+ All Categories
Home > Documents > ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual...

ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual...

Date post: 27-Mar-2021
Category:
Upload: others
View: 2 times
Download: 1 times
Share this document with a friend
53
1 Kenneth R. Laker, University of Pennsylvania, updated 03Feb15 ESE 570 MOS TRANSISTOR THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation
Transcript
Page 1: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

1Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

ESE 570 MOS TRANSISTOR THEORY – Part 2

GCA (gradual channel approximation) MOS Transistor ModelStrong Inversion Operation

Page 2: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

2Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

CMOS = NMOS + PMOS

Page 3: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

3Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

VGS

<< VT0

Two-Terminal MOS Capacitor -> nMOS Transistor

Substrate or Bulk B p

Depletion region

-

-

-

--

-

- - -

-

Immobile acceptor

ions

VS

VG V

D

NMOS TRANSISTOR IN CUTOFF REGION

Page 4: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

4Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

Two-Terminal MOS Capacitor -> nMOS Transistor

VGS

= VT0n

+ δ Onset of INVERSION

QB0Q

I

-

- ---

- - - --

-- -

-

VG V

D

Page 5: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

5Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

MOS Transistor Regions of Operation

n+ n+-

- --

- - --

- -

-

Page 6: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

6Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

MOS Transistor Regions of Operation

n+ n+-

- - -- - - -

-

- ---

Page 7: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

7Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

MOS Transistor Regions of Operation

VGD

= VGS

– VDS

< VT0

VCS

(y) = VDSAT

VDS

- VDSAT

n+n+

z-

--

- - - --

- --

-

VDS

= VD ≥ V

DSAT = V

GS - V

T0

Page 8: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

8Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

VG = V

GS > V

T0

xy

VD = small

zn+

zy

n+

dR=−dyW

01

7nQ I 0 y 11

µn = U0 = electron mobility = cm2/{V sec}

.=V seccm2

cm2

C

and

MOSFET CURRENT – VOLTAGE CHARACTERISTICSV

GD > V

T0

Page 9: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

9Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

VG = V

GS > V

T0

z

VD = V

DS

Mobile charge in inverted channel:

IV=

1R

Ey >> E

x, E

z

n+ n+

VCS

(y = 0) = VS = 0

VCS

(y = L) = VDS

QI(y) = -C

ox [V

GS – V

CS(y) - V

T0]

VCS

(y)

Page 10: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

10Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

QI(y) = -C

ox [V

GS – V

CS(y) - V

T0]

VCS

(y = 0) = VS = 0

VCS

(y = L) = VD

0 ≤ VCS

(y) ≤ VDS

dVCS

dVCS

dVCS

VGS

- VCS

- VT0

(VGS

– VT0

)VCS

- V2CS

/2 VCS

= VDS

VCS

= 0

dV CS= I D dR=I D

W 7nQ I 0 y1dy

Page 11: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

11Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

KP=7nCox=0cm2

Vs10CV

1cm2 1=

C / sV 2 =

AV 2

KP -> Transconductance Parameter

Page 12: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

12Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

ID(V

DS = V

DSAT) and V

DSAT = V

GS - V

T0

Assumptions:

Page 13: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

13Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

IN GENERALI

D(V

DS = V

DSAT) = I

D(sat)

@VDS

= VDSAT

= VGS

- VT0

I D 0 sat 1=7nCox

2WL0V GS−V T0 1

2

SATLINEARI

D(sat)

Page 14: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

14Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

2 L

VDSAT

V DS−V DSAT

1

1−2 LL

≈1

1−6V DS≈1,6V DS

6V DS≪1for

n+ n+

Page 15: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

15Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

ID = f(V

GS, V

DS)

6≠ 0

6≠ 06≠ 0

Compatible Eqs. ?

Page 16: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

16Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

DISCONTINUOUS! @ V

DS = V

DSAT

Page 17: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

17Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

6V DS≪1

Page 18: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

18Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

6V DS≪1

V T=V T0,30/∣28F−V SB∣−/∣28F∣1

Page 19: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

19Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

(VT = V

Tn > 0)

(VT = V

Tp < 0)

VGS

< VT, V

DS > V

GS - V

T

VGS

< VT, V

DS ≤ V

GS - V

T

VGS

> VT, V

DS ≥ V

GS - V

T

VGS

> VT, V

DS < V

GS - V

T

V GD.V T

V GD-V T

V GD-V T

V GD.V T

Page 20: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

20Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

=> SATB

S

G

D

Page 21: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

21Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

=> SAT

Page 22: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

22Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

n+ n+

Page 23: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

23Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

Eox=V GSt oxvolts /cm E= q

4siN A x volts /cm

Page 24: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

24Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

2007

0.0450.80

2005200320011999199719951993

0.090.130.180.250.350.60Feature Size (µm)

Year

Historical reduction in min feature size for typical CMOS process

Eox=V GS

t oxvolts /cm E= q

4siN A x volts /cm

Page 25: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

25Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

Load Capacitance (Ccap) – WL (1/tox)

Gate Delay (T) – V Ccap/I

Page 26: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

26Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

n+n+

n+n+

LD LD

Page 27: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

27Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

Depletion Region Capacitances

(nMOS, pMOS)Model

Page 28: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

28Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

Wov

Wov

CGS0

(overlap) = Cox

WLD

CGD0

(overlap) = Cox

WLD

CGB0

(overlap) = Cox

Wov

LM

SPICE: Cox

LD = CGS0 = CGD0 in F/m; C

oxW

ov = CGB0 in F/m

Wn+ n+

LD

Recall Cox

= COX and tox

= TOX in SPICE

MOSFET CAPACITANCES

Page 29: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

29Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

poly= =SiO

2 n+SiO

2

pWov

Wov

CBG0

Weff

CBG0

– Gate-to-Bulk Overlap Capacitance

CGB0

= Cox

Wov

LM

(conservative estimate)

Gate Extension Design Rule

C4 = 2λ = Wov

Page 30: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

30Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

MOSFET – Saturation Region

Leff

Leff

Leff

n+ n+

n+n+

n+ n+

Cgb, Cgs and Cgd

Page 31: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

31Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

Gate-to-Bulk, - Drain & - Source Oxide Capacitances Summary

Application of Oxide Capacitance Model:1. Approximate: For hand calculations, assume that Cgb, Cgd and Cgs are connected in parallel for each region of operation, i.e. Cg(tot) = C

oxWL

eff + 2C

GB0 + C

GD0 + C

GS0 Cut-off Region;

Cg(tot) = Cox

WLeff

+ 2CGB0

+ CGD0

+ CGS0

Linear Region;Cg(tot) = 2/3 C

oxWL

eff + 2C

GB0 + C

GD0 + C

GS0 Saturation Region.

and use the maximum value Cg(tot) = Cox

WLeff

+ 2CGB0

+ CGD0

+ CGS0

+ 2CGB0

0 + 2CGB0 0 + 2CGB0

Page 32: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

32Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

Depletion Region Capacitances -> Cdb

, Csb

n+ n+

Page 33: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

33Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

Depletion Region Capacitances -> Cdb

, Csb

C j 0V 1=∣dQ j

dV∣=

AC j0

01, V80

1m=

0AS , AD 1⋅CJ

01, VPB

1MJ

where

CJ=C j0=4Sixd

=/ q4Si20N AN D

N A,N D1 180

(F/cm2)

Qj = depletion-region charge A = junction area

V = Ext Bias --> VSB, VDB

(F)

m = MJ = grading coefficientm = ½ for abrupt junction

[AS, AD -> Source, Drain Areas in SPICE][CJ -> Cj0 in SPICE]

[PB -> O0 in SPICE]

[MJ -> m in SPICE]

+

n+n+N

D

Page 34: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

34Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

Depletion Region Capacitances -> Cdb

, Csb

Assume Weff

= W

Page 35: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

35Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

SUMMARY n+, p Junctions

C j 0V 1=AC j0

01, V80

1m=

0AS , AD1⋅CJ

01, VPB

1MJ (F)

(F/cm2)

Cj(0) = A Cj0 when V = 0

CJ=C j0=/ q4Si20N AN D

N A,N D1 180

[AS, AD -> Source, Drain Areas in SPICE][CJ -> Cj0 in SPICE]

[PB -> O0 in SPICE]

[MJ -> m in SPICE]

where SPICE Parameters

Page 36: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

36Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

n+, p Junctions

EQUIVALENT LINEAR LARGE SIGNAL CAPACITANCE

C eq=2Q2V

=Q j 0V 21−Q j 0V 11

V 2−V 1=

1V 2−V 1

∫V 1

V 2C j 0V 1dV

C j 0V 1≈C eq=AC j0

V 2−V 1⋅

80

1−m[01,

V 2

8011−m

−01,V 1

8011−m

]

0 < Keq < 1 --> Voltage Equivalence Factorwhere V1 ≤ V ≤ V2

V = Ext Bias --> VSB, VDB for nMOS

C j 0V 1=AC j0K eq=0AS , AD1⋅CJ⋅K eq

VBS, VBD for pMOS

C j 0V 1=AC j0

01, V80

1m=

0AS , AD1⋅CJ

01, VPB

1MJ voltage

dependent

voltage independent

approximation

NOTE

Page 37: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

37Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

K eq 0sw1=80sw

0V 2−V 1101−m0 sw11[01,

V 2

80sw11−m0 sw1

−01,V 1

80sw11−m0 sw1

]

m(sw) = ½ for an abrupt junction

[PS, PD -> Source, Drain Perimeters in SPICE][CJSW -> Cjsw in SPICE]

[PBSW -> O0SW in SPICE]

[MJSW -> m(sw) in SPICE]

[XJ -> xj in SPICE]

(F/cm2)

(F/cm)

C jsw0V 1=∣dQ jsw

dV∣=

PC jsw

01, V80sw

1m0sw 1=

0PS , PD1⋅CJSW

01, VPBSW

1MJSW (F)

C j 0V 1=∣dQ j

dV∣=

AC j0

01, V80

1m=

0AS , AD1⋅CJ

01, VPB

1MJ (F)

Recall for n+, p junctions

Page 38: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

38Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

C jsw0V 1=∣dQ jsw

dV∣=

PC jsw

01, V80sw

1m0sw 1=

0PS , PD1⋅CJSW

01, VPBSW

1MJSW

where V1 ≤ V ≤ V2

V = Ext Bias --> VSB, VDB for nMOSVBS, VBD for pMOS

voltage dependent

voltage independent

approximation

Page 39: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

39Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

4

CJ = 1.35 x 10-8 F/cm2

CJSW = 5.83 x 10-12 F/cmPB = 0.896 VPBSW = 0.975 VXJ = 1 x 10-4 cmMJ = MJSW = ½

n+ n+D S

Page 40: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

40Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

CJ = 1.35 x 10-8 F/cm2

CJSW = 5.83 x 10-12 F/cmPB = 0.896 VPBSW = 0.975 VXJ = 1 x 10-4 cmMJ = MJSW = 1/2

C j 0V 1=AC j0K eq=AD⋅CJ⋅K eq

C jsw0V 1=PC jsw K eq0sw 1=PD⋅CJSW⋅K eq 0sw1

K eq 0sw1=PBSW

0V 2−V 1101−MJSW 1[01,

V 2

PBSW1

1−MJSW

−01,V 1

PBSW1

1−MJSW

]

K eq=PB

0V 2−V 1101−MJ 1[01,

V 2

PB11−MJ

−01,V 1

PB1

1−MJ

]

2⋅0.896V05V−0.5V 1

[01, 5V0.896V

11/2

−01, 0.5V0.896 v

11 /2

]=0.52=

= 2⋅0.975V05V−0.5V 1

[01, 5V0.975V

11 /2

−01, 0.5V0.975v

11/2

]=0.53≈K eq

Page 41: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

41Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

CJ = 1.35 x 10-8 F/cm2

CJSW = 5.83 x 10-12 F/cmPB = 0.896 VPBSW = 0.975 VXJ = 1 x 10-4 cmMJ = MJSW = 1/2

C j 0V 1=AC j0K eq=AD⋅CJ⋅K eq=055 x 10−8cm21⋅01.35 x10−8F /cm21⋅0.52=3.86 fFC jsw0V 1=PC jsw K eq0sw 1=PD⋅CJSW⋅K eq 0sw1

02.5 x 10−3 cm1⋅05.83 x10−12F /cm1⋅0.53=7.72 fF=

Cdb=AD⋅CJ⋅K eq,PD⋅CJSW⋅K eq0sw 1=11.58 fF

Page 42: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

42Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

Cgb

= COX WLeff

+ CGB0C

gd = (1/2) COX WL

eff + CGD0

Cgs

= (2/3) COX WLeff

+ CGS0

OXIDE CAPACITANCES

C j 0V 1=0AS , AD 1⋅CJ

01, VPB

1MJ ≈0AS , AD 1⋅CJ⋅K eq

C jsw 0V 1=0PS , PD1⋅CJSW

01, VPBSW

1MJSW ≈0PS , PD1⋅CJSW⋅K eq0sw1

DEPLETION CAPACITANCESC

sb = C

j(V

SB) + C

jsw(V

SB)

Cdb

= Cj(V

DB) + C

jsw(V

DB)

K eq=PB

0V 2−V 1101−MJ 1[01,

V 2

PB11−MJ

−01,V 1

PB1

1−MJ

]

K eq0 sw1=PBSW

0V 2−V 1101−MJSW 1[01,

V 2

PBSW1

1−MJSW

−01,V 1

PBSW1

1−MJSW

]

Assume: AS = AD

Assume: PS = PD

MOSFET CAPACITANCE SUMMARY

Leff

= LM

- 2LD

Page 43: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

43Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

Short Channel Effects – Leff

→ xj

● Velocity saturation limit● Reduced electron, hole mobility● Reduced threshold voltage V

T0

Narrow Channel Effects – W → xdm

● Increased threshold voltage VT0

Sub-threshold Current – VGS

< VT0

● Non-zero drain current when VGS < VT0

Page 44: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

44Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

7n 0eff 1≈7n0

1,50V GS−V T 1

v sat

I D 0sat 1=W v satCox 0V GS−V T 1

70=0cmsec

1/0Vcm

1=cm2

V sec

SHORT CHANNEL ISSUES

(Lvl 3)

Page 45: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

45Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

n+ n+

pn+depletion

region

pn+depletion

regionVGS

induceddepletion

region

SG

D

n+ n+

SG

D

SHORT CHANNEL ISSUES - CONT.Short Channel Effect – L

eff → x

j (source, drain diffusion depth)

QB0

QB0(sc)

VT0

(short channel) = VT0

(long channel) - ΔVT0

V T00long channel 1=V FB−28F−Qox

C ox−QB0

CoxQ

B0(sc) << Q

B0

xj

Leff

Leff

22

Page 46: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

46Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

Gate Extension design ruleW

NARROW CHANNEL ISSUES

Narrow Channel Effect – W → xdm

(depletion region depth)

gate-oxide field-oxidefield-oxide

V T00long channel 1=V FB−28F−Qox

C ox−QB0

Cox

QB0(nc)

QB0(nc)

> QB0

Page 47: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

47Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

n≈1,4Si tox4ox t Si

sub-threshold swing coefficient:

[SPICE Parameter: N0 -> n sub-threshold swing coefficient

ID (sub-threshold) is leakage current for strong-inversion operation

NOTE:

ID (sub-threshold) is primary current for weak-inversion operation

I D 0 subthreshold 1=I S eV GSn kT /q 01−e

−∣V DS∣kT /q 101,6V DS 1

I S≈7CoxWL

0 kTq

2

1

+ J. Rabaey, A. Chandrakasan and B. Nikolic; Digital Integrated Circuits 2nd Edition, Prentice Hall, 2003, pp99.

+

Page 48: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

48Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

(MOSIS: Level 3 model used for min feature size ≥ 1 µm)

(MOSIS: BISIM3 model used for min feature size < 1 µm)

Page 49: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

49Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

EKV = Enz-Krummenacher-Vittoz (EKV) model is for low-power analog circuit simulation.

BSIM4v6.5 (2009)

Complexity of SPICE Models vs. Time

http://people.rit.edu/lffeee/Spice_Parameter_Calculator.XLSSPICE Parameter Calculator – Rochester Institute of Technology

Page 50: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

50Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

Name Model Parameters Units LEVEL Model type (1, 2, or 3) L Channel length (designer input) mW Channel width (designer input) mLD Lateral diffusion length mWD Lateral diffusion width m

VTO Zero-bias threshold voltage VU0 Mobility cm**2/VsKP Transconductance A/V**2GAMMA Bulk threshold parameter V**1/2PHI Surface potential V LAMBDA Channel-length modulation 1/V (LEVEL = 1 and 2)

RD Drain ohmic resistance OhmsRS Source ohmic resistance OhmsRG Gate ohmic resistance OhmsRB Bulk ohmic resistance OhmsRDS Drain-source shunt resistance OhmsRSH Drain-source diffusion sheet Ohms/sq. ResistanceNRS Number of squares of RD, RS

IS Bulk p-n saturation current AJS Bulk p-n saturation/current area A/m**2PB Bulk p-n potential V

MOS SPICE MODEL PARAMETERS

Page 51: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

51Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

Name Model Parameters Units LEVEL Model type (1, 2, or 3) CBD Bulk-drain zero-bias p-n cap (not used) FCBS Bulk-source zero-bias p-n cap (not used) FCJ Bulk p-n zero-bias bottom cap/area F/m**2CJSW Bulk p-n zero-bias perimeter cap/length F/mMJ Bulk p-n bottom grading coefficient MJSW Bulk p-n sidewall grading coefficient FC Empirical bulk p-n forward-bias cap coefficientCGSO Gate-source overlap cap/channel width F/m CGDO Gate-drain overlap cap/channel width F/m CGBO Gate-bulk overlap cap/channel width F/m NSUB Substate doping density 1/cm**3NSS Surface-state density 1/cm**2NFS Fast surface-state density 1/cm**2TOX Oxide thickness m TPG Gate material type:

+ 1 = opposite of substrate, - 1 = same as substrate, 0 = aluminum

XJ Metallurgical junction depth m

MOS SPICE MODEL PARAMETERS - CONT.

Page 52: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

52Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

Name Model Parameters Units LEVEL Model type (1, 2, or 3) UCRIT Mobility degradation critical field V/cm

(LEVEL=2) UEXP Empirical mobility degradation exponent (LEVEL=2) VMAX Maximum carrier drift velocity (Level=2) m/sNEFF Empirical channel charge coefficient (LEVEL=2) XQC Empirical Fraction of channel charge attributed to drain (Level=2)DELTA Empirical channel width effect on V

T

THETA Empirical mobility modulation (LEVEL=3) 1/V ETA Empirical static feedback on V

T (LEVEL=3)

KAPPA Empirical saturation field factor (LEVEL=3) KF Flicker noise coefficient AF Flicker noise exponent

MOS SPICE MODEL PARAMETERS - CONT.

Page 53: ESE 570 MOS TRANSISTOR THEORY – Part 2ese570/spring2015/ESE... · THEORY – Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation. Kenneth

53Kenneth R. Laker, University of Pennsylvania, updated 03Feb15

KP (in A/V2) = k'n (k'

p)

VT0 (in volts) = VTn

(VTp

)U0 (in cm2/{Vs}) = µ

n (µ

p)

Level 3 SPICE Parameters


Recommended