2 σ2

√ω Cdl − 2 σ ω Cdl Rct − ω

32 Cdl Rct

2

√ω(1 + 2 σ

√ωCdl + 2 σ2 ω Cdl

2 + 2 σ ω32 Cdl

2 Rct + ω2 Cdl2 Rct

2)

Reduced impedance

Z∗(u) = Z(u)/Rct =(1 + i) T (i + u)

−T√2 u+ (1 + i) (−1 + T + iu) u

u = τd ω, τd = R2ct/(2 σ2

), T = τd/τf, τf = Rct Cdl

Re Z∗(u) =T 2(−(√

2 (−1 + u))+ 2 u

32

)2√2T u (1− T + u) + 2

√u(T 2 + (−1 + T )2 u+ u3

)

Im Z∗(u) =T(√

2T (−1− u)− 2√u(1− T + u2

))2√2T u (1− T + u) + 2

√u(T 2 + (−1 + T )2 u+ u3

)

limu →0

Re Z∗(u) = 1− 1T

+1√2 u

, limu →0

Im Z∗(u) = − 1√2 u

1.2.2 Semi-infinite radial cylindrical diffusion conditiond = 2, ∆c(∞) = 0

Z∗(u) =K0(

√iu)√

iuK1(√iu)

1.2.3 Semi-infinite spherical diffusion conditiond = 3, ∆c(∞) = 0

(Fig. 1.7)

Z∗(u) =1

1 +√iu

, u = r20 ω/D

Re Z∗(u) =2 +

√2 u

2(1 +

√2 u) , Im Z∗(u) = −

√u√

2(1 +

√2 u+ u

)

ER@SE/August 29, 2001 7

0 1 2 3Re Z

0

1

2

Im

Z

a

0 11T 2 3Re Z

0

1

2

Im

Z

b

Figure 1.5: a: Nyquist diagram of the reduced impedance for the Randles circuit(Fig. 1.4). Semi-infinite linear diffusion. T = 1, 2, 5, 10, 16.4822, 102, 104. Line thick-ness increases with T . One apex for T > 16.4822. The arrows always indicate theincreasing frequency direction. b: Extrapolation of the low frequency limit plotted forT = 5.

0 Π4 2 4Re Z

0

Π41

Im

Z

Figure 1.6: Infinite outside cylindrical reduced impedance. Dot: reduced character-istic angular frequency: uc = 0.542.

1.3 Bounded diffusion condition (linear diffusion)

∆c(rδ) = 0

”Originally derived by Llopis [7], and subsequently re-derived by Sluyters [14]and Yzermans [21], Drosbach and Schultz [3], and Schuhmann [13]” [1].

• IUPAC terminology: bounded diffusion [15]

• Finite-length diffusion with transmissive boundary condition [6, 8]

Z∗Wδ

(u) =tanh

√iu√

iu, u = τd ω, τd = δ2/D, γ =

√2 u

limu→0

Z∗Wδ

(u) = 1, limu→∞

√iuZ∗

Wδ(u) = 1

Re Z∗Wδ

(γ) =sin(γ) + sinh(γ)

γ (cos(γ) + cosh(γ)), Im Z∗

Wδ(γ) =

sin(γ)− sinh(γ)γ (cos(γ) + cosh(γ))

1.3.1 Randles circuit

Impedance

Zf(u) = Rct+Rdtanh

√iu√

iu, Z(u) =

Zf(u)1 + i (u/τd)Cdl Zf(u)

, u = τd ω, τd = δ2/D

ER@SE/August 29, 2001 8

0 0.5 1Re Z

0

0.2

Im

Z uc1

Figure 1.7: Infinite outside spherical reduced impedance. Dot: reduced characteristicangular frequency: uc = 1.

Figure 1.8: Bounded diffusion impedance.

Z(u) =Rct +Rd

tanh√iu√

iu

1 + i (u/τd)Cdl

(Rct +Rd

tanh√iu√

iu

)

Re Zf(γ) = Rct +Rdsin(γ) + sinh(γ)

γ (cos(γ) + cosh(γ)), γ =

√2 u

Im Zf(γ) = Rdsin(γ)− sinh(γ)

γ (cos(γ) + cosh(γ))

Reduced impedance

”The frequency response of the Randles circuit can be described in terms of twotime constants for faradaic (τf) and diffusional (τd) processes” [18].

Z∗(u) =Z(u)

Rct +Rd=

1 +tanh

√iu

ρ√iu(

1 +1ρ

) (1 + iu T + iu

T

ρ

tanh√iu

ρ√iu

)

ρ = Rct/Rd, T = τf/τd, τf = Rct Cdl

1.3.2 Modified bounded diffusion impedance # 1

Nonuniform diffusion in a finite-lenght region [8].√iu replaced by (iu)

α2 , α:

dispersion parameter.

Z∗(u) =tanh (iu)

α2

(iu)α2

, u = τd ω, τd = δ2/D, γ =√2 u, β = 1− α/2

ER@SE/August 29, 2001 9

0 0.5 1Re ZW∆

0

0.5

Im

ZW∆

uc2.541

Figure 1.9: Nyquist diagram of the reduced bounded diffusion impedance.

∆Rct

Cdl

Figure 1.10: Randles circuit for bounded diffusion.

limu→0

Z∗(u) = 1, limu→∞

(iu)α2 Z∗(u) = 1

Re Z∗(γ) =2

α2(sin(π α

4 ) sin(2β γα sin(π α4 )) + cos(π α

4 ) sinh(2β γα cos(π α4 ))

)γα(cos(2β γα sin(π α

4 )) + cosh(2β γα cos(π α4 ))

)Im Z∗(γ) =

2α2(cos(π α

4 ) sin(2β γα sin(π α4 ))− sin(π α

4 ) sinh(2β γα cos(π α4 ))

)γα(cos(2β γα sin(π α

4 )) + cosh(2β γα cos(π α4 ))

)

1.3.3 Modified finite diffusion impedance # 2

Z∗(u) =

(tanh

√iu√

iu

, α : dispersion parameter

u = τd ω, τd = δ2/D, γ =√2 u

limu→0

Z∗(u) = 1, limu→∞

(iu)α2 Z∗(u) = 1

Re Z∗(γ) =2

α2 cos

(arctan

(sin(γ)− sinh(γ)sin(γ) + sinh(γ)

)) (sin(γ)2 + sinh(γ)2

)α2

γα (cos(γ) + cosh(γ))α

Im Z∗(γ) =2

α2 cos

(arctan

(sin(γ)− sinh(γ)sin(γ) + sinh(γ)

)) (sin(γ)2 + sinh(γ)2

)α2

γα (cos(γ) + cosh(γ))α

1.4 Radial cylindrical diffusion d = 2

[5] (Fig. 1.1)

ER@SE/August 29, 2001 10

log T

– 3 – 1 1

og ρ 0

– 2

2

3 1 1log T

2

0

2

logΡ

One apexTwo apex

Figure 1.11: Impedance diagram array and case diagram for the Randles circuit withbounded diffusion (Fig. 1.10).

1.4.1 Finite outside cylinder

Z∗(u) =I0(

√iu ρ)K0(

√iu)− I0(

√iu)K0(

√iu ρ)

Log(ρ)√iu(I1(

√iu)K0(

√iuρ) + I0(

√iu ρ)K1(

√iu))

u = r20 ω/D, ρ = rδ/r0

Fig. 1.15 rectifies erroneous Figs. 7 and 8 in [10].

1.4.2 Infinite outside cylinder

limρ→∞

Z∗(u) =K0(

√iu)√

iuK1(√iu)

cf. Fig. 1.6

1.5 Spherical diffusion, d = 3

[5] (Fig. 1.1)

1.5.1 Finite outside sphere, reduced impedance # 1

(Fig. 1.16)

Z∗(u) =1

(1− 1/ρ)(1 +

√iu coth(

√iu (−1 + ρ))

)

u = r20 ω/D, ρ = rδ/r0

ER@SE/August 29, 2001 11

∆,Α

Figure 1.12: Modified bounded diffusion impedance.

0 0.5 1Re Z

0

0.5

ImZ

0.6 0.8 1Α

2.5

3.5

4.5

u c

2.541

Figure 1.13: Modified bounded diffusion impedance. Change of the Nyquist diagramwith α (α = 0.6, 0.8, 1). Line thickness increases with α. Dots: reduced characteristicangular frequencies: uc = 4.985, 3.272, 2.541, uc decreases with increasing α. Changeof the reduced characteristic angular frequency with α.

1.5.2 Finite outside sphere, reduced impedance # 2

(Fig. 1.17)

Z∗(u) =1 + δ

δ +√iu coth(

√iu)

, u = (rδ − r0)2 ω/D, δ = (rδ − r0)/r0

1.5.3 Infinite outside sphere

(Fig. 1.7)

limρ→∞

Z∗(u) =1

1 +√iu

, u = r20 ω/D

Re Z∗(u) =2 +

√2 u

2(1 +

√2 u) , Im Z∗(u) = −

√u√

2(1 +

√2 u+ u

)cf. Fig. 1.7

ER@SE/August 29, 2001 12

0 0.5 1Re Z

0

0.5

Im

Z

0.6 0.8 1Α

2.5

3.5

u c

2.541

Figure 1.14: Modified bounded diffusion impedance. Change of the Nyquist diagramwith α (α = 0.6, 0.8, 1). Line thickness increases with α. Dots: reduced characteristicangular frequencies: uc = 4.985, 3.272, 2.541, uc decreases with increasing α. Changeof the reduced characteristic angular frequency with α.

0 0.5 1Re Z

0

0.5

Im

Z

Figure 1.15: Central (ρ < 1) and outside (ρ > 1) cylindrical diffu-sion impedance. ρ = rδ/r0 = 10−2, 10−1, 0.4, 1.01, 2, 5, 20, 100. Line thick-ness increases with ρ. Dots: reduced characteristic angular frequency: uc =0.514484, 1.22194, 4.74992, 25516., 3.40142, 0.298271, 0.0186746, 0.000800438. uc de-creases with increasing ρ.

0 0.5 1Re Z

0

0.5

Im

Z

0 1 5 10Ρ

1

0

1

2

log

u c

Figure 1.16: Central (ρ < 1) and outside (ρ > 1) spherical diffusion impedance. ρ =rδ/r0 = 0.1, 0.4, 0.91, 1.1, 2, 5, 50. Line thickness increases with ρ. Dots: reduced char-acteristic angular frequency: uc = r2

0 ω/D = 0.3632, 3.095, 289, 275.8, 4.547, 0.6927, 1.Change of log uc with ρ.

ER@SE/August 29, 2001 13

0 0.5 1Re Z

0

0.5

Im

Z

1 0 5 10∆

1

0

1

2

log

u clog 2.54

Figure 1.17: Central (δ < 0) and outside (δ > 0) spherical diffusion impedance.δ = (rδ − r0)/r0 = −0.99,−0.8,−0.5,−0.1, 0.1, 1, 3, 100. Line thickness in-creases with δ. Dots: reduced characteristic angular frequency: uc = (rδ −r0)

2 ω/D = 0.0299, 0.577, 1.37, 2.32, 2.76, 4.55, 8.33, 104fcylr0rdfcylr0rd, uc increaseswith δ. Change of log uc with δ.

ER@SE/August 29, 2001 14

Chapter 2

Gerischer anddiffusion-reactionimpedance

2.1 Gerischer and modified Gerischer impedance

2.1.1 Gerischer impedance

Z∗G(u) =

1√1 + iu

”In view of the earliest derivation of such an impedance by Gerischer, [4] itseems a good idea to name it the ”Gerischer impedance” ZG [15, 16].

0 0.5 1Re ZG

0

0.5

Im

ZG

uc

3

Figure 2.1: Reduced Gerischer impedance.

limu→0

Z∗G(u) = 1, lim

u→∞

√iuZ∗

G(u) = 1

Re Z∗G(u) =

cos(arctan(u)

2)

(1 + u2)1/4=

√√1 + u−2 + u−1

√2√1 + u−2

√u

Im Z∗G(u) = −

sin(arctan(u)

2)

(1 + u2)1/4= −

√√1 + u−2 − u−1

√2√1 + u−2

√u

15

dIm Z∗G(u)

du=

−2 +√1 + u−2 u

2√2√1 + u−2

√√1 + u−2 − 1

u

√u (1 + u2)

= 0 ⇒ uc =√3

2.1.2 Modified Gerischer impedance

Z∗Gα(u) =

1√1 + (iu)α

0 0.5 1Re ZGΑ

0

0.4

Im

ZGΑ

Figure 2.2: Reduced modified Gerischer impedance. α = 0.5, 0.6, 0.7, 0.8, 0.9, 1. Linethickness increases with α.

Re Z∗Gα(u) =

cos(12arctan(

uα sin(π α2 )

1 + uα cos(π α2 )

))

(1 + u2 α + 2 uα cos(π α

2 )) 1

4

Im Z∗Gα(u) = −

sin(12arctan(

uα sin(π α2 )

1 + uα cos(π α2 )

))

(1 + u2 α + 2 uα cos(π α

2 )) 1

4

0.5 0.75 1Α

2

3

u c

3

0.5 0.75 1Α

0

5

uc 3Αu

c%

Figure 2.3: Change of uc for modified Gerischer impedance (solid line) and change of√3/α with α (dashed line). uc ≈

√3/α for α ∈ [0.53, 1] (|(uc −

√3/α)|/uc < 5%).

2.2 Diffusion-reaction impedance

2.2.1 Reduced impedance #1

Z∗(u) =√λ coth

√λ tanh

√iu+ λ√

iu+ λ

ER@SE/August 29, 2001 16

limu→0

Z∗(u) = 1, limu→∞

√iu+ λZ∗(u) =

√λ coth

√λ

limλ→0

Z∗(u) = Z∗Wδ(u) =

tanh√iu√

iu, lim

λ→∞Z∗(u) = Z∗

G(u/λ) =1√

1 + u/λ

@verifier limite lorsque lambda tend vers l’infini

0 0.5 1Re Z

0

0.5

Im

Z

2 0 2log Λ

0

1

2

3

log

u c

log 2.541

Figure 2.4: Diffusion reaction reduced impedance #1. λ = 10−3, 1, 103. Line thick-ness increases with λ. uc = 2.542, 3.657, 1732. Change of log uc with log λ for diffusionreaction reduced impedance #1. λ → 0 ⇒ uc → 2.54, λ → ∞ ⇒ uc ≈ λ

√3.

Re Z∗(u) =

√λ coth(

√λ)(sinh(2

(u2 + λ2

) 14 cauλ) cauλ + sin(2

(u2 + λ2

) 14 sauλ) sauλ

)(u2 + λ2)

14

(cos(2 (u2 + λ2)

14 sauλ) + cosh(2 (u2 + λ2)

14 cauλ)

)

cauλ = cos(arctan(u

λ)2

), sauλ = sin(arctan(u

λ )2

)

Im Z∗(u) =

√λ coth(

√λ)(sin(2

(u2 + λ2

) 14 sauλ) cauλ − sinh(2

(u2 + λ2

) 14 cauλ) sauλ

)(u2 + λ2)

14

(cos(2 (u2 + λ2)

14 sauλ) + cosh(2 (u2 + λ2)

14 cauλ)

)

2.2.2 Reduced impedance #2

Z∗(u) =

√λ coth

√λ tanh

√(1 + iu) λ√

(1 + iu) λ

limu→0

Z∗(u) = 1, limu→∞

√(1 + iu)λZ∗(u) =

√λ coth

√λ

limλ→0

Z∗(u) = ZWδ(u/λ) =tanh

√iu/λ√

iu/λ, limλ→∞

Z∗(u) = Z∗G(u) =

1√1 + iu

Re Z∗(u) =coth(

√λ)(sinh(2

(1 + u2

) 14√λ cau) cau + sin(2

(1 + u2

) 14√λ sau) sau

)(1 + u2)

14

(cos(2 (1 + u2)

14√λ sau) + cosh(2 (1 + u2)

14√λ cau)

)

cau = cos(arctan(u)

2), sau = sin(

arctan(u)2

)

Im Z∗(u) =coth(

√λ)(sin(2

(1 + u2

) 14√λ sau) cau − sinh(2

(1 + u2

) 14√λ cau) sau

)(1 + u2)

14

(cos(2 (1 + u2)

14√λ sau) + cosh(2 (1 + u2)

14√λ cau)

)

ER@SE/August 29, 2001 17

0 0.5 1Re Z

0

0.5

Im

Z

2 0 2log Λ

0

1

2

3

log

u c

log

3

Figure 2.5: Diffusion reaction reduced impedance #2. λ = 10−4, 1, 103. Line thick-ness increases with λ. uc = 25407, 3.657, 1.732. Change of log uc with log λ for diffusionreaction reduced impedance #1. λ → 0 ⇒ uc ≈ 1/(2.54 λ), λ → ∞ ⇒ uc →

√3.

2.3 Appendix

@ infinite outside cylindrical

ER@SE/August 29, 2001 18

Symbol Name Reduced impedance Impedance diagram

ZW Warburg1√iu

0 1Re ZW

0

1

Im

ZW

u1

ZG Gerischer1√

1 + iu0 0.5 1

Re ZG

0

0.5

Im

ZG

uc

3

ZGα Modified Gerischer1√

1 + (iu)α0 0.5 1

Re ZGΑ

0

0.4

Im

ZGΑ

uc

3 Α

semi-∞ spherical diffusion1

1 +√iu 0 0.5 1

Re Z

0

0.2

Im

Z uc1

ZWδBounded diffusion

tanh√iu√

iu0 0.5 1

Re ZW∆

0

0.5

Im

ZW∆

uc2.541

ER@SE/August 29, 2001 19

ER@SE/August 29, 2001 20

Bibliography

[1] Armstrong, R. D., Bell, M. F., and Metcalfe, A. A. The A.

C. impedance of complex electrcochemical reactions. In Electrochemistry,vol. 6. The Chemical Society, Burlington House, London, 1978, ch. 3,pp. 98–127.

[2] Barral, G., Diard, J.-P., and Montella, C. etude d’un modelede reaction electrochimique d’insertion. I-Resolution pour une commandedynamique a petit signal. Electrochim. Acta 29 (1984), 239–246.

[3] Drossbach, P., and Schultz, J. Electrochim. Acta 11 (1964), 1391.

[4] Gerischer, H. Z. Physik. Chem. (Leipzig) 198 (1951), 286.

[5] Jacobsen, T., and West, K. Diffusion impedance in planar cylindricaland spherical symmetry. Electrochim. Acta 40 (1995), 255–262.

[6] Lasia, A. Electrochemical Impedance Spectroscopy and its Applications.In Modern Aspects of Electrochemistry, vol. 32. Kluwer Academic/PlenumPublishers, 1999, ch. 2, pp. 143–248.

[7] Llopis, J., and Colon, F. In Proceedings of the Eighth Meeting of theC.I.T.C.E. (London, 1958), C.I.T.C.E., Butterworths, p. 144.

[8] Macdonald, J. R. Impedance spectroscopy. Emphasing solid materialsand systems. John Wiley & Sons, 1987.

[9] Mahon, P. J., and Oldham, K. B. Convolutive modelling of electro-chemical processes based on the relationship between the current and thesurface concentration. J. Electroanal. Chem. 464 (1999), 1–13.

[10] Mohamedi, M., Bouteillon, J., and Poignet, J.-C. Electrochemicalimpedance spectroscopy study of indium couples in LiCl-KCl eutectic at450C. Electrochim. Acta 41 (1996), 1495–1504.

[11] Montella, C. EIS study of hydrogen insertion under restricted diffu-sion conditions. I. Two-step insertion reaction. J. Electroanal. Chem. 497(2001), 3–17.

[12] Randles, J. E. Discuss. Faraday Soc. 1 (1947), 11. 1947, a great yearfor equivalent circuits, wine (in France) and men (in France).

[13] Schuhmann, D. Compt. rend. 262 (1966), 1125.

21

[14] Sluyters, J. H. PhD thesis, Utrecht, 1956.

[15] Sluyters-Rehbach, M. Impedance of electrochemical systems:terminology, nomenclature and representation-part i: cells with metal elec-trodes and liqui solution (IUPAC Recommendations 1994). Pure & Appl.Chem. 66 (1994), 11831–1891.

[16] Sluyters-Rehbach, M., and Sluyters, J. H. In Comprehensive Trea-tise of Electrochemistry, B. C. E. Yeager, J. O’M Bockris and S. S. Eds.,Eds., vol. 9. Plenum Press, New York and London, 19??, p. 274.

[17] Sluyters-Rehbach, M., and Sluyters, J. H. Sine wave methods inthe study of electrode processes. In Electroanalytical Chemistry, A. J. Bard,Ed., vol. 4. Marcel Dekker, Inc;, New York, 1970, ch. 1, pp. 1–128.

[18] VanderNoot, T. J. Limitations in the analysis of ac impedance datawith poorly separated faradaic and diffusional processes. J. Electroanal.Chem. 300 (1991), 199–210.

[19] Warburg, E. Uber das Verhalten sogenannter unpolarisierbarerElectroden gegen Wechselstrom. Ann. Phys. Chem. 67 (1899), 493–499.

[20] Wolfram, S. Mathematica Version 3. Cambridge University Press, 1996.

[21] Yzermans, A. B. PhD thesis, Utrecht, 1965.

ER@SE/August 29, 2001 22


Recommended