+ All Categories
Home > Documents > ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

Date post: 10-Apr-2022
Category:
Upload: others
View: 7 times
Download: 0 times
Share this document with a friend
241
Transcript
Page 1: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …
Page 2: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

ESTIMATING SHRINK/SWELL IN EXPANSIVE

SOILS USING SOIL SUCTION

by

SYDNEY WARREN AUSTIN, B. Eng.

A THESIS

IN

CIVIL ENGINEERING

Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for

the Degree of

MASTER OF SCIENCE

IN

CIVIL ENGINEERING

Approved

Accepted

May, 1987

Page 3: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

ACKNOWLEDGMENTS

I would Ifke to record my sincere apprecfatfon to

Dr. Warren K. Wray. v/ho served as my major advfsor, for

hts guldance durtng the research and preparatfon of thfs

thesfs. I would also Ifke to thank the other roembers of

my thesfs commfttee, Dr. Bflly Claborn, and Dr. Rfchard

Zartman for thefr helpfuî suggestfons.

Thanks to Mr. Wesley Bratton and Mrs. Dee Hardfn

for the graphfc presentatfon and aîso to Mr. Norman

McCleodf Mr. Cesar Garcfa. Mr. Lfm Boon, and Mr. Wf11fam

Escajeda for performfng laboratory tests and ffeld mea-

surements.

To my wffe Denfse for her support, patfence. and

belfef fn me. Specfal apprecfatfon to my mothei—fn-law,

Mrs. Alma Hector, for her assfstance and support.

The research on whfch thfs thesfs fs based was

ffnanced under a Natfonal Scfence Foundatfon Grant No.

ECE-8320493.

Page 4: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS î i

TABLE OF CONTENTS f f f

ABSTRACT . vfi

LIST OF TABLES vfff

LIST OF FIGURES x

CHAPTER I. INTRODUCTION l

Dîscussîon of the Problem 1

Objectfves and Scope 6

CHAPTER II. BACKGROUND: STATE OF THE ART . . . . 7

Theory of Sof1 Suction and Water

Mfgratfon 10

So î 1 Suct i on 10

Mechan i st i c Approach . . . . II

Thermodynamic Approach . . . 14

Water Migration 14

Equ i1i br i um Suct i on Prof i1es . . 15

Predictive Methods 16

Oedometer Test 19

Empirical Procedure 24

Suction Methods 28

Lytton-Gardner-McKeen Model 28

Snethen Model (1980a) . . . 32

f f f

Page 5: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

CHAPTER III

CHAPTER IV.

Mftchel1 and Aval1e

Model (1984) 34

Dffferentfal Heave 36

FIELD AND LABORATORY

INVESTIGATIONS 39

General . . . . . . . . 39

Descrfptfon of Sftes. . . . . . . . . 40

Amarfllo . . . . . . . . . . . . 40

College Statfon 40

Sof 1 Stratfgraphy 41

Amar f 11 o 41

College Statfon 43

Ffeld Investfgation 45

Slab Model 45

Intrumentatfon and Ffeld

Measurements 54

C1 fmate 59

Amar f 1 1 o 59

College Statfon 63

Laboratory Studfes 65

Calfbratfon Curves 73

Psychrometers 73

Mofsture Cel 1s ' . 76

PESULTS AND ANALYSIS 80

Dfscussfon of Results 80

Inftfal Suctfon Proffles . . . . 80

Inftfal Mofsture Proffles . . . . 82

fv

Page 6: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

Observed Surface Heave 84

Amarf 1 1o 84

Co11ege Stat f on 92

Elevation of Deep Benchmarks . . 99

Amarf 1 1o 99

Co11ege Stat f on 99

Soîl Suction Profiles 101

Amarillo 101

College Station 108

Edge Moisture Variation

Distances 111

Analysis of Results 114

Mitchell and Avalle Model . . . . 114.

Amar i 11 o 115

College Station 115

Lytton-Gardner-McKeen Model . . . 115

CHAPTER V. CONCLUSIONS AND RECOMMENDATIONS . . . 125

Conclusions 125

Recommendations for Further

Research 126

LIST OF REFERENCES 128

APPENDICES APPENDIX A: 2- AND 3-DIMENSIONAL

ELEVATION PLOTS . . . . 137

APPENDIX B: LABORATORY TEST DATA . . 158

APPENDIX C: TYPICAL SOIL SUCTION PROFILES 173

Page 7: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

APPENDIX D: RESULTS AND COMPLETE LISTING OF COMPUTER PR0GRAM,S0ILSUK2 . . . . 180

APPENDIX E: FIELD MEASUREMENTS OF SOIL SUCTION 211

vi

Page 8: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

ABSTRACT

A field and laboratory study was started fn 1985

to evaluate the engîneering behavior of expansive clay

soils. The work was sponsored by the National Science

Foundation (NSF) in order to provîde a data base to im-

prove the design techniques for structures founded on

expansive soils. The preliminary results of this study

(for two research sites of contrasting c1imates) were

used to test the universality of a recently developed

soi1 suction method to estîmate soi1 movement beneath

slab-on-ground foundations. The soi1 suction method was

also tested with respect to different climatic condi-

tions. In addition, the relationshîp between the theo-

retîcal edge moisture variation distance and climate was

evaluated.

vif

Page 9: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

LIST OF TABLES

Table Page

2-1 Summary of Some Heave Predîction Procedures 20

3-1 Mean Soi1 Properties at Various Depths for the Amarillo Site 67

3-2 Mean Soîl Properties at Varîous Depths for the College Station Site 68

3-3 In Sttu Sotl Mofsture Content and Sotl Suctfon Values for the Amartllo Sfte . . . 69

3-4 In Sftu Soil Moisture Content and Soî1 Suction Values for the College Station Site 70

3-5 Percentages of Clay Minerals fn Clay Frac-tion from the X-Ray Diffractfon Analysfs for the Amarfllo Site 71

3-6 Percentages of Clay Minerals in Clay Frac-tion from the X-Ray Diffraction Analysts for the College Station Stte 72

4-1 Predicted and Observed Heave (Shrink) for Selected Points on the Longttudinal Centerline of the Slab Model, Using the Mitchel1 and Avalle Procedure for the Amarillo Site 116

4-2 Predicted and Observed Heave (Shrink) for Selected Points on the Longitudinal Centerline of the Slab Model, Usîng the Mitchell and Avalle Procedure for College Station Site , 117

4-3 Summary of Predîcted Total and Differentfal hleave, Using the Lytton-Gardner-McKeen Model for the Amarillo and College Statfon Sites 120

B-1 Conversion Table for Vartous Unfts of Sofl Suctton 159

vtt i

Page 10: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

B-2 Reported Soi1 Classifîcatton and Physical Properties of Randal1 and Lufkîn Clay Sertes from United States Department of Agriculture, Soîl Conservation Service . . 160

B-3 In Sttu Sotl Properttes for Amartllo Sfte— Boring Number 39 161

B-4 In Sftu Soil Properttes for Amarillo Stte— Bortng Number 45 162

B-5 In Situ Soil Properties for Amarillo Site— Boring Number 51 . . . . , 163

B-6 In Sttu Soîl Properties for College Station Site—Boring Number 40 164

B-7 In sttu soil properties for College Station site—Boring Number 45 165

B-8 In Situ Soîl Properties for College Statton site—Boring Number 51 166

B-9 Initial In Situ Soi1 Suction for the Amarillo Site 167

B-10 Initial Sot1 Moisture Content for the Amarillo Site 168

B-11 Initial In Situ Soi1 Suction for the College Station Site 169

B-12 Initial Soi1 Moisture Content for the College Station Site 170

B-13 Soi1 Parameters Used tn Mitchel1 and Avalle Procedure to Predict Total Heave for the Amarillo Site 171

B-14 Soîl Parameters Used in Mitchel1 and Avalle Procedure to Predict Total Heave for the College Station Site 172

E-1 Monthly Soi1 Suction Measurements for the Amarillo Site 212

tx

Page 11: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

LIST OF FIGURES

Figure Page

2-1 Theoretical Relattonshtp Between Effecttve Stress Parameter, X, and Degree of Saturation, S , and Results for a Cohesfonless bîlt 13

2-2 Types of Suctfon Proftles as a Functton of Conftguratton of Impermeable Covered Surface 17

2-3 Pore Water Pressure Profiles Beneath an Impermeable Covered Surface as a Func-of Location of Water Table 18

2-4 Laboratory Relationship Between Void Ratio and Effective Pressure 22

2-5 Soi1 Pressure Diagram as a Function of Depth 23

2-6 Potential Expansiveness of a Soi1 as a Function of PI of Whole Sample and Clay Fraction of Whole Sample 26

2-7 Curve Showing Relattve Change tn Potentîal Heave with Depth 27

2-8 Instability Index as a Functton of Plastictty Index 37

3-1 Soi1 Stratigraphy for the Amartllo Stte Showîng Soi1 Type, Atterberg Ltmits, In Sttu Natural Moisture Content, and Per-cent of Clay 42

3-2 Soil Stratigraphy for the College Station Site Showîng Soi1 Type, Atterberg Limits, In Situ Natural Moisture Content, and Percent of Clay 44

Page 12: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

3-3 Plan Vfew of Typtcal Slab Model Showtng the Arrangement of the Instrument Stacks (Bortngs 1-34), Locatton of Bortngs Taken for Soi1 Classiftcation and Labora-tory Testfng (Borfngs 35-52), Model Dt-menstons, and Locatton of Perfmeter Grade Beam 46

3-4 Amarillo Slab Model Looking East Showtng Placement of the 2-ln. Thtck Sand Cover on the Plastic Membrane During Construction . . . . . 48

3-5 Completed Amarillo Slab Model Looktng West 48

3-6 Schematic of Elevation Point Construction . 50

3-7 Grid Layout of Elevatton Points on the Slab Model and Uncovered Soi1 Adjacent to the Covered Surface for the Amarillo Stte 51

3-8 Grid Layout of Elevation Points on the Slab Model and Uncovered Soî1 Adjacent to the Covered Surface for the College Statton Stte 52

3-9 Schematic of Deep Benchmark Construction . . 53

3-lOa Elevatton View of the Arrangement and Dîstribution of Subsurface Instrumenta-tion Along the Ltne of Boring Numbers 1-17, for the Amarillo Stte . . . . . . . 55

3-lOb Elevatton Vtew of the Arrangement and Distribution of Subsurface Instrumenta-tton Along the Ltne of Boring Numbers 18-34, for the Amartllo Site 56

3-1la Elevation View of the Arrangement and Distribution of Subsurface Instrumentatfon Along the Line of Boring Numbers 1-17, for the College Station Site 57

3-1Ib Elevation Vtew of the Arrangement and Distribution of Subsurface Instrumentatfon Along the Lfne of Boring Numbers 18-34, for the College Station Site 58

xt

Page 13: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

3-12 An Approxtmate Relattonship Between Thornth-waite Moîsture Index and Edge Moisture Vartatton Distance 61

3-13 Monthly Dtstributton of Prectpitatton and 44 Year Mean Monthly Ratnfal1 at the Amarillo Sfte 62

3-14 Monthly Dîstribution of Precfpitatfon at the College Statton Site 64

3-15 Soil Suction Versus Moisture Content Relationship for Soil at Selected Depths for the Amarillo Site 74

3-16 Sot1 Suction Versus Moisture Content Relationship for Soi1 at Selected Depths for the College Station Site 75

3-17 A Typtcal Calibratîon Curve for the Psy-chrometers 77

3-18 A Typical Calibration Curve for the Mois-ture Cells 79

4-1 Mean Initial Soi1 Suction Profiles for the Amarillo and College Statton Sites . . 81

4-2 Mean Initial Soîl Moîsture Content Pro-ftles Showing Soi1 Stratigraphy for the Amarillo and College Station Sites . . . . 83

4-3 2- and 3-Dtmensiona1 Representattons of the Changes in Relative Surface Eleva-tions After Months 1 and 12 with Respect to the Elevation at the Time of Stte In-stal latîon for the Annarillo Site 85

4-4 Monthly Changes of Surface Elevation for Months 1 to 12, of the Longitudinal Centerline, Section A-A, of Slab Model for the Amarillo Site 87

4-5 Monthly Changes in Surface Elevation of Indivîdual Points on the Longitudinal Centerline, Section A-A, of the Slab Model for the Amarillo Site 89

xi i

Page 14: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

4-6 2- and 3-Dtmenstona1 Representattons of the Changes tn Relattve Surface Elevatfons After Months 2 and 12 wtth Respect to the Elevatton at the Tfme of Stte Installatfon for the College Station Site 93

4-7 Monthly Changes of Surface Elevattons for Months 2 to 12, of the Longttudtnal Centerline, Section B-B, of the Slab Model for the College Statton Stte 95

4-8 Monthly Changes tn Surface Elevatfon of Indfvtdual Pofnts on the Longttudtnal Centerltne, Sectton B-B, of the Slab Model for the College Statton Sfte 97

4-9 Monthly changes fn Elevatton of Deep Benchmarks for the Amartllo and College Statton Sftes 100

4-10 Monthly Changes fn Sotl Suctton wtth Depth for Instrument Stack No. 1, Located 3 ft Outstde the Covered Surface for the Amarfllo Site 102

4-11 Monthly Changes fn Sot1 Suctton wtth Depth for Instrument Stack No. 20, Located 2 ft Instde the Covered Surface for the Amartllo Stte 103

4-12 Monthly Changes fn Sof1 Suctton at Selected Depths for Stacks Nos. 1-9, for the Amartllo Stte 106

4-13 Monthly Changes fn Sof1 Suctton wtth Depth for Instrument Stack No. 1, Located 3 ft Outsîde the Covered Surface for the College Statton Stte 109

4-14 Monthly Changes fn Soî1 Suctton wtth Depth for Instrument Stack No. 11, Located 10 ft Instde the Covered Surface for the College Statton Stte 110

4-15 Monthly Changes fn Sofl Suctfon at Selected Depths for Stacks Nos. 9-17, for the College Statfon Stte 112

xt tt

Page 15: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

4-16 Inîtfal Fîeld Suctfon Proffle for the Uncovered Surface and Equilibrium, Wet, and Dry Suction Profiles Beneath the Covered Surface at the Amartllo Sfte . . . 122

4-17 Inîtfal Fîeld Suctton Profile for the Uncovered Surface and Equfltbrium, Wet, and Dry Suctton Profiles Beneath the Covered Surface at the College Station Site . . . . , 123

A-1 2- and 3-Dtmenstona1 Representation of Changes tn Relative Surface Elevation After Month 2 with Respect to the Eleva-tion at the Time of Site Installation for the Amartllo Sfte 138

A-2 2- and 3-Dîmensiona1 Representation of Changes tn Relative Surface Elevatfon After Month 3 with Respect to the Eleva-tton at the Ttme of Site Installatton for the Amarillo Site . . , 139

A-3 2- and 3-Dimensiona1 Representatton of Changes in Relative Surface Elevation After Month 4 with Respect to the Eleva-tion at the Time of Site Installatîon for the Amarillo Site 140

A-4 2- and 3-Dimensiona1 Representatton of Changes in Relative Surface Elevatton After Month 5 with Respect to the Eleva-tion at the Time of Site Installation for the Amartllo Site 141

A-5 2- and 3-Dimensiona1 Representatton of Changes in Relative Surface Elevatton After Month 6 with Respect to the Eleva-tton at the Time of Site Installation for the Amarillo Site 142

A-6 2- and 3-Dîmensiona1 Representation of Changes in Relative Surface Elevation After Month 7 with Respect to the Eleva-tton at the Time of Site Installation for the Amarillo Site 143

X I V

Page 16: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

A-7 2- and 3-Dtmensiona1 Representation of Changes tn Relative Surface Elevatfon After Month 8 with Respect to the Eleva-tfon at the Tîme of Sîte Installatîon for the Amarîllo Site 144

A-8 2- and 3-Dimensfona1 Representatfon of Changes fn Relative Surface Elevatfon After Month 9 wîth Respect to the Eleva-tfon at the Ttme of Sfte Installatfon for the Amartllo Stte . . » . , 145

A-9 2- and 3-Dimensîona1 Representatîon of Changes fn Relative Surface Elevatfon After Month 10 wtth Respect to the Eleva-tion at the Time of Site Installation for the Amarillo Stte 146

A-10 2- and 3-Dimensional Representation of Changes in Relatîve Surface Elevation-After Month 11 with Respect to the Eleva-tîon at the Time of Site Installatton for the Amarîllo Site 147

A-11 2- and 3-Dimensional Representation of Changes in Relative Surface Elevation After Month 4 wîth Respect to the Eleva-tion at the Time of Site Installation for the College Station Site 148

A-12 2- and 3-Dimensîona1 Representation of Changes in Relative Surface Elevation After Month 5 with Respect to the Eleva-tion at the Time of Site Installatton for the College Station Site 149

A-13 2- and 3-Dimensiona1 Representatîon of Changes tn Relative Surface Elevation After Month 6 with Respect to the Eleva-tion at the Time of Site Installation for the College Station stte 150

A-14 2- and 3-Dimensional Representation of Changes fn Relative Surface Elevation After Month 7 with Respect to the Eleva-tion at the Time of Site Installation for the College Station site 151

XV

Page 17: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

A-15 2- and 3-Dimensiona1 Representation of Changes in Relative Surface Elevation After Month 8 wîth Respect to the Eleva-tfon at the Ttme of Sfte Installatton for the College Statton Stte 152

A-16 2- and 3-Dimensiona1 Representation of Changes fn Relattve Surface Elevatfon-After Month 9 with Respect to the Eleva-tton at the time of Site Installatton for the College Station Site 153

A-17 2- and 3~Dimensional Representatton of Changes in Relative Surface Elevation After Month 10 with Respect to the Eleva-tfon at the Ttme of Stte Installatton for the College Station Stte 154

A-18 2- and 3-Dtmensiona1 Representation of Changes fn Relative Surface Elevatton After Month 11 with Respect to the Eleva-tion at the Time of Site Installation for the College Station Site 155

A-19 Monthly Changes of Surface Elevation for Months 2 to 12, of the Lateral Centerline of the Slab Model for the College Station Site 156

C-1 Monthly Changes in Soi1 Suction with Depth for Instrument Stack No. 26, Located 20 ft Inside the Covered Surface for the Amarillo Stte 174

C-2 Monthly Changes in Soil Suction wtth Depth for Instrument Stack No. 28, Located 10 ft Inside the Covered Surface for the Amarillo Site 175

C-3 Monthly Changes in Soil Suction wtth Depth for Instrument Stack No. 32, Located 2 ft Inside the Covered Surface for the College Station Sfte 176

C-4 Monthly Changes fn Soî1 Suction with Depth for Instrument Stack No. 3, Located 2 ft Instde the Covered Surface for the College Statfon Sfte 177

XV i

Page 18: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

C-5 Monthly Changes tn Soi1 Suction with Depth for Instrument Stack No. 9, Located 20 ft Instde the Covered Surface for the College Statfon Stte 178

C-6 Monthly Changes fn Sot1 Suctton wtth Depth for Instrument Stack No. 15, Located 2 ft Inside the Covered Surface for the College Station Site 179

X V t i

Page 19: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

CHAPTER 1

INTRODUCTION

Dtscussfon of the Prob1em

Clayey sofîs wtth the potentfal to shrfnk or swel1

are located fn many parts of the Untted States and are

also found fn numerous countrfes throughout the world

(Donaldson, 1969). Sotls wfth thfs shrfnk/swell poten-

tfal cause structural and desfgn problems fn many engt-

neerfng structures, such as retafnfng walls, hfghways,

pavements, cana1 wa11s, and s1ab-on-ground foundat f ons

of Ifght butldtngs (Johnson, 1978). In parttcular, the •

performance of slab-on-ground (also termed slab-on-

grade) foundatfons for resfdentfal and Ifght commerctal

bufldtngs often are affected detrfmental1y by thfs

shrfnk/swel1 phenomenon.

Constderable research effort has been undertaken

regardtng expanstve sotls fn countrfes wtth arfd or

semt-arfd clfmates, such as Israel, South Afrfca, Aus-

tralfa, and the Unfted States. In these countrfes, the

problem of expansfve sotls fs of sfgntffcant engfneerfng

and economfc concern. The major problem of a potentfal-

ly expansfve sot1 occurs as a result of mofsture content

vartatfons wtthfn the sof 1 proffle caused by cHmatfc,

envfronmental, or other extraneous fnfluences. In these

1

Page 20: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

fnstances, the ground surface moves upward (swells) as

the sot1 moisture content increases and the ground sur-

face recedes (shrinks) as the soil motsture content

decreases. Soil movement in both forms can result tn

distress, distortîon, and final1y cracking and struc-

tural damage to external brick veneer walls, slab-

supported tnterior walls, and floor slabs of buildings.

In the technical 1iterature (Holt and Jones, 1973;

Wfggtns, 1974; Krohn and Slosson, 1980), tt fs estfmated

that the annual damage to structures, fncludfng hfghway

and airfield pavements, resulting from expansive sofl

behavîor ranges from $2-$9 billion. Approximately 30

percent of this damage is accounted for by residential

and light commercial buildings. These structures are

very susceptible to the expansive behavior of sotls

because of their low confîning pressures.

In response to a need to mitigate this damage, the

following rational design procedures have been proposed

for slab-on-ground foundations in the past:

1. Building Research Advisory Board (BRAB - 1968)

2. Lytton and Woodburn (1973)

3. Walsh (1974)

4. Fraser and Wardle (1975)

5. Swinburne Method (1980) .

These destgn procedures were developed as genufne

attempts to model the sotl-slab tnteractton. However,

Page 21: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

as Wray (1980) fndfcated, these avatlable desfgn proce-

dures have many shortcomtngs. The prtnctpal deffcfency

of each method fs the fnabtlfty to determtne the degree

of support the swelltng sotl provtdes to the understde

of the s1ab-on-ground structure.

The reason for thts fnadequacy ts that two bastc

desfgn parameters, the dîfferenttal sotl movement (y-.)t

and the edge motsture varlatfon dfstance, e_, (sometfmes m

termed the edge penetratfon dtstance, e) have to be

estfmated. In an effort to fmprove on the deffctencfes

of the prtncfpal destgn procedures, Wray (1978, 1980)

presented an analysîs that subsequently became known as

the Post-Tenstontng Instttute (PTI) method (1980). Un-

fortunately, thfs destgn procedure fs also conttngent on

being able to adequately predtct the two sofl destgn vartables (y_ and e ). The PTI method was the ftrst

m m

destgn procedure that tncorporated sot1 suctton theory

to predict not only total heave, but dffferentfal heave.

Several methods for estfmatîng total heave of

expanstve sotls have been suggested by fnvesttgators for

varyfng geographfc and clfmatfc condittons (e.g.,

Jennfngs and Kntght, 1958; McDowell (PVR), 1959; Van der

Merwe, 1964; Sulltvan and McClelland, 1969). The avafl-

able techntques for the quantftattve estfmatfon of

volume change can be dtvfded tnto three categortes as

presented by Snethen (1980):

Page 22: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

A. Oedometer tests (McDowel1 (PVR), 1959; Sullt-

van and McClelland, 1969).

B. Emptrfcal procedures (Van der Merwe, 1964).

C. Sofl suctfon procedures (Johnson, 1978).

Unttl recently, the most wfdely used method to

estfmate total heave was the oedometer test. Kassfff and

Shalom (1971) and Wray (1984) have asserted that thfs

method does not model the ffeld behavtor of parttally

saturated expansfve sotls that are fnfluenced by clfma-

tfc condîtfons. Accordîng to Snethen (1986), the oedo-

meter test has been deemed unsuttable to esttmate total

heave, sfnce ft does not stmulate the volume changes

expected to be expertenced tn the ffeld as the unsatu-

rated sot1 responds to a potenttal gradfent that causes

motsture change as does the sotl suctfon procedure.

Several fnvestfgators have concurred that the

appltcatfon of sot1 suctton prtnctples for heave (swell

and shrtnk) predfctfon seem to provfde reasonable values

wtth respect to observed data (Johnson, 1978; Snethen,

1980a; Goode, 1982; Mîtchell andAvalle, 1984). The

recent trend has been to use sot1 suctton to character-

tze quantttattvely the fnterrelatîon between sotl partf-

cles and sotl water for partfally saturated expansfve

sofls. Sotl suctfon methods can address the transfent

flow condtttons and changes fn flux to account for ffeld

Page 23: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

condftfons. Thfs concept wf11 be elaborated further fn

Chapter II. However, because the sofl suctton proce-

dures were developed for specfffc sfte and clfmatfc

condftfons, ft fs not known to what extent these proce-

dures are applfcable to general stte and c1fmatfc condt-

ttons.

In 1985, the Nattonal Sctence Foundatton (NSF)

sponsored a multt-year fnvestîgatîon at Texas Tech Unt-

verstty whfch fs atmed at mftfgatfng damage to slab-on-

ground foundatfons constructed over expanstve sofls.

The research consfsts of theoretfcal, laboratory, and

ffeld tnvestfgatfons.

A f1ex f b1e s1ab-on-ground foundat î on mode1 wa s

constructed at each of two sttes that have htghly

expanstve sotls. These sftes are located tn Amartllo,

Texas, and College Statton, Texas. Each stte was mont-

tored at one month fntervals and ffeld measurements

taken were sof1 motsture content, sof1 suctton pres-

sures, sotl temperature, and slab foundatton and deep

benchmark elevattons. The preltmînary results of thts

study are presented for the ftrst (or tnfttal) 12 conse-

cuttve months of field measurements and are also used

for the analysts presented tn Chapter IV.

Page 24: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

ObJectfves and Scope

There are a number of spectffc objectfves to be

achfeved wtth thfs research. However, the mafn objec-

tfves of thts thesfs are:

1. to test the applfcabf1fty of a sof1 suctfon

method to predtct total heave for general use,

2. to test thts method wfth respect to the tn-

fluence of c1fmate,

3. to verffy the correlatfonshîp between edge

motsture varfatton dtstance (e^) and clfmate, m

4. to evaluate a predfctfve method for dtfferen-

tîal swelltng or shrfnkîng that fs based on sfte specf-

ffc sotl propertfes.

Page 25: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

CHAPTER II

BACKGROUND: STATE OF THE ART

The prfncfple of sofl water potentfal was ffrst

concefved by sofl physfcfst Buckfngham (1907) fn hfs

classfc paper on "capfllary" potentfal (Rtchards, 1980;

Htllel, 1982), Thts concept was further developed by

Gardner (1920) when he related the sotl water potentfal

to the sofl water content. The sfgnfffcance of thfs

development was that ft recognfzed the prfncfpaî form of

energy that fs responsfble for the movement of water fn

unsaturated sofls. Sotl water wf11 mfgrate from a

regton of hfgh potentfal to a regfon of low potentfal

(or from a regton of low suctfon to a regfon of greater

suctfon) due to the dffference fn potentfals (or

dffference fn suctfons). Hence, contrary to the popular

belfef, a dffference fn water content fs not the drfvfng

force fn changes fn flux fn unsaturated sofls. A mofs-

ture content gradtent fs responsfble for flow fn mofs-

ture only ff the sofl layers are fdentfcal.

For many years, sofl physfcfsts have been usfng

the concept of sof1 water potenttal to descrfbe the

énergy of sofl water everywhere fn the sof1-p1ant-atmo-

sphere contfnuum. Thts concept provfdes a useful tool

for quantffyfng the mofsture fn the sofl. The total

Page 26: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

8

potentfal of sofl water is deffned as the sum of the

varfous components of energy and can be stated as:

•t = •g "*• •p " •o •*" •m ^^"^^ where, 4» = Grav f tat f ona 1 potentfal

• s Pneumatfc potentfal

4> = Osmotfc potentfal o

4» = Matrfx potentfal

Total sofl suctfon, referred to herefnafter as

sfmply sot1 suctfon, fs a specfal case of water poten-

tfal when the pneumatfc and gravftattonal potentfals are

consfdered to be neglfgfble fn comparfson to the matrfx

and osmotfc potentfals, whtch fs the case for most engf-

neertng problems. Therefore, the total suctfon , h,

consfsts of two components, matrfx suctfon (h_) and m

osmotfc or solute suctton (h ), and ts represented alge-

brafcal1y as: h = h^ + h^ . (2-2)

m s

Matrfx suctfon results from the capfllary and

adsorptfve forces due to the sotl matrfx. The osmotfc

suctfon fs due to dîssolved salts (catfons) fn the sof1

water, whtch affect fts thermodynamtc propertfes and

lowers fts potentfal energy. Specfffcal1y, the dfs-

solved salts decrease the vapor pressure of the sofl

water.

The Revfew Panel of the Motsture Equflfbrta Sympo-

stum (1965) deffned total suctfon as:

Page 27: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

The negatfve gage pressure relatfve to the external gas pressure on the sofl water to whfch a pool of water must be subjected In order to be fn equflfbrfum through a semf-permeable membrane wtth the sofl water.

Wray (1984) descrfbed sotl suctfon (fn layman's

terms) as a measure of the sofKs afffnfty for water.

That fs, the greater the sofl suctfon, the greater the

sofl's attractfon for water.

Sofls engfneers have lagged behtnd sofl physfcfsts

fn fdentffytng sof1 suctton as a tool fn modelfng the fn

sftu changes fn flux of unsaturated sofls. In a recent

revfew by Wray (1984) of 17 Amerfcan soîl mechanfcs

textbooks currently fn use, ft was revealed that only

four of them had referred to sofl suctfon. Wray also

observed that, fn the general geotechnfcal 1fterature

stnce 1968, only very few papers constdered the term

"sof1 suctfon" fmportant enough to fnclude ft as a "key

word." Consequently, engîneers fn general are unfamtl-

far wtth the prfnctples of sof1 suctfon. As Snethen

(1986) reported, engtneers dtd not adopt thfs concept

untfl the late 1960's and are not utflfzfng ft to fts

fu11est capab f1f t f es.

Sfnce 1960, many fnvestfgators, especfally those

fn Australfa and South Afrfca, have applted the concepts

of sofl suctfon to many areas of geotechnfcal engfneer-

fng research. One of the areas that has been most

promfnent fn research has been the behavfor of expansfve

Page 28: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

10

sofls. Because of thefr clay mtneralogy, montmorfllo-

nfte and other smectftes are very susceptfble to volume

changes gtven certafn envfronmenta1 condftfons. As

such, cîay sofls wt11 have potenttal for very severe

volume changes based on the amount and type of clay

mtneral. Expansfve sofls can have very hfgh sofl suc-

tton values when partfally saturated. Accordfng to

Kassff (1969) and Goode (1982), these values can be as

hfgh as 10 to 10 cm of water for oven-drfed sotls.

Engtneers normally express sot 1 suctfon as a F>osftfve

value fn unfts of pF, whtch ts deffned as the logarfthm

of (tenston or suctfon) head fn centtmeters of water.

Thts avofds the use of large cumbersome numbers. Sot1

suctfon can be expressed tn many untts of pressure, such

as bars, pst, and kPa. For conventence, a converston

table fs presented fn Table B-1 (Appendfx B). Thfs table

fndtcates the varfous conversfon factors for untts that

are often referred to fn the technfcal 1fterature.

Theory of Sot1 Suctton and Water Migration

Sof1 Suctfon

The state of development of the sofl suctfon

theory wf11 be advantageous to revfew fn thfs sectfon fn

order to relate the work of prevfous fnvestfgators to

the thrust of thfs fnvestfgatfon.

Page 29: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

11

As Snethen (1977a) potnted out, the fnteractfon of

sotl water and sofl partfcles that cause volume changes

fn expansfve sofls can be descrfbed by two mec^ianfsms.

These are the mechanfsttc and the thermodynamtc (or

energy) approaches.

Mechantsttc Approach. Karl Terzaghf (1936) ffrst

related the state of stress fn a saturated sotl to the

pore water pressure. Thfs relattonshfp, whtch fs called

the effectfve stress prfnctple, can be wrftten mathema-

ttcal1y as:

ô = a - u (2-3)

where, o = Effecttve stress

o = Total stress

u = Pore water pressure

The equatton that characterfzes the volume change

fn saturated sofls can be expressed as:

av = CAo (2-4)

V

av where, — = Volumetrfc strafn

V

Aa = Changes fn effectfve stress

C = Volume compresstbt1fty

Btshop (1961) extended the effectfve stress ex-

pressfon to a general formula whfch consfders partfally

saturated sofls:

Page 30: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

12

o = íJ- Ug + X(Ug - u^) . (2-5)

In thfs equatfon, u denotes the pore atr pressure, u Q W

denotes pressure fn the pore water, and X fs an empfrf-

cal parameter that varfes theoretfcalty from unfty for

saturated sofls to zero for completely (or enttrely) dry

sofls. Bfshop's relatfonshtp between X and degree of

saturatfon, S , fs shown fn Ffgure 2-1.

The term (u -u_) fs called captllary pressure or o w

sof1 suctfon. Thus, sotl suctfon may be related to

volume changes through the effecttve stress or mechanfs-

tfc approach. However, the parameter X for volume

change fs very dtfffcult to determtne stnce ft fs neces-

sary to sfmulate the stress path and condftîons extsttng

tn the fteld (Blfght, 1965).

Many attempts have been made to deduce relation-

ships between the effectfve stress and volume change fn

partfally saturated soils (Bltght, 1965) as has been

done for saturated soils. Burland (1965) has concluded

that the principle of effecttve stress cannot be related

to volume changes tn partfally saturated sotls stnce the

applted pressure and pore pressure condtttons tn the

ffeld are dtfftcult to model fn the laboratory fn a

mechanfstfc manner. Thts pofnt of vtew was also sup-

ported by Aftchfson and Rtchards (1969).

Page 31: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

13

10

08

• • /

0-6 r7 V

0 4 A^ 02

' /

/

V. /

o Dnained tests e Constant waten

content tests

20 40 60 60 WO

Degnee of satunation 5^-%

Ftgure 2-1. Theoretfcal Relattonship Between Effectfve Stress Parameter, X, and Degree of Saturatton, S , and Results for a Conesfon-less StIt. (After Bishop, 1961)

Page 32: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

14

Thermodvnam f c Approach. Thfs approach relates

energy to thermodynamtc varfables and fs derfved from

the Kelvfn equatton whtch can be stated as:

P h = RT log^ — (2-6)

^ o

where, h = Total potentfal

P = Vapor pressure of the pore water fn the sof1

PQ = Vapor pressure of free pure water

R = Untversal gas constant

T = Absolute temperature P — = Relattve humtdtty

Eq. (2-6) descrfbes the relatîonshtp between the total

potentfal and vapor pressure. The total suctfon of a

sof1 can be computed from Eq. (2-6). Therefore, the

heave process can be modeled accordfng to thermodynamfc

processes sfnce at very low mofsture contents, whfch fs

the case for most unsaturated sofls, motsture movement

fs fn vapor form.

Water Mfgratton

Water movement fn saturated sotls can be descrfbed

mathematfca11y for one-dtmenstonal flow by Darcy's Law

(1856):

q = k d4>/dx (2-7)

where q fs the flux, k fs the hydraultc conducttvfty

Page 33: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

15

(coefffcfent of permeabtlfty) whfch ts constant for a

gfven sofl, • fs the FXJtentfal, and x fs the lateral

dfstance over whtch the change fn potentfal occurs.

However, thts law was modfffed by Rtchards (1931)

to account for unsaturated flow condtttons as shown tn

Eq.(2-8), (Htllel, 1982):

q = -K(i())7H . (2-8)

By combfnfng Eq(2-8) to the conttnufty equatfon or

the law of conservatfon of mass, the rate of change of

sotl mofsture can be expressed as:

(2-9) de

d t

- = J -dt 3x

. q

K ( * ) ^ 3x

or — ^ — K(i/;) (2-10)

dt 3x ax

where K ts a functfon of suctfon, lí;, H fs the hydraulfc

gradtent whtch may tnclude both suctton and gravttatton-

a1 components, and dø/dt fs the rate of change of

motsture wfth respect to ttme. For steady state condt-

ttons, de/dt fs zero. However, steady state does not

exfst fn unsaturated near surface sofls and the rate of

change of mofsture fs a functfon of suctton gradtent.

Equ 11f br f um Suctfon Proftles

The sof1 suctfon proffle that eventually develops

under an horfzontal tmpervtous barrfer or cover, such as

a concrete slab-on-ground foundatfon or a hfghway

Page 34: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

16

pavement, wf11 depend on the lateral extent of the

structure, vegetatfon adjacent to the cover, precfpfta-

tfon, clfmate, relatfve humfdtty, and the locatfon of

the groundwater table. The ftnal sofl suctfon proffle

whfch develops beneath the center of the slab fs called

the statfc equflfbrfum suctfon proftle and fs a result

of long term condfttons. The proftle that may develop

at the edge of the slab fs a dynamfc proffle and may

change as the sotl fs tnfluenced from a wet to dry

condftfon or vfce versa. Ffgures 2-2 and 2-3 show the

varfous proffles that may develop for dtfferent ffeld

condttfons. A dynamtc suctfon proffle would exfst fn

open terratn due to cycltc tnfluences of c1fmate.

Predtcttve Methods

The predfctfve models that are employed to quantf-

tattvely predtct the volume changes fn expansfve sotls

can be grouped tnto three general categortes as sug-

gested fn Chapter I. These categortes are oedometer

tests, emptrfcal procedures, and sotl suctfon proce-

dures. A summary of a representattve method from each

of the ftrst two categorfes fs presented below. In

addftfon, three sofl suctfon procedures are outlfned

herefn fn order to develop a c1ear understandfng of the

Ifmftatfons of the varfous procedures. The sofl suctfon

procedures are Lytton-Gardner-McKeen (Wray, 1978);

Page 35: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

17

Page 36: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

18

^ r IM^eKVIOUt COVCKCD AHEA

miTlAL

mi^Ti¥t HrOlfOtTATIC têtãO

SATUHATIOM

i rORE-MATCII ^•CSSU(»C

o. SHALLOW WATER TABLE

lUPCIIVIOUS COVENCD AREA JIECATl^t MrOltOÍTATlC MgAO

IMITiAL

SATUItATIOH

'mt

^ORE-WATEM ^nESSURE

b. PERCHED WATER TABLE

POME-WATCR ^HESftUMC

DEEP WATER TABLE

Ffgure 2-3. Pore Water Pressure Proffles Beneath an Impermeable Covered Surface as a Func-tfon of Locatfon of Water Table. (After Snethen, 1977b)

Page 37: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

19

Snethen, 1980a; and Mftchel1 and Avalle, 1984. The

Mftchel1 and Aval1e and the Lytton-Gardner-McKeen

procedures are both fllustrated later fn the analysfs fn

Chapter IV. A brfef descrfptfon of some of the total

heave predtctton procedures are gtven tn Table 2-1 as

summarfzed by Snethen (1975) and modfffed by (kxxJe

(1982).

Oedometer Test

As can be seen from Table 2-1, the oedometer test

fs fncorporated fnto most of the avaflable methods to

predtct total heave. The oedometer test procedure that

wt11 be descrfbed heretn fs the Sullfvan and McClelland

method (1969). The predtctton of total heave from thfs

procedure fnvolves the constant volume swell test ustng

the standard consolfdometer apparatus, and based on the

prfncfples of effectfve stress for volume change beha-

vtor of unsaturated sofls. It fs assumed that swellfng

ts caused by a decrease fn effectfve stress due to an

fncrease fn moisture content of the sotl. The effecttve

stress of an unsaturated sofl was deffned by Eq. (2-5).

If the pore atr pressure, u^, fs assumed to be zero

(atmosphertc), whtch fs usually a good assumptfon for fn .

sftu sotls, the effecttve stress equatfon may be re-

wrftten as:

ô . a- xp" (2-11)

Page 38: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

Table 2-1 Summary of Some Heave Predtctfon Procedures. (After Snethen, 1975)

20

Nethod Typc of Test Procedure

NAVY

Double Oedometer

C nsolldatloii S«e11

Consolldatlon Swell

Loed undisturbed siinple (it natural mter content) to overfourden plus turcherge. Inundate and aeasure swell. Speciiwns at varlous depths are tested and a swell vs. dcpth curve 1s developed. The total hcave 1s area under the curve.

Two adjacent undlsturbed saaples are tested. One 1s Inundated, allowed to swell under a small load and then consolidated. The other 1s consolidated at natural water content. The two curves are adjusted to the virgin segments coinclde and the change 1n void ratio 1s computed from load changes and noving from natural water content to saturated conditions.

Slrnple Oedoiaeter

Sanpson, Schuster •nd Budge

Richards

Australlan Method

Yoshida. Fredlund and Hamilton

Snethcn

Consolidation Swe11

Consolidation Swell

Sullivan •nd McClelland

Constant Volume Swell

Hississippi State Highway Dept.

Consolidation Swell

Speclflc firavlty

Controlled Suction Consoll-dometer

Constant Volune Consolida-tion Test

Suctlon Moisture Relationship Specific Cravlty

Load undisturbed specinen to l.OkPa to determine e , Inundate and allow to swell to equilibrium, con-solidate beginning at lOkPa using nomal procedures. Change 1n void ratlo for predictlng heave 1s determined from e log p curve.

Two undisturbed samples are tested. One 1s loaded to machine capadty, after equilibrium 1s reached. the specimen is Inundated and again allowed to equilibrate under this load. The load 1s reduced to a small value and the sample allowed to swell, the slope of these points give C for load rcmoval. The second sample 1s loaded to in iitu overburden pressure and then satur-ated and allowed to swe11. This accounts for swe11 due to changes 1n moisture conditions •nd suction. The total change 1n void ratio 1s the sum of the two conponents.

Load undisturbed sample 1n Increments 1n sltu over-burden pressure. Inundate and apply load necessary to prevent swelling until cquilibrium 1s rcached. This pressure is an effective stress. Unload the sample 1n decrcments to 0.1 tsf to obtain the sweHing curve. Heave is computed from the change in void ratio due to the Initial and final cffective stress taken from the e - log p curve.

Sample 1s loaded to overburden pressure, Inundated and allowed to swell. The sample 1s unloaded to a small load and allowed to swell, followed by normal consolidation-swell test 1s performed. The no-vo1une change pressure is determined by cxtrapolating the swell curve through the field void ratio. The heave 1s computed 1n components for overburden removal and dccrease in suction due to noisture increascs.

Change 1n volume 1s cqual to change 1n water content (saturated conditions assumed). Initial and final noisture conditions nust be known or estinated.

Determine the volume change - suction rclationship for various loadings using the consolidation test with controHed suction. Prediction of Initial snd flnal suctlon are used to determinc hcave.

An undisturbed sample 1s loaded to overburden pressures to obtain e , then inundated and held at constant volume until cquilibrium is reachcd. Addi-tional loads are added to account for sample disturb-ance in this swelling pressure. The sample 1s then unloaded 1n increments to determine C . Heave 1$ computed from the corrected swelling prcssurc and cstimation of the final suction profilc.

The soll suction-water content relationship 1$ approi-Imated by a straight line 1n the ranges of Intercst to determine the slope, B, and Intercept. A. The compressibility factor, «, 1s used to conpute the stresses due to overburden and surchange. Thc flnal suction is estimated and the suction Index, C^, 1t used to compute heave based on the changes 1n suctlon. C can be determincd from suction controlled Usts or ffom •6,/lOOB.

Page 39: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

21

where p (= u^) represents the negatfve pore water

pressure wfth respect to atmospherfc pressure or suc-

tton.

The preparatfon of a sample for the constant

volume test fs done accordfng to standard procedure

(ASTM 04546-85 or AASHTO T 258-81) wtth the unsaturated

sample placed between afr-dry porous stones. As shown

fn Ffgure 2-4 by the dashed curve, the unsaturated

sample fs loaded fncremental1y to a verttcal pressure

equfvalent to the total overburden pressure fn the

fteld. The specfmen fs then fnuncjated and fncremental

loads added to prevent swelltng untfl the swellfng pres-

sure fs fully developed. The measured swellfng pressuré

fs an effectfve stress sfnce the sofl suctfon has been

nullîfîed. The solfd curve fn Ftgure 2-4 fs achfeved by

unloadfng the submerged sample fn decrements from the

swellfng pressure to a pressure of 0.1 ton per sq ft.

It fs necessary to predtct the ffnal or equflfbrfum sof1

suctfon that fs experfenced fn the fteld fn order to

determtne the ffnal effectfve stress. The vertfcal

effectfve stress fs shown fn the stress dfagram fn

Ffgure 2-5.

The computatfon of heave fn an expansfve stratum

of thtckness, H, can be accompltshed from:

H A e AH = (2-12)

> * ^o

Page 40: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

22

o

< o:

o ô

— I I I I t i i i i TOTAL '

OVERBURDEN PRESSURE, Po

1111 llli T-T-T

n FINAL II EFFECTIVE pPRESSURE.O-f

0 9 INITIAL 0 EFFECTIVE " PRESSURE, <r'i

.î SOIL SUCTION. p n

0

Ae

SWELLING PRESSURE (EFFECTIVE STRESS)

! I M 1111 J I I I l í l l l I I I

VERTICAL PRESSURE (LOG SCALE)

Ftgure 2-4. Laboratory Relatfonshfp Be-tween Votd Ratfo and Effec-tfve Pressure. (After Sullf van and McClelland, 1969)

Page 41: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

23

^ o

1 5

O O H u »- í o £î uj uj s î ã2 *- uj "•

< 2 tf> ** tn w 2 ^' oc O 2 »-p O «« o u, u> S > J •« H < - I o z < »** *~ 9 U.

ÍTÍ'

lAl IAI

3 Z » - UJ

lA :=

c 0 u C -D D C

U. Q

Q C Q

0) > Q ^

Ul Q: 3 (A 1/) UJ

o: z Ul o Q; 9 »

Ul > O -J < »-o

>• m

CA

US

ED

Ul </> < UJ oc o

UR

E

IN

<n (A UJ o: 0.

UJ

o: 3

«n

MO

I ^S

ON

AL

m UJ

IL.

o X »-CL UJ o

E (0 3 t. (0 0)

— Qí o O -P VD û)< —

•) "b (0 • c 0) r Q U 4J — û. a -

So

t 1

of

De

Mc

Cle

in 1 1 (Vl

9) L D 0)

Page 42: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

24

where e fs the fn sftu vofd ratto of the partfally o

saturated specfmen under a load equfvalent to the ovei—

burden pressure and åe fs the expansfon per unft volume

of sotl due to the stress reductfon.

The results of a swell test are usually plotted fn

the form of unft swell versus vertfcal pressure. There-

fore, Eq. (2-12) can be rewrftten ass

H Af LH = (2-13)

' -^o

where f fs the unft swell of the sofl due to stress

decrease. The fnfttal swell, f , fs zero ff there fs no

compressfon of the sample under the overburden load

before submergence.

As deptcted fn Ffgure 2-4, a change fn votd ratfo,

Ae, fs caused by a reductfon fn stress from an fnftfal

effecttve stress (ô".) to a ffnal effectfve stress (o^).

The horfzontal dashed Itne fn Ftgure 2-4 deptcts the

sotl suctfon whfch fs equal to the dtfference between

the swellfng pressure determtned from the laboratory

test and the total overburden pressure.

Emp t r f ca1 Procedure

Van der Merwe (1964) developed thts sfmple empfrt-

cal procedure to estfmate total heave (for sftes fn the

Transvaal and Orange Free State, South Afrfca) by usfng

a sfmple formula based on Atterberg 1fmtts and partfcle

Page 43: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

25

sfze determfnatfon. A sot1 can be classfffed fnto very

hfgh, htgh, medfum, and low degrees of potentfal

expansfveness (P.E.) based on the plastfcfty fndex and

percentage of the clay fractfon of the whole sarrpîe as

dertved from Ffgure 2-6. It fs assumed that the untt

heave at ground surface (P.E.) fs 1 fn. per ft of depth

for very htghly expansfve sotls, 1/2 fn. per ft of depth

for hfghly expansfve sofls, 1/4 fn. per ft for medfum

expansfve soi1, and 0 fn. per ft depth for low or non-

expanstve sofls.

A factor, F, fs fntroduced to reflect the effect of

conftntng pressures (overburden) on heave along the

depth of the sofl proffle. The factor, F, fs related to

the depth, D, by:

D = K log F (2-14)

where k fs a constant. Van der Merwe determtned k = 20

for hts specfftc sfte condttfons.

The values of F can be determtned from tables or

from a graph, such as Ftgure 2-7. Usfng the potenttal

expansfveness (P.E.) and the factor F for every layer,

the total heave (T.H.) may be calculated from Eq. (2-15)

by summatton for each ft depth of proftles

T.H. = Z Fp . (P.E.p) (2-15)

where n = number of layers.

Page 44: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

26

liJ -J Q.

<

liJ

é

O

CLAY FRACTION OF WHOLE SAMPLE (%<2^)

Ffgure 2-6. Potentfal Expansfveness of a Sofl as a Functfon of PI of Whole Sample and Clay Fractfon of Whole Sample. (After Van der Merwe, 1964)

Page 45: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

27

P

UJ ilJ

F,o=0»335 AT D=-9 1/2 FOR ZONE 9 TO 10 FT

D=20 L06 F

Ftgure 2-7. Curve Showîng Relatfve Change 1n Potentfal Heave wtth Depth. (After Van der Merwe, 1964)

Page 46: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

28

Thfs method has many Ifmttatfons although ft may

have gfven very good correlatfons for a specfffc sfte

and clfmate (Transvaal, South Afrfca). The prfmary

Ifmftatton of thts method fs that ft does not take fnto

account the effects of cltmate. The heave experfenced

under a structure wt11 depend on the status of the sofl

suctfon of the sof1 proffle at the commencement of con-

structfon and the ambfent c1fmate (wet or dry). The

fnfîuence of the water table also affects the amount of

heave. Thfs method does not consîder these fnfluences.

Suctton Methods

It was stated above that three sotl suctfon

methods would be focused on and outltned. These three

methods, although not nearly a11 the suctton methods

presented fn the 1tterature, gfve a fatr representatton

of sof1 suction methods tn general that were developed

for vartous sot1 and c1tmattc condttions.

Lytton-Gardner-McKeen Model. The Lytton-Gardner-

McKeen method to predict heave from soi1 suctîon evolved

through the individual efforts of each of these tnvestt-

gators. Wray (1978) applfed thîs method în a FORTRAN IV

computer program, called SOILSUK, to develop tables of

dffferenttal swellfng for center and edge Iffts. The

basfs for thfs method was establfshed by Gardner (1958)

when he related suctfon to permeabt1fty. Thfs concept

Page 47: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

29

was subsequently developed by Lytton (1970), and docu-

mented tn Desat (1977), to produce surface proffles of

dtfferenttal sot1 movement closely resemblfng those

reported from ffeld measurements. McKeen (1977) modt-

ffed the Lytton method by developing equattons for the

rate of strafn as a functfon of the predomtnant type of

clay mtneral and the amount of clay present fn the sot 1 .

Thts method assumes steady state sot1 suctton condftfon

and cannot, at present, address transfent flow or

changes fn flux.

Gardner establfshed a relattonshtp between the

permeabtlfty of a clay to the suctfon caustng water

movement as:

a K = (2-16)

i T f + b

where, K = unsaturated permeabtltty

a - = saturated permeabtlfty b

T = absolute value of suctfon caustng water

movement

m = an exponent whtch vartes wfth grafn stze

(large for coarse grafns)

The equatton for total potenttal , y\>, could be wrftten

as:

4, = -h + X, + n (2-17)

Page 48: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

30

where h represents total suctfon, X, fs the gravftatfonal

potentfal and fi represents the sot1 overburden. For

partfally saturated sot1, the mofsture flow can be ex-

pressed as a form of Darcy's equatfons

V = -K (2-18) dx

where, v = velocfty of flow

K = coefffcfent of permeabtlfty .

If fl fs neglected, then Eq. (2-18) could be wrftten ass

a(-h + X.) V = -K ^ . (2-19)

ax

For steady flux, v, and a known value of suctfon (whfch

can be equtlfbrfum suctton), h, somewhere fn the sofl

proftle, Eq. (2-19) can be numerfcally fntegrated. At noda1 po t nt f,

K ^ = ^ ;:; (2-20)

1 + a i h ^ r

where, K = saturated permeabflfty

a = Gardner's constant

m = constant

At present the sotl parameters a and m are not ffrmly

related to any of the common engtneerfng propertfes of

sotl, By solvfng a large number of problems usfng

dtfferent values of the constants fn dtfferent combfna-

tfons wtth each other, Lytton (1970) establfshed values

for a and m for a specfffc sot1 condttfon. These were

Page 49: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

31 —9 1 X 10 and 3.0, respectively. In the technfcal Ift-

erature, ft was suggested that value of a ranges from

—6 —14

1 X 1 0 to 1 X 10 , wh f1e the va1ue of m ranges from

2.0 to 4.0. Both of these constants are dfmensfonless.

The change of suctfon tn the vertfcal dtrectfon fss

Ah. = AX, + —^-^ . (2-21)

K

The suctton at the nodal potnt (f + 1) can then be

computed ass

^ t + 1 = ^ f " t • (2-22)

Eq. (2-22) fs substftuted fn Eq. (2-20) as the new value

for h., and the calculation repeated until suction at

each nodal potnt fn the verttcal sotl proffle fs com-

puted.

If the sot1 surface ts covered wtth an tmpermeable

cover, as fs the case for a foundatton slab, the loss of

sofl motsture by evapotransptratfon fs elfmtnated.

Presuming the soil was drter than equtlfbrfum, thfs

results fn a gradual tncrease tn sofl motsture content

beneath the slab untfl an equflfbrtum condttfon fs

reached. By alterfng Eq. (2-21), and performtng the

same sertes of calculatfons fn the hortzontal dfrectfon,

the change fn suctfon horfzontally can be computed ass

AX V Âh, = — * — ^ . (2-23)

»<f

Page 50: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

32

The overburden pressure from the soft tends to resfst

any swell generated fn the sofl. It may also refnforce

any shrfnkage that mtght occur.

McKeen (1977) extended thfs work to fnclude the

followfng stratn equattonss

Kaolfnttes

y^ ^ 0.00018 (% of elay) -- 0.000098 (2-24)

111ftes

Y^ = 0.00049 (% of clay) - 0.00351 (2-25)

Montmor f11on f te s

Y^ = 0.00056 (% of clay) - 0.00433 (2-26)

where Y^ fs termed the coefffcîent of suctfon change

compresstbt1fty and % of clay (<0.002 mm) fs calculated

wtth respect to the total sample.

Knowing the change of suction that occurred after

the surface was covered, the elevatton change per tncre-

ment of depth ^H/H, can be predicted ass

AH — = h ÍP' ftnal -P^nittaP ' ^^-27)

Snethen Model (1980a). Snethen proposed a model

based on sotl suction to predict total heave tn expan-

stve sotls. Soi1 suction versus water content curves

were developed and can be approxtmated by the Ifnear

re1at f on s

logf = A + Bw (2-28) m

where, w = Motsture content (by wefght)

Page 51: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

33

A,B = Constants (y-fntercepts and slope of

the sof1 suctfon versus water con-

tent curve, respectfvely.)

Tj = Matrfx sot 1 suctton wfth surcharge

pressure

The heave of the expansfve sot1 proffle can be

computed froms

— = -^-^[^ - Bw^) - log (T^ + aa )] (2-29)

o

where,

H = Stratum thfckness, ft

C^ = Suctfon Index, aG /lOOB .

e^ = Infttal vofd ratfo

w = Inftfal motsture content, percent

T ^ = Ffnal matrfx sot 1 suctton, tsf

a = Compressfbt1tty factor

a^ = Ffnal applfed pressure (overburden plus

external load), tsf

A,B = Constants (Y-fntercept and slope of the

sot1 suctfon versus water content curve,

respecttvely)

G = Specfftc gravtty of sotl solfds

The suctfon fndex, C., descrtbes the rate of

change of vofd ratfo wfth respect to sofl suctfon. The

varfables, T and o , are both functfons of the

dertved depth of actfve zone and ffnal sofl suctfon

Page 52: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

proffle. For CH clays, the compressfbt1fty factor fs

normally assumed to be equal to untty. Snethen sug-

gested that fn absence of measured data, a , the compres-

sfbtltty factor may be estfmated from the plastfcfty

fndex, PI, by the followfngs

PI < 5 a = 0 (2-30)

PI > 40 a = 1 (2-31)

5 1 PI 2 40 a = 0.0275 PI - 0.125 . (2-32)

Mttchel1 and Ava11e Model (1984). Thfs procedure

whtch was developed fn Adelatde, Australfa, also enables

the expanstve sotl movements to be predfcted from

changes fn sot1 suctfon. The relatfonshfp between sotl

motsture content and sotl suctton can be approxfmated

bys

Aw = C Au (2-33)

where, w = Sof1 motsture content

u = Sotl suctton (fn pF)

C = Constant.

For a saturåted sot1 the volumetrfc stratn AV/V

occurrîng from a change fn sof1 suctfon fs gîven bys

he AV/V = (2-34)

' ^ ^o G Aw

or AV/V = — (2-35)

where e denotes the fnftfal votd ratto, G the specfffc o *

34

Page 53: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

35

gravfty of the soî1 solfds and w the soil mofsture

content fn percent.

Because of lateral restratnt or conffnfng pres-

sure, the verttcal strafn expertenced by sotl fn an tn

sttu condttfon ts constdered to be equal to only a

fractfon of the volumetrtc stratns

gAV/V e vert ~ , (2-36)

^ * ^o gG Aw

or e ^ vert - , ^ (2-37)

^ •' o

where g denotes a lateral restratnt factor. Mftchel1

and Avalle suggested that a value of g = 0.33 can be

assumed for clays. Snethen (1980a) suggested fncorp>o-

ratfng a compresstbf1fty factor, f, fn Eq. (2-37). The

compressfbf1fty factor ts the fractton of the applfed

pressure whtch fs effecttve fn changtng the pore pres-

sure. Thus Eq. (2-37) can be expressed ass

fgG Aw ^ert = • ^2-38) ^^^^ 1 + e^

o

For unsaturated sotls, sof1 suctton proftles are

easfer to predict or define than water content pro-

files. Thus, suctton profiles are used for sotl move-

ment predfctfon fnstead of sotl water content. Sub-

stttutfng Eq. (2-33) fnto Eq. (2-38) results fn:

(fgG^C)Au o

Page 54: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

36

Mftchelî and Avalle deffned the ratfo of the ver-

tfcal strafn to changes fn sotl suctfon as the fnstabî-

1tty fndex, I .s Pt

gG^C (2-40) ' p t

ver t

=

s

fgG^c

' * « o

' p t ^ "

Therefore, the total vertfcal dfsplacement or

heave, d, of the sofl proftle can be determtned by the

summatton of the fndtvfdual sofl layers of thfckness,

Al, expertencfng a suctfon change, Au. The fnstabflfty

fndex, IpA.t also can be determfned by derfvfng the

e ./Au relatfonshfp from the core shrtnkage test whtch

fnvolves measurfng the 1tnear stratn versus the moisture

content and the soil moisture versus soil suction rela-

ttonshtps and expressed ass

c . Aw I . = ^^^^ X — . (2-42) ^^ Aw L\j

I . can also be determined empirically from Ftgure 2-8. pt

Differenttal Heave

The crttical crtterton tn the destgn and perfor-

mance of slab-on-ground foundatîons fs dîfferentfal

sofl movement Just as ft ts fn the case of compressfble

sofls. However, although thts ts an tmportant destgn

crfterfon, less effort has been devoted to developfng

Page 55: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

37

8

4-»

0>

PecJological Classlfication (After Taylor et al Î974) Alluvlâl RB3 RB5 RB3/RB5 BS (Hindmarsh Clay) BE Unidentlfled

c ^^

>» 4-*

• ^ ^3 <o « J </) c

4

3 w

2

1 ApC

RBS-/ 1 /o .

/ ^^fO

y/7 • / J

aJ--o^ d o/

l ^ — ^ l

1 •

o (

. . t

k* o

'BE

« «

IB3

• e

10 20 30 40 50 60 70 Plasticity Index {%)

80 90

Ftgure 2-8. Instabtlfty Index as a Functfon of Plastfcfty Index. (After Mftchell and Avalle, 1984)

Page 56: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

38

methods to predfct dtfferentfal heave than has been

devoted to total heave.

Thfs lack of apparent fnterest has been due fn

part to certafn Ifmftatfons. As Donaldson (1973)

stated, some of the Ifmfts to predicting dtfferenttal

movement are the estfmatton of the rate of water fngress

fnto the proffle and the presence or lack of extraneous

fnfluences such as vegetatton or external sources of

moisture. Accordtng to Donaldson (1973), the amount of

dtfferenttal heave may be assumed to be 0.5 of the

total movement. The maximum dtfferential heave (y_j) can

also be esttmated from the Lytton-Gardner-McKeen pro-

cedure as explatned earlier in thîs chapter.

Page 57: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

CHAPTER III

FIELD AND LABORATORY INVESTIGATIONS

General

In order to achteve the objecttves of the re-

search, field studies are currently betng conducted at

two geographtcal sttes that have a htstory of extenstve

foundatton damage due to expanstve sotls (Mathewson, et

al, 1975). A sfmulated slab-on-ground foundatton was

constructed at each sfte to measure changes tn fteld

condtttons of motsture content and sol1 suction beneath

and adjacent to the slab model due to the influence of -

climate. One stte ts situated east of the Family Hospt-

tal Center, Amartllo, Texas (a dry cltmate). The second

site is located on the grounds of the Agronomy Research

Center, Texas A&M Untversity, College Statton, Texas (a

wet climate). The sttes are instrumented with thermo-

couple psychrometers and moisture cells to measure the

total suction and moisture content, respecttvely, of the

soil wtthin the expected zone of seasonal moisture move-

ment.

39

Page 58: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

40

Descrfptton of Sttes

Amarf11o

Thfe 8tte fs located at the east end of the pro-

perty (Famfly Hospftal Center), approxfmately 20 ft west

of Kentucky Street. The topography fs essentfally flat

but slopes gently approxfmate1y 1 percent from the

northeast to the southeast. The vegetatfon cover fs

very short sparse grass. Before the fnstallatfon of the

slab model, the sfte was not used for any specfffc

purpose, but was mowed perfodfcal1y. At the tfme of

constructfon of the slab model, the general area around

the stte had numerous surface cracks varyfng from hatr-

Itne to as much as 1 tn. tn wtdth and were esttmated to

extend to constderable depths. The ground surface be-

neath the slab model had a smal1 number of shallow

cracks wtth relattvely narrower crack wtdths. Sfte

preparatton fncluded strfpptng of the ground surface of

any vegetatton and removfng any obstacle that mfght have

punctured the plasttc sheetfng that comprtsed the slab

model.

Co11ege Statfon

Thfs sfte fs relatfvely flat but slopes approx-

fmately 3 to 5 percent from northeast to southwest. The

vegetatfon at thfs sfte prfor to the fnstallatfon of the

slab model consfsted of grass and bushes, some of whtch

Page 59: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

41

were approxfmâtely 2 to 3 ft hfgh. Three yery large

mature trees are located approxfmately 20 to 30 ft from

the slab model. These trees are sftuated to the north,

southeast, and south of the slab model. The sfte was

prevfously used as a storage sfte for old farm equfp-

ment. A storage shed for farm fmplements fs located

approxfmate1y 25 ft northwest of the slab model. A

gravel path that provfdes fngress and egress to the shed

fs located approxfmate1y 15 ft north of the slab model.

The sfte was also cleared of vegetatfon before the

fnstallatfon of the slab model. There were no vfsual

sfgns of surface cracks at thfs sfte.

Sof1 Stratfgraphy

Amar f11o

The domtnant sof1 type fn thfs regton (wfthfn the

Ifmfts of thfs study) fs the Randall clay serfes. The

subsurface'proffle at thfs sfte consfsts of four classes

of materfal as shown fn Ffgure 3-1. The topsotl fs

comprfsed of 12 to 18 fn. of reddtsh brown clayey sflt

ff11 that was probably created from the ffnal land-

scapfng of the sfte after the hospftal was constructed.

Underlytng the topsof1 fs approxtmate1y 2 ft of stfff

dark gray clayey sflt. Both of the materfals fn the

upper strata can be classtffed as A-6 fn the AASHTO Sofl

Classfffcatfon system and as CL fn the Unfffed Sofl

Page 60: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

42

<

CJ

O

5 o

i 3 o

<

zi

I 0 r

DU-«+> 0 +»-— w+> 0) c

C 0) o - o — L , - • Oí

<— co - I

£ 0)+> 4J L C

I. £ V 0 (- c M- e o >+ í •

Q • 3 1. »+> 0) a (0 Ii-o o £ I . —

(/) I. ^ D — Oí+> 0 C Q

I cn •) u D 0)

Page 61: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

43

Classfffcatfon system (USCS). Below the 3 ft depth fs a

etratum of a stfff Ifght gray sflty clay approxfmately 3

ft thfck. Thfs stratum was underlafn to at least 27.5

ft (depth of termfnatton of the deepest borfng) by a

sfmflar Ifght gray clay whfch was more sflty and less

plastfc. Both strata can be classfffed as A-7-5 fn the

AASHTO system and as CH fn the USCS system. The physf-

cal sofl characterfsttcs at thfs sfte are consfstent

wfth the range of values for Randall clay serfes as

reported fn the Sofl Survey of Potter County, Texas,

1980, and gfven fn Table B-2.

Even after 28 ft of drfllfng, the groundwater

table was not encountered. Accordfng to Wray (1986),

the depth to the groundwater table at thfs sfte may

range from at least 50 to 100 ft as estfmated by local

consultfng engtneers and cfty engtneerfng offfcfals.

Co11ege Stat f on

The predomtnant sofl at the research sfte consfsts

of the Lufkfn serfes, an alkalfne sandy clay. The

topmost stratum consfsts of 18 to 24 fn. of ffII ma-

terfal that fs made up of sflt mfxed wfth gravel. The

sofl stratfgraphy at thfs sfte, as shown fn Ffgure 3-2,

fndfcates that at depths between 2 to 7 ft, the sofl fs

a dark gray sflty clay whfch can be descrfbed as A-7-6

accordfng to the USCS system and as CL fn the AASHTO

Page 62: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

44

2

(/)

u o UJ

o o

'^ e • - 6

oc9 Sîv

O-00

18

-28

37

-63

CM OD

1

K

o 3 O -J

T co I -2 - 1

o » -(/> <

s! 1

RA

L

3

b <

z - 1 < H

INI

^TEN

T

X Q

UJ

%

(0

s

0) +> > — D (D in +> —

— O C CO 0 M-

Sta

tf

s,

In

en

t o

4^ U 0) — (-0) E 0) 0) — Q. — -1 - TJ 0 0) C O L (0

0) 0 ) £ • £ U +J V Q) C

V Q)

0 < C M- 0

• O > 0) £ a (D a > 1.

0)— «0 « i » " " ^ • ^

+> 0 0

Str

a

fng S

ra

l M

- ^ 3 - o+> 0 £ (D 0)0) Z

• 1 1

m

gu

re

Page 63: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

45

system. Except for a 3 ft thfck, clean, whfte sand

stratum located at a depth of approxfmately 16 ft, the

sofl below the 7 ft depth and to the depth of termfna-

tfon of the deepest borfng (25 ft) fs made up of a

motley grayfsh brown sflty clay that can be classfffed

as CH fn the USCS system and as A-7-6 fn the AASHTO

system. The materfal at the 16 ft depth was found to be

relatfvely dry. The physfcal sofI propertfes at thfs

sfte are wfthfn the range of values for Lufkfn sofl

serfes as reported tn the SofI Survey of Brazos County,

Texas, 1951, and gfven fn Table B-2.

There was no fndtcatfon of a groundwater table

even after drfllfng to a depth of 25 ft. In response to

fnqufrfes, "local engtneers" have reported encounterfng

a perched watertable at an approxfmateIy 25 ft depth

whfle conductfng subsurface exploratfon fn close proxf-

mfty to the research stte (Germann, 1986).

Ffeld Investfgatfon

Slab Model

A 24 X 40 ft sIab-on-ground foundatfon model was

constructed, as depfcted fn Ffgure 3-3, at each sfte

durfng the surrTier of 1985 (Amarfllo fn July and College

Statfon fn August). The model consfsts of 10 mfI poly-

ethylene plastfc sheetfng that serves as a barrter 1m-

permeable to mofsture. The fmpermeable membrane

Page 64: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

•^o •"• ^o

46

o o vo O > O '

N o

CM 9> tr> « o *^0 ""O

— CO V í^O «"• —O

O r*. ro *nO «• • »-0

c\j O «9- >- O

eo tn t— •^O ^ ^ ^ O

1/^

«/)

J

»- »í >-u o oe £ «z o o » - t-

u < z u ^ o >- -J CD tO U. <

o^. L

CSi tn

tD CM

<^o ' ^ " o

CSJ

o

fSI/

«^o • • ***o CM Ct cs< co ir>

O • O «^ eo *^/s * ? • • • « O • O

O r

* o n» * o

' ld 01

eo tn

'"o n^ ^O

TidZTuzÍ ' i i 01

' id >2

0) 0)

0) c £ — +> i- ^

0 -0)03 0 C w ( n

^ 0) L 0 Jí 0 £ U U -

V C — in tt)

0 c E 0)

£ 3 01 fQ U C — +> — ( / ) « ) ( .

C 0

<D (j 0) 14. - £ 0 > c »-»*- 0

o -«4. 4J 0 •!-> Q

C U 0) 0 E - l 0) 0) • c ^ l- rn

— L. I CL < -

0)

c Q

«) 0) c I. OU-ffi 0

c O) 0 c —

— 4J •P Q •) U 0) O

>V 1. C 0 Q 4->

I qj • 1. tn

Q . ^ . ^ «n.E

C (D "0 0) 0) C E C ( 0 -

O 0) C T5 0 - (0 * - 0) L +> "0 O Q 0 U £ I .

•^ ^ Q; 0) (\j E tf) in — Q I L — If) 0) O rn û.

ín I

m 0) t .

0)

Page 65: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

47

dfsrupts the evapotranspfratfon process of mofsture

movement fn a manner sfmtlar to that of an actual con-

crete slab. PVC pfpes (2 fn. dfameter) were used to

provfde flexfble framfng around the model perfmeter.

The membrane was covered wfth 2 fn. of sand to hold the

plastfc fn shape whfle the swellfng surface fs deffned.

The clear polyethylene plastfc was protected from the

sun's ultravfolet rays by the layer of sand. At the

exposed edges* a black polyethylene plastfc was used for

the same purpose. An attempt was made to construct the

structure flexfble enough so that the sofI swellfng

surface would not be constratned. It was assumed that

the wefght of the slab was neglfgfble. A 6 fn. wfde by '

18 fn. deep perfmeter grade beam was also constructed at

the east end of each slab. Thfs beam was fnstalled to

observe the effects of a shallow vertfcal mofsture bai—

rter on the lateral movement of motsture. No such grade

beam was constructed on the west end so that a comparf-

son could be made at each sfte.

The vertfcal movement of the surface of the slab

model was measured by means of a grfd of surface eleva-

tfon pofnts (247 fn Amarfllo and 234 fn College Statfon)

whfch were placed on the surface of the plastfc membrane

and covered wfth sand as shown fn Ffgures 3-4 and 3-5.

The elevatfon potnts consfsted of 6 fn. hfgh by 1/2 fn.

dfameter PVC pfpe attached to a 3 fn. square, 1/8 fn.

Page 66: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

48

Ffgure 3-4. Amarfllo Slab Model Looktng East Showtng Placement of the 2-fn. Thtck Sand Cover on the Plastfc Membrane Durtng Constructfon.

Ffgure 3-5. Completed Amarfllo Slab Model Lookfng West. Elevatfon Pofnts QP 3-ft Centers can be Seen Extendtng Above the Surface of the Sand Cover. Termfnatfon Boxes for Instrument Leads can be Seen Adjacent to Each Sfde of the S1ab ModeI.

Page 67: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

49

thfck acrylfc base plate as depfcted fn Ffgure 3-6. The

tfp of each pofnt was beveled to approxfmately 45® to

provfde a dfstfnct pofnt. The posftfons of thc eleva-

tfon pofnts are shown fn Ffgures 3-7 and 3-8 wfth some

pofnts extendfng 6 ft beyond the slab constructfon fn

order to measure the surface movement of the uncovered

sotI adjacent to the covered surface.

In order to have vertfcal control, deep benchmarks

were set at depths of 27.5 ft at Amarfllo and 25 ft at

College Statfon. Elevatfon hubs were also founded at

depths of 2, 6.5, 9, and 14 ft at Amarfllo and 2, 5, 9,

and 15 ft at College Statfon to measure the depth to

whfch measurable vertfcal movement occurred and to at-

tempt to de1f neate the effect t ve act f ve zone at each

sfte. The elevatton hubs and benchmarks were construct-

ed wfth 3/4 fn. dfameter steel pfpes protected by 4 fn.

dfameter PVC pfpe sleeves. The detafls of thfs con-

structfon are fllustrated fn Ffgure 3-9. The annular

space between the borfng and the PVC pfpe sleeve was

fflled wfth a bentonfte-dfesel ofI slurry, havfng a unft

welght of approxtmately 100 Ib/ft^' Approxímately I ft

of slurry was poured fnto the bottom of the borfng

fnsfde the protectfve PVC pfpe to prevent accfdental

fntrusfon of water and the dryfng out of the bottom of

the borfng. Thfs partfcular slurry mfx was chosen

Page 68: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

50

LJJ cn <

C ro o c

0 o 3 t . 4^ 0) C o u

c

Q.

c 0 •p o >

0)

UJ u. 0 u

0) £ u tf)

\0 I

i . D 0)

Page 69: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

51

< - ,

ffo Mo Sîo 9to fto 5 o s o Sfo So s o s o :^o ^ o mt •* mi má M « ^ M t ^ t w e M C M M «w

So o o So o o o o So o o o So

«o o

So

5 0

So

So

o

^o

- o

f-

o

o

So

o

o

o

o

So

o

o

o

o m ••o

o s

§ô

w*,

| o

o

o

^o

o

o

o

o

o

o

« 0

o

o

o

o

—O'

o

o

£0

o

o

o

o

2o

o

o

— o

o

o

o

o

So

o

o

o

o

So

ÍVl

o «o

o

o

SíO

o

o

;0

o

o

l o

«o

o

o

- o I I o I I o I I

Ê O " I

I o I I o I I o I o I

£ 0 I o I I o I o I I o I

« 1

»v< O

•fîO

o

o

o

o

go

ao

Po

^o

cw

Eo

« 0

« 0

Zo ?o ^ O i ^ ^

I o

?o

mo

SO

« D O

» 0

eo

o

'O

o

•oo

^ _ « M _ e^ i . m C V I ,

o ^o

3 0 i i C • Cl

'o •f

i s

^ 5

^ s

s

i 9

n Q

£ 0)4^ . £ 0) 4J 0 - P

c (n 0 . P

C 0 « tt) — v u -C Q -— -^ u 0 * 0 Û . < _

< c — 0 — 0) ^ 0) V

Q >"D 4. 0) Q) 0 — I . ** . UJ 0)

> 0) d. 0 u 0 U Q

CM. + ) 3 í-D D OTJO) > c Q 0X3

— l-•D 0) 0) - • D > 1. 0 0 C £ U

1** I

m I. D

• ^

Page 70: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

52

go £o So go So go Ro So So So «0 So 2 o ^-

go go o o o £0

so o

SO o s

go o

so o

:o :o

2 0

So

5o

e ''O

•«0

-o

S o o — o - » * o — o — o — o — 0 - ^ 0 — o o So

o So 5 o

s

o O O O 8 0 o

o o ^o o o o o §

o So o 0 0 0 * 0

o o o 2o o o o

o So 0 0 0 0 : 0

5o o § o o o o o S o o o o o S o f - p

•o ^o

o o

o So

o

o o

-o - o

o O S O

O O 5 0 e

So 0 0 o 0 ^ 0 o o o zo

^o o 0 ^ 0 o 0 0 o S o o

«n o o o " o 0 0 0

O **0 O O O O * ' 0

o s o

•n

M>

o 2o

- o .-o

o : o

s

—J

o — o — o — o — o - — o — o - — o

— O ""O " ^ **o • 'O •*o •*o

o zo

o 50

*o ^o

O " O

o « 0

o o

o o

*o *o

"o ~o o • o o f

'o o

ÛÛ<^ 30 U t « f

o - 0 - 0 - 0 - 0 If

s

)6 s

» ^

t/t i

£ ^ Q - -— U) 0) 0)

£ C 0) 4J 0

+* 0 +> 4J Q

C 4J 0 ^ in

c 0) (U 0) 4J U 0) C Q 0)

O TJ -û. < 0

u c — 0 — 0) - 0 £ Q >T5 U 0) £ 0

> v U. 0 U O U Q

c »*-4> 3 i. D D 0 T3 in > c Q Q 13

— L -D 0) 0) - T 3 > L 0 0 O £ U

00 I

cn

0) L

0)

Page 71: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

53

'•'<?-/>>/>^^ • 2-3 /4 IN. DlAM

RADIAL SUPPORT

BENTONITE-DIE3EL OIL

SLURRY

APPROX. I FT DEPTH BENT NITE

AND OIL SLURRY

TIGHT FITTING PVC CAP

HEAVY GREASE TO REDUCE FRlCTîON AND PROVIDE WATERPROOFING

T^(^//;<N^///>^V//>^'/A^V/v>y/XsS///<^^

3/4 iN. DIAM. GALVANIZED STEEL PIPE BENCH MARK BEVELED AT TOP

4 IN. DIAM. PVC PIPE

RADIAL SUPPORT RING

BENTONITE AND OIL SLURRY

SECTION A-Å

3 IN. DIAM. PIPE FLAN6E

APFROX. 6 IN. PENETRATION

Ffgure 3-9. Schematfc of Deep Benchmark Con-structfon.

Page 72: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

54 because ft was vfscous enough to prevent flow from

occurrfng even ff subsurface cracks were present.

Instrumentatton and Ffeld Measurements

One hundred seventy J.R.D. Merrfll thermocouple

psychrometers and 84 SOILTEST mofsture cells were fn-

stalled outsfde and beneath each slab model. The fn-

struments were located fn two parallel rows 4 ft apart

and centered along the longttudfnal axfs of the slab

model. The arrangement was desfgned to provfde 100

percent redundancy fn the fnstrumentatfon fn case of

corrosfon or damage. The psychrometers were fnstalled

at 1« 3, 5, 7, and 9 ft depths whfle the mofsture cells

were fnstalled at only 1» 3» and 5 ft depths because of

economfc reasons as fllustrated fn Ffgures 3-10 and

3-11. Mofsture cells were not fnstaîled tn the three

centermost fnstrument locatfons fn both rows. Each set

of thfs verttcal arrangement of fnstruments fs termed a

"stack."

At each depth, fnstallatfon of the fnstruments

was accomplfshed by drfllfng (augerfng) 8 fn. dfameter

boreholeSf placfng the fnstrument wfth remolded sofl

(approxfmately 2 fn. fn dîameter) fnto the borehole, and

backftllfng the hole wfth sotl whtle tampfng at approx-

fmately 6 fn. Iffts to approxfmate1y the orfgfnal 1n

place sofl densfty. Durfng augerfng. care was taken to

Page 73: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

55

t / t

r^

to

tfi

2

e^

11

12

o

9>

eo

rv

«e

i n

»

f ^

CSJ

/ s>

-g=

, 9 Í §o

1 i2o

n O

£ o

p^

S o • •Q

sr u» ;<;

sB' s»

eo o

^9-1 1 ** 1 _ * " h 1 1

N.

cw

8^ S2

127

CG

O

10

3

5o

^ O

tn Í O

o 2 0

»0 •o

§ 0 " * "»

ií>0 OB

m g

9>0

* _ * r 1 «

u

•o

_ » c

.V.B"

in O

«e "

§ 0

§ 0

^ O

í B * fM

2 0 eg »0

«9° r" <0

»0

sB° ts.

•n** • R go

«a _ >

1 l A

1 *Hid3a

i n O m

l e O «e

» 0

go

^ o

So

0.0

0 :£o

oO CM

r 2 0

0 «50 r » 220

• 0 pw

£ 0

(MO 9

0 m «0

1 ^

«° • 0 0

5 0 .

ro -

So -

« 0 0 (M

in

So -

So -(M

Eo -

o» ^ o e« o> 0 -

n o

#. n O -

Í O -^m

» 0 -e«

0

1 0«

n

-M

êg

CSI

C«i

i n

n

i n

irt

CM

V

(M

m

CM

• CM

• (M

^ (n

u « a. m *-

i ^9 ce

VI 1. •1

4J

i L tn 0 — «1-0 c

0 • T3 — f C 4-» — Q Q 1

4J — 4J C

ce:

psyc

l

gem

en

tru

me

m

bers

m

i c m 0

£ 2

£

.. t9 0

*..»

* r

D

rran

In

s

g

Nu

ITE

f th

e

A

su

rface

f B

ort

n

e.

AMAR

ILLO

S

Vfe

w

0

of

Sub

L

fne

0

lo

Slt

C C 0 ) ^ 0 0 £ L « ^ • » 4 ^ 0 4J4J É Q 3 0 ) < > £ C 0) — 0 Q) — L — £ UJ 4^ < 4->

• Q 0

1 1

m Q) L 3 0) ^ ^ l i .

Page 74: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

5 6

^ u

m

S

CM

CM

•n (M

eoo

B^ B ' « O fnO 8 O (M W » X

r«.tJcs

o O

^B^ r>B^ 5 0 £ 0 ^ ^ ^ ^ mm ^ w

•^ es!

PJB^ S B ^ S O RO

^BS ^gi ^o so

r ^o g o go So

«c _ t o

j 5 in (M l e

O^ * D 5 in g S (MO CM O -(M

co eo n n

— o i£o 2 o £0 o

(M

u

0; w «

i e « O

C M O

(M

g o

So £ 0 So -

So go -(M

(M

r> CM

(M (M

(M

0 (M

e t

2íB « 2 0

ca PO

SB' U PS

B" cc

o D ^ ( M O

Ok

- B ' OB

(M

'i B^ R f ^ eo

1 1

^ n ^ 0 ^ o

*• t :

sB' t :

88^' (V

* sB-

0 n S

*

B^ «

1 (n

:£B n • 0

, c^

SB" ev «vj

ggc ^ to _ ^ f

SB' ' ^

_ X

( M O «e

• 0

9« e* •

1 •n

go e> « 0 0

co (MO

z:o r«» 2 0

( M O r>.

0 e« r^

1 •^

JJ *Hld3a

0 0

So ( M ^

«0 0

^ O

0 ^o

^ o m^

^ O e

1 9>

« a. m r-

m § ee H-1/1

m o

s

"2

D

J

1 m m^

0

T5

c

L 0 M.

• O'^

i i ^

C 4 J Q

4J C 0)

m 1 QOO 4-> c 0) E

E 3 Q)

«

0) L V

L £ 0)4J E C Q L L <

e

10 3

cz M M

0) u Q

£< ! . +» u.

0) c •^ L 0

L f f i 3 . 0) d- 0)

0 £ 3

Jcn 0)

• p . M.

04^ • V

0) tn c - 0

> 0 - 1 - ^

c 0 • p -

C ^.

0) — 0 £ L

4J4J Q D > £ Q ^ L

4J Q E

0 ) < c 0 e — £

UJ4J < 4J

• £ 0 w<

1 m 0) L D 0)

Page 75: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

57

tn

(M

y-p

B *» • 4

«B" o ^ ( O

sB-CM

te

sB~ ÍM

mO es; «o n «c

, B" : • • » •

• *

B «Q • O

sB~ (M "^

«C

»•4

ÎSB' «o ( M UJ (•> «

B" o

sB^ ( M

B • - 1

«» sB-(M O

«

CJ

55 B -CM

,-o (M V n »

B" m m CM

j n O CM

O

(MO (M ( M

m o n (M

So

( M O o n

O cc «e (M

, . 0 (M (M

o

(*) o ( M

m ^ (M

n O l O ( M

o ^ ( M

(M

t

" Î50

«TM

m ' (M

5 0 (n

O ^ O o (M

n o m

;0 Î50

(M (no e* e«o ( M O m n

e i O m (M

1 ^ 1 A

SB~ 1 so 1 0 » 1 n le 1 "*

«B 1 — «» 1 n te 1 e>o 1 cc lo 1 (M wa

IJB-^ 1 0 •« 1 0 (Q

~ B -s -» « 9

fc B"

004

1 I

B-e i O (M wa (n iv

••• oB ( M * * * n «0

nB"^ CD va (M w»

(MB--e» * CW f^

s^~ 0

••» «• B"

§ 1

'U

Oi csiD'"' m n ( M * '

eoO •M «» n tv •" i«

oB w tv ( M (V

nB"-s :s oB" e< "> (M *0

. B -N

0 (S)

B"-n

1

*IUd3Q

leO (M

e>0 e t ( M

e « 0 n ( M

•-€> m p "

• o ^ i *

CNJ

m^*

8 0

m n

í

o'rt loO (M

l e O « 0 ( M

« 0 m ( M

* o « ( M

^ O « •

( M

e . O (M (M

0 m (M (M

1

CM

£

m t-u.

m

^ w « a. m

»— z

1 « *-m •5

•«>

3

m X c

• -m U i 0 U J - J

0 u

1 m

• • 0

T3 c 0

C 4 ^ Q

•P C Q> E

Q 4J C Q E 3

e L 0)4^> c Q L L <

9)

0)

L 0 M.

» t^ M

1 « •

«) L 0)

i 3

C Z M «

0) u Q

£ M. •P

M.

. 0) 0) C 4J

L S) 0 L ffi C 3 0 0) IL —

0 £ 3

^ifí 0) •^ >

C 0 •^

u.

0 4 J Q

Q) 4 > C (0

0 -1 e c

0) Q) 0)

0 £ -* *

4J 4J Q 3 > £ Q) '

^ L <

4J — 0

0 ) U c 0 0) - £

Uj 4J < 4J

• Q

" N

mm

1 m Q L 3 0)

Page 76: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

58

«>

(M

^

CM

I B (M

m (M

(M (M

o (M

feB-^ f B

o D -"

| B -

B •o

n p -e%o (M

^ n O O c.

mB- gO

6 O

sB-

•C tt ,c>

( M ( M

o

2 8 " (^ iO n

r

iB^~ (^O n

«c

( M

- «o n

sB'' so (Ni n

et

(M fM

. ^ m (M n 5?B^ « o

( M * ^

| o 5 0 n •»>

e> n * ^ =>

gîB" ;5o m

•no (M

So (M

SO

(M

So

(M

íCo Zo 90 iQo (M (M n

I 5o <M

^ o (M

8 0

£ 0 So

« 0

co

ao

îo 2 eo e o leo

( M * *

«; (M

jqB-- SB"" sB^ î ^ n n (M

50 RO SO § 0 ro tv ro ^ r^ ^

*c <c fs. ^

sB^ sB"- jgB"" Sio CM •>• n C« (M «

Jd- i ^ - ^ - Co CM ^ (M c» n X

-B'^ • B - leB^ RO

KO -

l o O (M

(M e t o a> (M c>

n n D « o " " eotí"' e»o"~ K ® o e S

( M O

CM'

Co CM O C M * '

w

J •

^ ié.

• ( S

u < &. m H-

flC » -m

e « 0

U i t-

m

s * M

»-m bJ tØ U i

^

COL

m —

(M

I •)

L O 4.

o c » O ' ^

T5 — <n C4J I Q Q ffi

4> C C Q 0) 0) E L E 3 0) 0) L £ 0)4^ E C 0) D Q C Z L * -L Ot 9) < 9) C *»

U — — Q Q L (0 £ U- O 4^ L m C . ^ 0 M. 0) (4. •^ 0 £ 0 4 ^

3 Q ^ tn 0) 4J Q) C (fí

> 0 - 1 0) 0)

C C 9) 9) O 0 £ ^ •^ — 4J ^ 4J 4J 0 Q 3 0 ) U > £ C Q - . 0 0) — L — £ UJ 4->< 4->

I m 9) L D O)

• l i •H1430

Page 77: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

59

fnsure the recovery and fdentfffcatfon of the sofl from

each foot of depth.

Fteld observatfons were made on a monthly basfs at

each sfte. In an attempt to observe a complete shrfnk/-

swell cycle, the ffrst 12 consecuttve months of ffeld

measurements were constdered fn thfs thesfs. However,

because of unusually hfgh amounts of precfpftatfon

occurrfng at both locatfons, only the wettfng cycle was

observed. Data collected from each sfte fncluded

changes fn sofl suctfon and mofsture content wfth depth

and both beneath and outsfde the covered surface, deep

benchmark elevattons to measure the depth of meanfngful

movement (actfve zone), surface changes fn elevatfon

both on and adjacent to the slab model, and c1fmate

(temperature and prectpttatfon). Elevattons were mea-

sured and referenced to the deep benchmarks at each stte

(27.5 ft, Amarfllo and 25 ft, College Statfon). The

fnftfal elevattons were normalfzed at 10.00 ft, and the

relatfve movements were determtned for each subsequent

(monthly) measurement.

Clfmate

Amarf11o. The clfmate at thfs stte fs essentfally

a dry or semf-arfd clfmate. Thornthwafthe (1948) devel-

oped an unfversal clfmatfc fndtcator whfch became known

as the Thornthwafte Mofsture Index (TMI). Russam and

Page 78: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

60 Coleman (1961) reported a relatfvely good correlatfon

between the equflfbrfum sofI suctfon and the TMI usfng

data from varfous parts of the world. Wray (1978)

presented an approxfmate relatfonshtp the edge mofsture

varfatfon dfstance and the TMI as shown fn Ffgure 3-12.

Thus, the TMI was selected as a convenfent measure of

clfmate fn thfs fnvestfgatfon because other fnvestfga-

tors have used ft fn the past and ft fs completely

ratfonal and easy to calculate for any sfte where precf-

pttatton and temperature data are avaflable. Thfs fndex

fncorporates total monthly rafnfall, average monthly

temperature and the north latftude of the locatfon. The

mean annual precfpftatton at Amarfllo ustng 44 years of

data (1941-1984) fs 20.28 fn. The hfstorfcal clfmatolo-

gtcal data was obtatned from the offfcfal Natfonal

Oceantc and Atmosphertc Admtntstratton (NOAA) weather

servfce measurement statfon whfch fs located at the

Amarfllo Atrport, approxfmately 10 mfles from the ex-

per fmental sfte. The mean TMI for for thts perfod for

Amarfllo was determfned to be -21.9 fn./yr. The nega-

tfve sfgn fndtcates that the sfte has an annual water

deffcft; that fs, ff avatlable, thfs sfte would yfeld to

the atmosphere a total of 21.9 fn. of mofsture per year

through evaporatfon and plant transpfratfon. Thus, the

clfmate can be classfffed as dry. Ffgure 3-13 reports

the monthly varfatfons of precfpftatfon for the perfod

Page 79: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

61

A

O r> 4

O CM

o •"

o

o T

o CM 1

o r> 1

V

%u o z

STU

RE

^m

o s låJ

WA

I X ^

z fiC o X »-

9) L C 0) 0) 0) -0 4J o; U u. í <

4->TJ ^ 9) C ffi Q

a X Q! — 0) o £ T J C 0) C Q C — *J 0 0) •^ 0) — 4^ L O Q 3 - 4J C 0) 0) 0 o: •.. -. 0 4 ^ a ) S Q 4-> — . Q e L E4-> Q -^ — — > æ X Q t^ 0 2 0) 9v L £ L — a4i> 3 a c 4J • < L 0) >

0 - Q C £ 0 L <»- r 3

• cvt

1 cn

gu

re

^ 1 0 ^ CO Oi ^ c

(i j j "*• 'a^NVisia NOI1VI8VA ianisiow aoaa

Page 80: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

62

C4^ 0 « .^ V — • -

4» Q — M-a c •^ ^. U Q D : L (L >

— « L £ 04^

s l •p- ac .

i : 0)10 L^C

«. V

í — •* £ ^ <P CT5 0 c

0

L

i 0) £

Z Q4J

• m • M

1 m 9) L D ct

•Nl •NOIlVlldl03dd

Page 81: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

63

January, 1984 to July, 1986 and the 44 year mean monthly

rafnfall at thfs sfte. Begfnnfng fn March, 1985, the

clfmatfc data was recorded by radto statfon KGNC fn

Amarfllo, whfch fs located approxfmately 1/4 mfle from

the research sfte. Thus, the clfmatfc data for Amarfllo

can be consfdered to be sfte spectffc. Durfng the

prevfous sfx months that preceded the sfte fnstallatfon,

only a total of 9.4 fn. of precfpftatfon was recorded at

thfs stte. As such, the sfte was fnstalled at the end

of a lengthy dry perfod.

Co11ege Statfon. The mean annual precfpftatfon at

thfs locatfon fs 42.2 fn. (an average of 3.52 fn. per

month) usfng data from the years 1911 to 1986. The mean

TMI for College Statfon fs -0.47 fn./yr ustng data from

1911 to 1986. The clfmate at thfs sfte can be charac-

terfzed as wet. Ffgure 3-14 reports the monthly precf-

pttatton for the perfod August, 1983 to August, 1986.

The monthly cl fmatologf cal data was recorded at the Turf

Farm weather statfon, Texas A&M Untversfty, College

Statfon whfch fs located approxfmately 5 mtles northeast

of the research sfte. The total precfpftatfon for the

sfx months perfod precedfng the sfte tnstallatfon was

17.0 tn. The TMI for the year precedfng the sfte fnstal-

latfon was -14.03 fn./yr. Thus, thfs sfte was also

fnstalled at the end a lengthy dry perfod.

Page 82: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

64

">

-> ^ <D S æ o>

< "-2 u. "^ ^

Z

o cn

<

• 9 |<^

z ^ 2

l U .

p z p (/>

<

0) - 3 — 2

< 2

lu. | - í

rã Iz

1(0 S

0) £ 4*

4J .Q

C 0

•^ 4J Q 4>

"ã U 0) L Q.

u. 0 • C 9) 0 4 J

• ^ a ^

4JÍÍÍ D £ C •^ 0 L — 4J4J 0) Q — 4J O U)

>« Q) ^ 0) £ Q) 4J — C — 0 0 £ U

• •^ ^m

1 m 0)

gur

S3H0NI •N0llVlldlD3tíd "IVIOI

Page 83: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

Laboratorv Studfes

At each sfte, 17 borfngs were made along the

longftudfnal centerlfne of the slab model fn order to

collect dfsturbed samples at ewery foot to a depth of 9

ft as shown fn Ffgure 3-3. The orfgfnal project propos-

al had requfred fnstallfng the fnstruments fn •'undfs-

turbed" sofl samples. However, because of the low fn

sftu mofsture content and the brfttle sotl texture, the

fmplementatfon of thfs procedure was not possfble.

Therefore, the samples were taken fn a dfsturbed form at

Amarfllo. For the College Statfon stte, 3 fn. Shelby

tube samples were taken from depths below 2 ft. Nevei—

theless, the operatton of fnstallfng the fnstruments

fnto the "undtsturbed" sotI was unsuccessful although

the sofl was wetter at thts sfte than at Amarfllo.

Because of the sofl's conststency and sotl relaxatfon fn

the borehole, ft proved almost fmpossfble to "hold" the

sofl/fnstrument arrangement together and fnstall ft fn

the borehole. A laboratory testfng and characterfzatfon

program was undertaken for the samples recovered.

Laboratory tests for each stte fncluded the fol-

1ow f ng:

1. Determfnatfon of fnftfal fn sftu mofsture

Page 84: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

content, and fnftfal fn sftu total' sofl suctfon by the

fflter paper method.

2. Sofl classfffcatfon tests (Atterberg Ifmfts,

specfffc gravfty, and grafn sfze dfstrfbutfon).

3. Sofl mofsture content versus sofI suctfon

relatfonshfp.

4. Clay mtneralogy analysfs (X-ray dtffractfon).

The results of the sotl classfffcatfon tests usfng

the average values from three borfngs at each sfte are

presented tn Tables 3-1 and 3-2. The selected borfngs

are located at least 10 ft from each other and are

consfdered representattve of the sofl stratfgraphy at

each stte. The fn sftu motsture contents and the fn

sftu sofl suctfon for each foot of depth of sotl usfng

the average of 17 borfngs are reported fn Tables 3-3

and 3-4. The sotl suctton values were determfned by

usfng the ftlter paper method whfch was proposed by

McQueen and Mtller (1968), and the McKeen (1981) calf-

bratfon curves. The composftton of the clay fractfon

for each foot depth of sofl was determtned (for one

borfng at each sfte) from X-ray dfffractfon analysfs and

fs reported fn Tables 3-5 and 3-6 for each sfte, re-

spectfvely. The tensfon table was used to determfne the

66

Us a result of the tn sttu sof I befng extremely dry, the matrfx suctfon was actually measured.

Page 85: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

67

L O IL

0) £ t. 0) o 0) 3 0

L

4> Q

0) 0)

4S Q L 4J Q ) -atn 0 L O

a -— L 0 (/)

< c Q 9) 9) £ £ 4

I m 9) £ Q

>» —•

w E c «« r j »• ae C Ow.... . a> o

c «

««/> c

C (SJ •( e u • « k o w

c « • - 0»

O w

E » • ^ 0» ^ c —* « u >« «

« « ^ O)

^ « — QC

• « » • • — .

"S*^ c O' «

^ : :^

0 «r» • eo

^ ^ • (n

r ^ 1 eo r>

0 ^ 1 9v

00 «e i 0 (f>

t^ «e t r* in

«e «e • ^ le

«e «e 1 (Sl «e

«e • e> m

« e e M ( v i e » r > 9 « ^ . r « « e t f > « o < e « e < e

«e «e i e« *

«e 1 m if>

•A «e i 0 le

«0 9^ i r «e

r* eo • «e «e

G eo i tn eo

^ eo 1 es r*

0 GD 1 r*. r»

eo • 0 eo

c M r « e \ ( v j m « e r > e o < - * « e i ( > m e o r « . e o e o r o e o

r

5-16

.

*.«

« •

«

7-18

n

tn

in

9-15

. 0

6-40

.

m

eo

(si

5-56

.

CM

«n

1-54

.

VM

^ 6-

49.

r>

r>

e

7-47

.

0

^

8-51

. 8

(15.

r

8-25

.

e>

e>

4-21

.

eo

eo

7-24

.

r*

eo

8-33

.

(Si

«e

1-30

.

r* (VJ

CiJ

9-44

.

«e (M

«-

3-38

.

«e CM

«0

4-34

CM

r>

8-30

.

if> (VJ

( M e o i n o r > m o « e « -. • • • • • • • »

r > e « o « e t i e ^ e o r ^ ( M ^ ( M ( M C M r > ( * > ( M ( S J

eo

6-39

.

in r>

(O

f^

3-37

.

CM

0

eo

4-36

.

CM r>

et

.9-7

3

r^ in

n

^

4-83

.

r<* le

CM

m

.5-8

1

e« «0

eo

<n

.0-7

7.

(SJ

n

.3-7

2

«e

68.7

.2-7

6

m

66.3

••4 (vj r> « m «e ro i I i I i 1 I

et I

Page 86: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

6 8

L

0)

o 0) 3 0 Q > .

0) 4^4^ Q -

(/) 0) 0) C - 0 4J — L 4 J Q) Q a4J OU) L Q. 0)

0) — 0) "o^ in 0

u c Q 0) « ) £ £ 4 J rsj I

m Q)

n Q I -

>» «

u E c ^^ « *< CNJ»« æ

gg

C 01

«A 0« « Vt . ^ 0» « m c ^ ^ « • .g Í t * C (M Of c u • « k O 91 •< Z JC

0« c 0> "- o>

e o e t « e r ^ » ^ e o ( * > e o c s j C M ( s j m m « e « - m S æ

• • • • I i • I i e o e o e o o o r ^ « r « e r )

r > r > ( s i » s ( s j o e t c s i ( M c s j m « « r « m m r > i .

«/t

« « 0)

E » •^ o>

u »« ee

i/l c

e« «n i

e« (St

e> «n 1 ft n

m «e i

o «e

e« «e i

r m

^ «e i

eo m

e> «e 1

e« m

«e «e i

«n «e

eo eo i «-r«»

eo e> «o eo

r ; « e ( s i ( s j ( s i m v e « « r > « n t o « e « o « e « o r « > e >

^^ *"• ft ^ r> e« ••< o% m m «e • • • • . . . • i e e o « ( * > o o e > m m e > r > ( v j r ) ( * > ( s i < * > v ^ r > i I I I I I I

I « m (y> m r> r> m «e

• • ( M O e o e o c M O o « e ( n ( M ( M ^ . i 4 ( S j C M ( S J

m «o r ) o

e « e > e t m v « o m c o v M C M ( S J ( S J ( S J C M C M r >

m V ^« o e> eo o ^ ^ ( * > 9 0 m e > r « M > M C M ( S J ( S J C M . ^ « C S J « * >

• • i i I i • 1 c s j e > m ^ « e « e m e «

Z å

•r: *> mJ «

^ »• — "s^ c o- « z å

sr.

e« eo v« o m csj (M csj (sj

m (SJ

« e o ( s t e > m a o ( * > e > • M C S J C M M C S J ^ C S J C S J

3-30

«*>

-

^

2-63

•^

o

(•>.

9-59

«o

et

(M

2-48

o

^m

m

1-54

,

o

o

00

9-52

.

«e

m

«-

8-54

.

(M

eo

eo

6-65

.

o

«e

m

1-78

.

«e

«-

«e (M

o * « m G O m e o ^ « m\e>mmmm»eí>o

. M ( M ( * > « m « e r * . e o e « • • • • • • ( • •

o ^ c M r > « m < e ^ e D

Page 87: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

69

Table 3-3. In Sftu Sofl Moísture Content and Soil Suctton Values for the Amarl1lo Sfte.

Depth (ft)

0-1

1-2

2-3

3-4

4-5

5-6

6-7

7-8

8-9

Moisture Content (%)

Mean (Range)

8.3

10.5

13.8

17.8

19.7

21.7

24.2

22.7

23.5

(4.9-9.8)

(7.1-13.1)

(8.2-18.0)

(15.8-19.8)

(17.3-22.2)

(17.5-24.5)

(20.9-27.0)

(20.8-25.7)

(16.8-26.8)

Filter Paper Soil Suction

(PF) Mean (Range)

5.3 (5.0-5.5)

5.0 (4.9-5.1)

5.0 (4.7-5.8)

4.8 (4.7-4.9)

4.7 (4.5-4.8)

4.6 (4.4-5.0)

4.4 (4.2-4.7)

4.4 (4.2-4.7)

4.3 (4.1-4.7)

Page 88: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

70

Table 3-4. In Sftu Sotl Mofsture Content and Sofl Suctfon Values for the College Statfon Sfte.

Depth (ft)

0-1

1-2

2-3

3-4

4-5

5-6

6-7

7-8

8-9

Moisture Content (%)

Mean (Range)

6.4 (3.3-14.4)

8.9 (2.7-23.6)

18.7 (2.8-29.4)

17.4 (10.7-31.7)

16.9 (10.0-21.2)

17.9 (14.5-20.3)

20.8 (12.8-26.2)

23.9 (16.8-30.7)

29.1 (24.5-30.7)

Filter Paper Soil Suction

(pF) Mean (Range)

4.9 (4.6-5.1)

4.5 (3.0-4.9)

4.3 (2.3-4.8)

4.3 (4.0-4.7)

4.3 (3.9-4.5)

4.3 (4.2-4.4)

4.3 (4.0-4.5)

4.3 (4.1-4.6)

4.2 (4.1-4.5)

Page 89: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

71

Table 3-5. Percentages of Clay Mfnerals In Clay Fractfon from X-Ray Dff-fractfon Anafysfs for the Amarf11o Sfte.

Sample Depth (ft)

1 - 2

2 - 3

3 - 4

4 - 5

5 - 6

6 - 7

7 - 8

8 - 9

Percent of Mi

Smectite

44

39

44

45

44

32

40

38

neral in Clay

niite

27

26

30

32

31

40

35

37

Fraction (%)

Kaolinite

29

35

27

23

25

28

25

25

Page 90: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

72

Table 3-6. Percentages of Clay Mfnerals fn Clay Fractfon from X-Ray Dff-fractfon Analysfs for the College Statfon Sfte.

Sample Depth (ft)

1 - 2

2 - 3

3 - 4

4-5

5-6

6-7

7 - 8

8-9

Percent of Mi

Smectite

55

45

81

81

83

91

85

82

neral in Clay

Illite

5

10

0

0

0

0

0

0

Fraction (%)

Kaolinite

40

46

19

19

17

9

15

18

Page 91: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

73

sof1 mofsture content versus sofl suctfon curve for low

suctlon (< 1 bar) whfle the pressure membrane apparatus

was used to obtafn the relatfonshfp for hfgher suctlon.

These curves are presented fn Ffgures 3-15 and 3-16 for

selected depths at each sfte* respectfvely.

The results of the X-ray dfffractfon analyses,

whfch are reported fn Tables 3-5 and 3-6, Indfcate that

the predomfnant clay mfneral at each sfte 1s smectfte,

and suggest that, under the rfght condftfons, the sofls

at both research sltes have a very hfgh potentfal for

heave. The hfgh ifqufd llmfts and hfgh clay contents

wfth a predomfnance of smectftes gfve a qualftatfve

f nd f cat f on of th f s potent f a1.

Ca1f brat f on Curves

Psvchrometers. The thermocouple psychrometers

were calfbrated 1n the laboratory accordfng to the

method suggested by the manufacturer, J.R.D. Merrfll

Specfalfty Equfpment. A 1-1/2 fn. by 1 fn. fflter paper

was soaked wlth NaCI solutlon of known molallty (0.1 to

2.0 molallty) and pîaced Into the callbratlon chamber

along wtth the psychrometer. The chamber was lowered

Into a constant temperature water bath whtch was kept at

room temperature. The mtcrovolt readtngs were taken

after the psychrometer had achteved an equtllbrlum state

whtch usually requtred a ttme between 2 to 6 hours.

Page 92: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

74

35

30

B

^ 25 z o o UJ

:

^ 20 o

15

PRESSURE, pF

to ^. tf) i . 00 Q ro fO lO ro fo ^

T T T nr

2 T

AMARILLO

Dmn

'•5 FT DEPTH

J L t I I I i I I 1—i L_J i—L

4 6 8 10 i2 14

PRESSURE, BARS

16

Flgure 3-15. Soll Suctlon Versus Molsture Content Relattonshtp for Soll at Selected Depths for the Amartllo Stte.

Page 93: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

75

PRESSURE. pF

— a> — _ lO ^ 10 f^ lO fO tO tO

35-T—I—I—r

S 5 ro ^

- I r - r

COLLEGE STATION

30

. 2 5 -

bj 20

I-(/> O 2

5 15 co

O^PrAy

O

I I « I ' I » I » > — I — I — I — I — L .

2 4 6 8 O 12 14 16

PRESSURE. BARS

Flgure 3-16. Soi1 Suctton Versus Mots-ture Content Relattonshtp for So 11 at Selected Depths for the College Statton Stte

Page 94: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

76

Ca11brat1on curves were deve1oped us1ng the data ob-

talned for each psychrometer. These curves constst of

plots between water potenttal as the ordtnate (1n bars)

and mtcrovolts. A typlcal caltbratton curve for the

psychrometers 1s shown 1n Flgure 3-17.

Motsture cells. For motsture cells, the caltbra-

tton curves were developed 1n the laboratory ustng sotl

spectmen taken at 1, 3, and 5 ft depths from each bor-

Ing. From prevtous research work done at Texas Tech

Untverstty, tt was ascertatned that there ts very llttle

dffference between the motsture-reststance relatfons of

dupltcate (same lead length) mofsture cells. Thus,

because of the great length of ttme requtred for calf-

bratfon, tt was dectded to caltbrate a "stster cell" fn

the laboratory for each fnstrument Installed In the

fteld.

A motsture cell ("stster cell"), wtth a lead

(wtre) length correspondtng to that of the tnstrument tn

the fteld at a parttcular depth, was tnserted Into a

remolded soll sample from that speclfîc depth so as to

encase the entlre cell and to provlde an effectlve

soll/cell contact. The soll/mo1sture cell arrangement

was then enclosed 1n a nylon fabrlc to prevent the loss

of clayey soll sollds when the soll was saturated. The

Instrument was Inundated for approxlmately 12 to 24

hours and then removed from the water bath and allowed

Page 95: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

77

SllOA OdOIV\l

I

Q.

9)

r

£ 9) >

D U

c 0 7> Q I . n

Q o • n

— 1. Q 9í

ã 1 >sO

£ < U

I m

I. 3

Page 96: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

to equlllbrate 1n a controlled envlronment for approxl-

mately 24 hours. The electrlcal reslstance of the soll

and the welght of the soll/1nstrument arrangement were

measured at pertodtc Intervals for a range of sotl

motsture content as the sot1 drted out. The sotl mots-

ture content was then determtned for each electrtcal

reststance measurement. A caltbratton curve was devel-

oped from thts data ustng sotl samples from each depth

of every bortng that has a motsture cel1 1n the fleld.

The callbratlon curves conslst of semllog plots between

the electrlcal reslstance of the soll as the ordtnate

(in ohms) and sotl motsture content (tn percent).

Ftgure 3-18 deptcts a typtcal caltbratlon curve that

was developed for the motsture cells-

78

Page 97: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

LJ O

tn

icf:

5x10'

10%

5x10'

U '0 LJJ

5x10*

o Q: » -o UJ - I UJ icf:

5x10* •

icf4

79

BORING NQ 38 AMARILLO DEPTH: I FT

• •

K) - 1 —

20 —r-30 40 50

MOISTURE CONTENT {%)

—r-60

Flgure 3-18. A Typlcal Callbratlon Curve for the Mofsture Cells.

Page 98: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

CHAPTER IV

RESULTS AND ANALYSIS

Dtscusston of Results

The results obtatned from the laboratory and fteld

measurements form the basts for the analysts presented 1n

thts chapter- Some of the laboratory test results (soll

phystcal properttes) were presented tn Chapter III.

Those results whfch pertafn to the fntttaî sof1 condt-

ttons, such as tntttal fn sttu sot1 suctlon proftle and

Inlttal 1n sltu sotl motsture content, wt11 now be pre-

sented and dfscussed. The ffeld measurements of the

slab model and benchmark elevattons, and sotl suctfon

proftles for the pertod July, 1985 to August, 1986 wt1I

also be presented and dtscussed for each stte. Although

sotl motsture content measurements were also made at

each sfte on a monthly basts, those results wt11 not

presented herefn, stnce motsture content changes are not

wtthtn the scope of thts thesfs.

Inttfal Suctton Proffles

The tntttal soll suctton proftles at the ttme of

constructton of the slab models for both research sttes

were reported tn Tables 3-3 and 3-4 and are shown

graphlcally In Flgure 4-1. As can be seen from Flgure

60

Page 99: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

81

I-

2-

3-

4-

I e-uj 7i

8-

9-

5.5 L -

AVERA6E SOIL SUCTION. pF 50 4.5 4.0

Flgure 4-1. Mean Inlttal Sotl Suctton Proflles for the Amarlllo and College Statlon Sttes.

Page 100: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

82

4-1, for the Amarfllo stte, the proffle shows that the

equtlfbrtum suctlon depth (also termed constant suctton

depth) fs apparently located below 9 ft. The depth to

equtllbrtum can be extrapolated to approxtmately 12 ft

whtch Is beyond the depth of the Installed tnstrumenta-

tton. For the College Statlon slte, the equlllbrlum

suctlon depth apparently occurs at approx1mate1y 3.5 ft

below the ground surface. From the Russam and Coleman

(1961) correlatlon between equlllbrlum sol1 suctlon and

TMI, the equfltbrtum sotl suctton values at the Amarll-

lo and College Statton sttes were determtned to be 4.2

and 3.4 pF, respecttvely. Thts tmplles that the equtlt-

brlum depth for College Statton mtght be below the 3.5

ft depth.

Intttal Motsture Proffles

The tnttfal sotl motsture content, also reported

In Tables 3-3 and 3-4, Is shown graphtcally In Flgure 4-

2 for both sttes. Thts ftgure Indtcated the extent of

the dryness of the sol1 at each stte prtor to stte

Intallatton. The upper stratum (0 to 3 ft), at the tfme

of tnstallatton of the slab model 1n Amartllo, was very

dry wtth a mofsture content of only approxfmately 6 to

12 percent. The motsture dtstrlbutlon Increased to

approxtmately 24 percent at about 7 ft depth, and tends

towards a constant value below thts depth. For the

Page 101: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

83

g 8-liJ

S 8-U

Q: ^

<o o -o 2

cn O

liJ

o bJ - I - I

8 o ^ - I — I — I — I — I — I — I — | — < — I — ' — T " " — n — r

S-t

{í 8-z 8 bl cr o-^ cn 5

lO

cr < <

o J. T " CNJ

1 I ' I ' I ' I • I ' I fO ^ lO (D K CD

I

r tn n ^ c — Q U. 0 0 L — C L -^ J T C Q 9) É +»< C 0 9)

u n 0) 1. I . 3 0 ffí 0 r 0)

Q -— L (A

o - c (/) 4^ 0

Q — l-Q 4^ — 40 4J

+» Q •P (0

C — Q)

(0 (U C — Q 0) — 0) C O

r - u

CM I

0) I .

0)

cn (Id) Hld3a

Page 102: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

84

College Statlon stte, the sot1 molsture content of the

topmost stratum at the tlme of Installatton of the slab

model varted from approxtmately 6 to 16 percent. The

motsture content tncreased wtth depth to approxlmately

29 percent at 9 ft depth.

Observed Surface Heave

Amarll1o. Flgure 4-3 deplcts the 2- and 3-d1men-

stonal contour plots of the surface heave experlenced by

the slab model and uncovered surface for Month 1 and

Month 12, referenced from the ttme of tnstanatlon.

Stmllar surface heave plots for Months 2 to 11 are

tncluded In Appendtx A. These plots lllustrate vtsually

the degree and locatton of shrtnk/swell of the sotl that

occurs beneath the slab model as a result of changes In

sotl suction (motsture content). Wfth reference to Month

1, tt can be seen that the slab Is essentlally flat but

ts respondtng to some mofsture tnfluences especfally at

the edges. Thts phenomenon ts due to the effect of 5.31

tn. of rafnfall that occurred from the ttme of comple-

tlon of the Installatton of the slab model to the ttme

of the ftrst measurement at the stte (a total of 39

days). By Month 3, a more pronounced edge llft effect

or "dtshtng" ts observed. The gradual process of

shrtnk/swell conttnued through to Month 12 where the

effect of "dtshtng" 1s more pronounced than for Month 3.

Page 103: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

. 1 0

es

^'oupe 4 - 3

Honth^'ri.ríf

- %Bí''--

Page 104: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

86

The change of elevatton of the slab model, along

the longltudtnal centerltne (Sectlon A-A, Flgure 3-6),

1s lllustrated 1n Flgure 4-4 on a month-by-month basls.

Flgure 4-4 shows an Inltlal dlshlng effect 1n Month 1

and the progresslve heave experlenced by the slab model

wtth respect to ttme. The east end of the slab, where

the pertmeter grade beam ts sttuated, has slgnlflcantly

htgher changes 1n elevatton than the east end where

there ts no pertmeter grade beam. One posstble reason

for thts anomaly 1s that the pertmeter grade beam may

not have been deep enough to prevent the tngress of

motsture or the constructîon of the edge beam actual 1y

created condltlons for pondlng. Another reason could be

that, at the east end of the slab model there were some

cracks below the surface, and In the vtctntty of the

slab model, that were not detected and these provlded a

ready source of motsture. Consequently, the expected

prtmary beneftt of the pertmeter grade beam was not

realtzed. It appears that pertmeter grade beam hlndered

the movement of motsture from beneath the covered sur-

face. Thts prevented the soll beneath the slab at the

east end from drylng out as would normally be the case

when the cltmate Is not wet.

The change of elevatton for Indtvtdual F>o1nts

along the longltudlnal centerllne (Sectlon A-A, Flgure

3-6) 1s deptcted tn Ftgure 4-5 on a monthly basts (ttme

Page 105: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

I0.20|—»

t K).I5

10.10

J L -I 1 1 L —MONTH 0 o MONTH I O MONTH 2

J l—J. AMARiLLO

87

^ 21)^1^72 «^9L"',24'^l£^'«^2, ' 2© ' 241 •Of 228

ELEVATION POINT NUMBER

(0)

10.20 10.15 10.10

' » ' 59 ' 85 20 46 72

^^111 ' 137 ' 163 98 124 ~

.^^ _._I89 • 26 '241 150 176 202 228

ELEVATION POíNT NUMBER

(b)

7 " T ^ 20

59_L 8Í5 A lil. ' 137 . ^ 189 ' 215 -46 72 98 124 150 176 20f 228

ELEVATION POINT NUMBER

(c)

Flgure 4-4. Monthly Changes of Sur-face Elevatton for Months 1 to 12, of the Longttu-dlnal Centerllne, Sectlon A-A, of Slab Model for the Amarlllo Slte.

Page 106: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

8 6

20 ^ _ ' 137 ' 163 ' 189 ' 215 ' 241 46 72 98 124 150 176 202 228

ELEVATION POINT NUMBER

(d)

î bJ .J bJ

10.20

10.15

10.10-

10.05

10.00

9.95 9.90

J I L J I L_J I I L —MONTH 0 o MONTH 9 OMONTH 10

AMARILLO • H

20 ' 3 3 A 5 9 85 ' lil ' 137 '

72 98 124 150 l63.J^I89^r2lL,„.

Z 228 46 ^'72 ^ 98 "124 " 150 "176 20

ELEVATION POINT NUMBER (e)

241

10.20 10.15 10.10

S 10.05 § 10.00

i__j 1 I—I—L J I I L —MONTH 0 oMONTH 11 OMONTH 12

AMARILLO

33 ' 59 ' 85 ' III 20 46 72

ELEVATION POINT NUMBER

(f)

W " | — E

' ll'l ' 137 ' 163 ' 189 ' 2Í5 ' 241 98 124 150 176 202 228

Ftgure 4 -4 . (Conttnued)

Page 107: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

89

~r

•n o n o o o> Ú O oi

J Ui w

8 8 b o

—^ «> 0» 0» fi o

2 at

m

o

I J 'N0I1VA313

1 C(

c 0»

> lU -J w

s S 8 S s â $2 di

S 8 S 9

01

> låi

z

• t

o C Q D O C Q

4J S 5 Q D > *» 9) 0 ) - J C — 0)+> UJ C

O ((. 0) 0) J 0 4-> O — Q Q) » ( 0

u-r < U4J I 0 D . < -W M- ^

0 C -C 0 1-""^J E 0) C U <

0) 0 (0 0) cû. r Q »4J r - 0) U Q C 1.

3 - 0

— — I-£ > tt) — 4-> — 4J 0) C -0 C U O C 0) O

r — or m I

0)

u D O)

«1 ô s o o • o d 0»

id 'NoiivAaia

Page 108: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

90

e o i i

s 0»

•> o 2

lO

(M

- - 2 2 I J *N0liVA313

T5 0) D C

+> C 0 u

( s S S t S S f S l ^ O A r ) o i ' > 0 f o * > O C O o

fil

z

s e>

lA 1

'«î

0) i-3 0)

U.

•i €i

10

N

s s s s S d 2 9 d ^ 3 0 S S d •

U *N0tlVA313

Page 109: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

91

hlstory) over a 12 month perîod. For tnstance, Potnts

7 and 241 are sftuated 6 ft outstde, and at opposlte

ends of, the slab model and occupy the same posttlon

relattve to the slab model. The stte had expertenced

above normal ratnfall In the Months 2 and 3 (September

and October, 1985, respectlvely) as seen tn Ftgure 3-12.

The Influence of thls ratnfall was felt by the slab

model from Months 1 to 5 as tndicated by an tncrease In

elevatton for these polnts for thts pertod as shown In

Ftgure 4-5. However, from Month 6 to Month 9 (December,

1985 to Aprll, 1986), wtth the exceptton of February,

the monthly ratnfall was below the 44 year mean monthly

ralnfall, and both Potnt 7 and Polnt 241 responded wlth,

a correspondtng decltne tn elevattons for thts pertod.

Polnt 59 ts located on the slab model approxl-

mately 6 ft from the west edge. The tnttlal response of

the sotI below thts potnt was a decrease tn elevatlon,

stnce the effect of the above normal ratnfall In Month 2

and Month 3 was not feît tmmedtately. Also, the tmpei—

meable membrane dtsrupts the normal evapotransptration

process. As such, there was a deflctt In motsture

durtng thts perlod and a correspondtng decrease In ele-

vatlon. However, by Month 5 the Influence of ralnfall

In Months 2 and 3 were felt (after a ttme lag of the

fngress of molsture) and resulted In an Increase In

elevatton for that month. By Month 6, Potnt 59 agatn

Page 110: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

92

had a decrease In elevatlon that contlnued untll Month

12. The increase în elBvatîon at Month 5 (+0.01 ft) and

decrease at Month 8 (-0.01) mlght also be attrfbuted to

surveying roundoff errors. The fnfluence of below nor-

mal rainfall was probably not felt at this point.

Point 124 is situated at the center of the slab

model. The soi1 beneath thîs point was not affected by

the rainfall 1n Months 2 and 3. There was a slight in-

crease in elevation (+0.02 ft) for Polnt 124 for Month

5, whlch was immediately followed by a 0.03 ft decrease

the \/ery next month, agaln suggesting survey roundoff

errors. The elevatlon of thts potnt tncreased gradually

after Month 5 through Month 12. The tncrease In eleva-

tton after Month 8 can be attrtbuted to an accumulatton

of motsture under an tmpermeable membrane due to the

effect of an energy gradtent that was set up by the

evapotransptratlon process prlor to when the slab model

was constructed. Consequently, moisture accumulated

below the membrane because the flnal stage of the evapo-

transpiration process has been disrupted.

College Stat ion. Measurements at this site

commenced tn October, 1985 (Month 2) and no measurements

were taken in either Months 1 or 3 because of persistent

rainfall at this stte during these periods. Ftgure 4-6

represents the 2- and 3-dtmensional contour plots of

surface heave for Month 2 and Month 12. Stmtlar heave

Page 111: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

93

I f njQo

Tti

SfíSV*'-

MO

'^'gure 4«g^

uã ' ' ^

*!•« T,me of |,'f" " t »*a"at ,on% ** ' " -Coiiege s ^ f f the

Statíon s , te

Page 112: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

94

plots for Month 4 to Month 11 are Included In Appendtx

A. From the Month 2 contour plot, tt can be seen that

the slab model has started to respond to a total of 14

in. of ratnfall in Months 1 and 2 as tllustrated tn

Flgure 3-13.

Ftgure 4-7 tllustrates the monthly change of

surface elevatlon of the slab model, along the longttu-

dtnal centerltne (Sectton B-B, Ftgure 3-7). Thts ftgure

shows some degree of edge I1ft for Month 2. Month 2 aIso

shows the heave "worktng" tts way towards the center of

the slab model but the center sttll has not heaved.

However, by Month 4 the enttre slab model, tncludtng the

center, had expertenced stgntffcant heave espectally at

the west end where there was no perimeter grade beam.

Thts pattern of surface heave was matntained through

Month 12. Changes in elevatlon of tndlvldual potnts,

along Sectlon B-B, are represented tn Flgure 4-8 on a

month-by-month basts. Potnts 7 and 20 heaved early and

stayed that way, whlle Potnts 215 and 228 never really

heaved although both patrs of potnts are sttuated at

stmtlar posltlons outslde the slab model at the west and

east ends, respecttvely. One posstble explanatton ts

that at the east end, the sotl was compettng wtth the

large tree near thts locatton for motsture. Hence, the

amount of motsture avallable to cause heave was de-

pleted. The west end was not tnfluenced by the nearby

Page 113: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

z o I-5 UJ

10 20

10.6

1010

1005

1000

995

J__l I L J t I I I ' • ' ' ' MONTH 0

• MONTH 2 o MONTH 4

COLLEGE STATION

I I I I I I 7 A 33 .L 59 ' ' I ,!, I ' ' '

20 46 ^o 85 « III .^^ 72 98 124

I I I I I37.J^I63..L 189 ' ^15, T

150 176 aor 228 POINT NUMBER

(a)

9.95

J — I — I — I — L - l — I I I I ' 1 I t I I

COLLEGE STATION

oMONTH 6

T-TT T T T rjn ^ 2 ^ ^34^ 59^2 85 3^ "'l^^'^^lsb'^V^^S^Í^^'S^^B

POINT NUMBER

(b)

UJ •.j UJ

10.20

10.15

10.10

10.05-

10.00--

9.95

J I L J — I — I — I — I I I I I L_L COLLEGE STATION —MONTH 0

• MONTH 7 o MONTH 8

1—'—i—'—I—^—1—'—I—'—I—'—I—'—I—^ 7 20 ^^46 5^72 ^^98 '" laV^^ISo'^l^e'Q^^OZ^^^^B

POINT NUMBER

(c)

95

Flgure 4-7. Monthly Changes of Surface Elevattons for Months 2 to 12, of the Longttudlnal Centerltne, Sectton B-B, of the Slab Model for the CoHege Statton Stte.

Page 114: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

10.20

I0.I5H

^ 10.00- -

995'

' ' ' ' ' » ' ' t ' t t i t I ,

COLLEGE STATION —MONTH 0

• MONTH 9 o MONTH 10

_ ^ W - > E

' 20 » 4 ^ « n «'» 98 "•' . 2 4 ' ^ ^ . 5 0 ' ^ ^ > 2 ; : ? e ^ POINT NUMBER

(d)

96

10.20

I0.I5-I

> 10.051

J I I I L J I I I J_-l I I L CX)LLEGE STATION —MONTH 0

• MONTH 11 o MONTH 12

1 ^ — I — ' — I — ' — I — ' — I — ' .

POINT NUMBER

189 ^15 176 202r 228

(e)

Flgure 4-7. (Contlnued)

Page 115: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

97

"3; 2 — I • T -T 1 r—t r -í , 1 4 T

Í Í Í § S 5 g S 8 S i e S 8 « * * S o * - S g g » » 2 O Q g 0 »

i d 'NOtlVABia

g

OD

X

2

C\i

s

z

<r

lO

IM

g s € 8 » 2 2 8 g S £ 2 S 8 S g g S 8 S J S c B d * 2 S g o o > B B c S * ^ ® 2 o »

I ffl • •^ I 9)

>m** •!?)

C 9) '^ C C

0 l-^-> V tD

C4J4J 0 C V ) — 0)

Q 0) > ^ Û) 0) (D —

— C'-UJ — 0

T 3 0 0) D U 4-> 0)

« - r U. CD'M L C D O L U) J 0

M. C 0) — £ — m "0 0) C 0 0) 0 £

c Q tf)I} £ 4 ^ (0 O C -> 0

— Q. 0) 4J — + j C (D 0 DM-£ - 0 0

GO I

1 . D

l i *N0IXVAa-l3

Page 116: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

98

j _*. ' ' I X X L 1 f - J . X

.O

>

°iii^iiisriiiniiiiim l i •NOiivA^na

TJ 9) D C

z> C 0 o

T * I s- •» ô tf) b p p ^ S g d 0>

S S 8 S s s

s 0»

•i

00 I

Q) L 3 0)

M

i j 'NOiivAaia

Page 117: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

99

trees, as such, more motsture was avatlable for swellîng

to be achteved.

Elevatlon of Deep Benchmarks

AmartIlo. Ftgure 4-9 deptcts the changes In ele-

vattons of the deep benchmarks at Amartllo. The bench-

marks at 2, 6.5, and 9 ft depths show deftntte tnflu-

ences of cltmate as tndtcated by changes tn elevatton at

these depths. The benchmark at 2 ft depth shows the

greatest effect of the cltmate as was expected. However,

the benchmark at 14 ft depth indtcates some sltght

movement tn Months 5 and 6 and again tn Months 11 and

12. Thts movement at a depth of 14 ft mtght be attrt- .

buted to the effect of moisture changes at thts depth or

tt might be the result of surveylng inaccuracles (round

off) tn measurements for these particular months. From

the Itmtted observed data, no possible explanation other

than tnaccurate measurements can be advanced, at thts

time, for the heave shown for Months 9 to 12 and Months

10 to 12 for the 9 and 14 ft depths, respectively.

Slnce, It is not expected that shrink/swell activity

would extend beyond the 12 ft depth.

Colleqe Stat1on. As Figure 4-9 shows, the 2 ft

benchmark has the greatest fluctuation in elevatlon,

whtle the 5 and 9 ft benchmark show nomtnal movement. As

such, the actlve zone may be located between 2 and 5 ft

Page 118: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

100

g • I I J^

1 — 1 " ! — F T r 1

BS8585S O O O O Q O O

T—i—rrr-

SS5858 O O O O O Q

T—r T—r JL ^ OQf o o o d ô o o d ? d

I d 'NOUVAaia Nl 39NVH0

. o

- •

i - • j

-cw

•| M I \ r .

_ 9 o ° 0 0 0 o O o 9 0 0 0

I < I > I > f I M I I 1 > t

o o o d d o d ?

I • 1 1 1

I t

7 a. s

m

*^ X »-

1 SS8gS | 8 ô d o d d o O d ?

l i *N0llVA3-ia Nl aONVHO

S 8 S o d d

i .

i. U 0) C 4 Í 4> —

a c « 0 0) —

0 4 - > . « 0 ( / )

C 0) 0 O) — 0)

flj — > 0 9) O

UJ 'D c

C (D

"" 0 « —

0 ) -C 1.

i o < >sa) — £ £ 4 J -P C 1. 0 0

I

9) L 3 0)

Page 119: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

101

depth at thls slte. The 15 ft deep benchmark shows some

errattc movement tn Month 5 and Month 7 whtch mtght be

explained as (round off) inaccuractes tn measurement for

the months. From the Itmtted observed data, no posstble

explanatton other than Inaccurate measurements, can be

advanced at thts ttme for the heave shown for Months 9

to 12 and Months 10 to 12 for the 12 and 15 ft deep

benchmarks, respecttvely.

SotI Suctton Proftles

AmartIlo. Typîcal soil suction profîles for out-

side and beneath the slab model are lllustrated In

Figures 4-10 and 4-11 for Month 1 to Month 12, with the

exception of Month 7. Because of a malfunctlon of the

equipment in Month 7, the soil suctlon values were not

measured for thls month. Stack No. 1 Is situated out-

side the slab model (approximately 3 ft from the west

edge) and Figure 4-10 shows the general trend of the

soil suction profile of the uncovered expansive clay as

It varies over time at various depths. There was almost

no surface vegetation at this location during the entire

period of observation. The topmost stratum of the soil

tends to have high suctîon during dry seasons and as the

depth tncreases the suctton decreases as the soil be-

comes Increasingly more wet. The change of soiI suction

below the 7 ft depth Is relatlvely small (3.4 to 3.7 pF)

Page 120: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

()••,:•

102

SOIL SUCTION, pF

5.0

- I -

£-»-'

- 7 -

- 9 -

AJ5 •

4.0 3.5 _ j

3.0 _ i

2 ^

AMARILLO STACK NO.

• MONTH o MONTH • MONTH o MONTH A M O N T H AMONTH

( a )

SOIL SUCTION, pF

í 5.0

0. UJ

-I

- 3

-5

-7-

- 9 -

ill 4.0 t

3.5 L _

3.0 2.5

AMARILLO STACK NO. I

• MONTH 8 OMONTH 9 • MONTH 10 OMONTH I I

1

(b)

Ftgure 4-10. Monthly Changes in SotI Suctlon wlth Depth for Instrument Stack No. 1, Located 3 ft Outstde the Covered Surface for the AmarfIlo Slte.

Page 121: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

103

SOIL SUCTION, pF

5.0

- I -

-3-

kl O

-7H

4.5 _ j

4.0 «

3.5 i _ _

3.0 _ j

2.5

- 9 -

• MONTH o MONTH 2 • MONTH 3 o MONTH 4 A MONTH 5 ^ MONTH 6

AMARILLO STACK NQ 20

a. 8

5.0

- I -

-3-

-5-m

-7-

-9-

JV

( 0 )

SOIL SUCTION, pF 4.0 3.5

I I 3.0

-.. I. . 2.5

AMARILLO STACK NO. 20

o MONTH • MONTH 9 o MONTH 10 A M O N T H II A M O N T H 12

T (b)

Ftgure 4-11 Monthly Changes tn Sotl Suctton with Depth for Instrument Stack No. 20, Located 2 ft Inside the Covered Surface for the AmartIlo Slte.

Page 122: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

104

durtng the pertod of observation. However, the general

shape of the soiI suction profile is maintatned durtng

the wet season but shifts to the left as the soll suc-

tion decreases relative to the dry season. The In-

fluence of ralnfall and evaporation (negltgtble transpi-

ration) ts felt at this uncovered area much more than

beneath the slab model. Consequently, the range of

suction variatton ts greater at thts locatton than under

the slab model as wiII be shown below.

Stack No. 20 is located approximately 2 ft from

the west edge of the slab model and typifles the soil

suction profile beneath a covered area (for Months 8 to

11) as shown in Figure 4-11. The range tn changes of

sotl suction In this profile is smaller than that in

Stack No. 1. This may be due to the decrease In the

Inflow of moisture from rainfall and the dtsruptton of

the normal evaporatton and transptratton processes. The

decrease tn range of suction is not reflected in Months

1 to 6 when comparing Stacks 1 and 20. The reason for

thts ts that the soiI suctton measuered by Stack No. 1,

whlch Is located within the soiI profile, is dependent

on the tîme the measurement was taken. That is, if the

measurement at this location was taken during a rainfall

event, the soi I suction values would have been low. If

the measurement was taken a few days before or a few

days after a rainfalI event the soil suction values

Page 123: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

105

mlght be conslderably hlgher. Also, this ffgure shows

the change of the soil suction proflle wlth respect to

tlme. That ts, from Month 1 to 6 the suctîon proffle

shtfts to the rtght as tt becomes wetter tn response to

the tnfluence of 16.8 tn. ratnfall that occurred from

Months l to 4 (August, 1985 to November, 1985) and

shtfts to left durlng Months 8 to 11 as the soll proflle

becomes drter due to below normal ratnfall (total of 2.8

tn.) that occurred during Months 5 to 9 (December, 1985

to Aprll, 1986) with the exceptton of February, 1986.

There ts a ttme lag between a preclpttation event and

when the the suctton proftle beneath the covered surface

changes (decreases) or the reverse, when there ts dry

perîod. The reason for thts phenomenon is due to low

permeablIty of the clay soil. Figure 4-12 shows the

trend of a decrease in soiI suction from Months 1 to 6,

at each depth of instrumentation, as the site responded

to the precipitation that occurred from Months 1 to 4.

This ftgure also shows an increase in sotl suctton from

Months 8 to 12 as the sîte responded to the period of

llttle ralnfall durtng Months 5 to 9.

In general, the soiI profile at the west end of

the slab model experienced an apprecîable change in soil

suction, and there was not significant surface heave or

shrink at the corresponding point as was expected. No

plaustble explanatlon can be advanced at thts ttme.

Page 124: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

32

"^3.6^

5 4.0

5 4.4 cn

^

4.8.

5.2-'

2 T r 3 4

106

AMARiLLD

I FT DEPTH

"1 r 5 6

MONTH (0)

7 "r 8

F 3.8H

4.2^

4.6

5.0-*

301 u-«^3.4^

2 3.8H u

d 46-

5.0

3 FTDEPTH T -

2 T -3

- 1 -

4 5 ~T 1 1 T-

7 8 9 10 T r-II 12

MONTH (b)

o

STACK STACK STACK STACK STACK

NO I NO. 2 NQ 3 NO. 4 NQ 5

STACK NQ 6 STACK NQ 7 STACK NQ 8 STACK NQ 9

5 FT DEPTH

I -r-3 4

"T T

5 6 MQNTH

(c)

7 T -

8 9 T r K) II

-r-12

F t g u r e 4 - 1 2 . Monthly Changes tn Soil Suction at Selected Depths for Stacks Nos. 1-9, for the Amarlllo Site.

Page 125: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

107

^ 3 . 0 -

Í 34-

^ 3.8-

4.6

* ^ 3 L Q -

2 3.4-

I

o A

W 3.8-

5 4.2H

T 1 r 2 3 4

AMARILUO

7 FT DEPTH 1 I

5 6 MONTH

(d)

"1 1 1 1 r 7 8 9 10 II

STACK STACK STACK STACK STACK

NQ I NQ 2 NQ 3 NQ4 NQ 5

• STACK NQ 6 • STACK NQ 7 A STACK NQ 8 O STACK NO. 9

9 FT DEPTH

I 2 3 T " 4

"I 1 r 5 6 7

MONTH

(e)

-1 r 8 9

-r-12

-1 r 10 II

T -12

F i g u r e 4 - 1 2 . (Cont tnued)

Page 126: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

108

other than because of the characteristics of the sotl,

for a large change in sotl suction tnduced only a smal I

change tn sotl motsture content. Thîs moisture change

was not large enough to Induce a correspondingly large

shrink or swelI.

Colleqe Station. Figures 4-13 and 4-14 exhibit

typical soil suction profiles outslde and beneath the

slab model, respectively, at this site on a monthly

basis. Figure 4-14 represents the soi1 suction profiles

for Stack No. 1 which ts located approxtmately 3 ft

outstde the west edge of the slab model. Thls ftgure

tndîcates a low soil suction to a depth of approxtmately

3 ft and sotl suction increases slightly as depth

increases to 9 ft. After initially being wetted up, the

soiI suction profile does not change significantly dur-

ing the entire 12 Month period of observation. This

implîes that the soi1 remained relattvely wet durtng

this time (time of measurement). Fîgure 4-14 shows the

sotI suction profile of Stack No. 11, which ts located 2

ft from the east edge of the covered surface. Thts

figure depicts the wetting up of the soil proftle from a

relattvely dry condition tn Month 2 to a wet condition

tn Month 7 tn response to 19.9 tn. of ratnfall that

occurred between September, 1985 and Noverber, 1985.

However, there was only 8.0 tn. of ratnfall that occurr-

ed durtng the pertod December, 1985 to Aprtl, 1986.

Page 127: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

109

z » -

Ui

o

5.0

- I -

- 2 -

- 3 -

- 4 -

- 5 -

- 6 -

- 7 -

- 8 -

- 9 - -

SOIL SUCTION. pF

4.5 I

4 0 3.5 _L_

3.0 25 —L_

2.0

C0LLE6E STATION STACK NO. I

• MONTH oMONTH • MONTH oMONTH AMONTH

2 4 5 6 7

(a)

SOIL SUCTIQN. pF

X I-UJ O

5Q

- I -

- 2 -

-3

-4-

-5

-6 -

-7-

- 8 -

- 9 -

4 5 4Q 35 I

3Q I

25 _ J _

2.0

COLLEGE STATION STACK NO. 1

AMONTH 8 •MONTH 9 oMONTH 10 •i-MONTH II

Ftgure 4-13.

(b)

Monthly Changes tn Sotl Suctton wlth Depth for Instrument Stack No. 1, Located 3 ft Outstde the Covered Sur-face for the College Statton Stte.

Page 128: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

110

X •-o. UJ

o

SOIL SUCTION, pF

3 0 25 I

2 0

C0LLE6E STATION STACK NO. II

• MONTH oMONTH • MONTH

:^ oMONTH ^ *MONTH

1 1

2 4 5 6 7

( a )

SOIL SUCTION. pF

0, UJ

o

50

- I -

- 2 -

- 3 -

- 4 -

- 5 -

-6

- 7 -

- 8 --9

4 5 I

4.0 '

35 '

3 0 I

25 2 0

COLLEGE STATION STACK NO. II

AMONTH •MONTH oMONTH 4 MONTH - MONTH

8 9 10 II 12

Flgure 4-14.

(b)

Monthly Changes fn Soll Suctlon wtth Depth for Instrument Stack No. 11, Located 10 ft Instde the Covered Sur-face for the College Statton Stte.

Page 129: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

111

Thts resulted tn a shtft to the left (tncrease tn sotl

suctton) of the suctlon proflle for Months 8 and 9. By

Months 10 and 11, the wet condition had reversed (shlft-

ed to the right) due to approximately 13.6 in. of rain-

falI that occurred during Months 9 and 10 (May and June,

1986).

In general, the soi I suction profile beneath the

covered surface at the College Station site decreased

after the inîtial influx of moisture but does not tn-

crease appreciable during the period of observation.

Ftgure 4-15 shows the decrease tn soil suction for each

depth of instrumentation. This decrease tn suctton is

reflected tn an tncrease tn surface heave that remained'

during the entire period of observation.

Edqe Moisture Variation Distances

From the preceding discusston, and a careful re-

view of Figures C-1 and 4-4, it appears that the edge

moisture variation distance at the Amarillo site, at the

end of the period of observation, varies from 6 ft to as

much as 10 ft. These figures show that the soi 1 is

experienclng changes in soil suction profle at a dis-

tance 10 ft from the edge and elevation changes 6 ft

from the edge. Whtle at the College Station site, the

edge moisture variation distance is at least 10 ft since

the entire slab model has experienced some heave as

Page 130: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

1^32-

I 3.6. § 4.0-tn

j 4 . 4 -

^ 4 . 8 -

112 COLLECJE STATIQN

% *

I FT DEPTH 1 I

2 3 T -

4 -i 1 r

5 6 7

MQNTH (o)

8 9 -I 1 r-10 II 12

1^3.2-

I 3.6-0 4.Q-

.4.4-

4.8-

•f o x

3 FT DEPTH [

u. 3.2H

a. z* 36 o o 4.QH

4.4-

S 4.8-

-1 1 1 1 1 r

2 3 4 5 6 7 MQNTH

(b)

-1 r

8 9 K) - I 1—

II 12

O e X

STACK NQ. 9 A STACK NQ 10 + STACK NQ. II • STACK NQ 12 •

STACK NQ.I3 STACK NQ. 14 STACK NQ. 15 STACK NQ. 17

5 FT DEPTH

T r 2 3

"T 1 1 1 I

8 9 10 11 12

F t g u r e 4 - 1 5 .

-1 1 1 r

4 5 6 7 MQNTH

(c)

Monthly Changes In Sotl Suctton at Selected Depths for Stacks Nos. 9-17, for the College Statlon Site.

Page 131: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

113

I 3.2" §3.6-tn

. 4 0 -

COLLEGE STATIQN

Ío

e

s; "T r 2 3

- T

4 5 6 MQNTH

(d)

- r 7 8 9

7 FT DEPTH -i 1 I

10 II 12 T

Í3.6-O ^ 4.0-

o e X o

e 4 O O e

T -2

STACK NQ 9 * STACK NQ K) • STACK NQ II • STACK NO. 12 •

STACK NQ.I3 STACK NQ. 14 STACK NO 15 STACK NQ 17

9 FT DEPTH

1 r

3 4 5 6 7 MQNTH

(e)

8 T -

9 - r -10

T -12

F i g u r e 4 - 1 5 . (Cont inued )

Page 132: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

114

depicted In Flgure 4-7. The theoretlcal edge molsture

variation dtstance for the Amarillo site, as suggested

by Wray fn Ftgure 3-11, ranges from 2.1 to 6 ft. Whtle

for the College Statton Site the theoretical edge mois-

ture variation distance varles from 2.2 to 5.9 ft.

Thus, for both sltes, the theorettcal edge moisture

varîation distance ts less than the observed edge moîs-

ture variation distance.

AnaIvs i s of Results

The Mitchell and Avalle and the Lytton-Gardner-

McKeen models described tn Chapter II were used to

evaluate the total and maximum differential heave, for

each site, respectively. The Lytton-Gardnei—McKeen

model was applied for the two extreme boundary

conditions that are expected to be experienced In the

field by a covered surface. That is, motsture entertng

beneath the covered surface from outside the surface

(soîl profile beneath the covered surface gettlng wet)

and moisture leaving horizontally from beneath the

covered surface (soll profile beneath the covered

surface is drying out).

MitchelI and Avalle Model

For selected points on the longitudtnal centerltne

of the slab model, the total heave was determtned, for

each stte, after vartous ttme tntervals ustng Eq. (2-40)

Page 133: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

115

(Mttchell and Avalle Model). These predictîons are

shown in Tables 4-1 and 4-2. These tables also Include

the observed heave for corresponding points. The tnput

vartables for this model are tabulated in Tables B-13

and B-14.

AmariIlo. Using this model, the predîcted heave

is not consistent with the observed heave as seen in

Table 4-1. That is, the model predlcts heave due to a

change in soil suction în the soil profile. Apparently,

this change does not induce a stgnificant amount of

moisture to cause appreciable heave.

Colleqe Stat1on. As shown tn Table 4-2, the

predicted heave at this site is, In general, sllghtly

greater than the observed heáve. These results show

that the slab model had greater heave for point near to

the edge.

Lvtton-Gardner-McKeen Model

As mentioned previously, the Lytton-Gardner-McKeen

model that was described in Chapter II, was applied to a

computer program by Wray(1978) and called SOILSUK. This

program has now been modified to consider the inltial

soiI suction of the soiI profile, before the surface has

been covered, and Is now called S0ILSUK2. S0ILSUK2 was

used to evaluate the total heave at selected points on

the slab model and the maxlmum dlfferential heave that

Page 134: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

116

u 0

— 9)

'^ to r JC C4i c — — X3 01 I. 3 C r +>-cn — 0» ^ 0 ) 3

c • í) 0 ^-> -J OJ Q "0 0) OJ 0 X r z V n 9) m to > c — U 0 (/) 9) -« ) < OJ

o r O tfí 4^

•p D C M. qj 0

0, 9) V c tt) T5 —

+J 0) — U 4J I . — O 0) T3 0) V tt) - C U tt) tt) û. tn o

0) r •p

i . 0 M. 0) L D

TJ tt) U 0 L

Q.

tt)

Q > < •

9)

C — Q (H

^ r — U L •P 5 £ <

4-* C CSJ O .-H

OJ >

c o o *-i

CSJ

o I

CSI

o

CM

o I

ro o*

Csj CVJ

vo o o

CSJ

o I

r j

o I

^~>»

o •

o

00 CVJ

vo co

• o

so «-H

CsJ f>»

• o

m o

00 to

. f - H

m m

o I

CNJ

o I

C\J «-H

o

o I

m 00 o

o «-•

• o OJ > t . OJ «/)

Æ o

OJ > ro a>

^ 4-> C 00 o ^"

T3 a>

•o OJ

D Q K

vo

* - H

O^ •

o

1 1

co ^

• o

^ ^ o • o

f—1

m

vo CVJ

• o i

^ CSJ

• o 1

vo vo

t - H *—t

• o

^ CSJ

• o 1

o ^

r m

• o

^ ^ CSJ l - H

• o

m CVJ

CT> * - H

• o

^—« o • o

m t^

co ir>

• o

^ • - i k

vo o* • o

o r>*

O i-H CVJ

CSJ CSJ CSJ

1 1

CSI * - H

• o

00 o

* - H

• o 1

00 00

* ~ l •

o 1

m r>

«-H

• o 1

00 m

^ . 1 , .

o •

o

00 o

1 1

*-H O O «-) «-H

•*- o o z

^ ^ o

• o

^ 00

o

*—^ CVJ * - H

• o

vo r*» o

C\J «-H

• o 1

00 ifí

o

C>J f t

• o 1

«—• IT)

o

^~« o

• o

co «-H

«-H

^m..

CSJ «-H

. o

r««. ^

o

^ i ^

\o •

o

00 00

o

m co vo O* «-H

LT) rxo CSJ vo r>^

CTk 00

Page 135: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

117

£ — 9)

-^ Q £ X C^i C — - TJ O) U 3 C r 4J — in — •) w 0 ) 3

c » tt) 0 _

"O T3 tt) tt) X I £ £

4J D

01 Q C

T3 tt) > U tt) «) i3 O

T3 C Q

T3 tt)

4J U

tt) L .

0 ( 0

< tt)

0) 4-»

c

T3 tt)

4^ U tt)

o Q) C

L tt) 4J C Q) O

tt)

L 0

tt) L 3 T3 tt) U 0 L Q. •

tt) Q) 4 ^

— S) Q > C < 0

T3Z> C Q Q 4J

0)

Z 0) tt) 0) £ tt) U — 4J — - O £ O

CVi I

n Q

a; > Q)

•o > a; (/)

a) > o;

•o aj

• o aj

C CSJ

o ^

c o O i - H

0 0

4-> c vo o

c ^ o

4-» c • •.- o o z o.

1 1

1 1

0 0 VO

• • -H 1

1

0 0 o

• «-H

00

o

o CSJ

• *-H

cx»

1 1

«-H O

1 1

1 1

vo IT)

• *-H

*—'

co CSJ

1 1

0 0 o

• *-H

^^

* - l * -H

o CM

• *-H •—'

ir> o

o CsJ

• *-H ^ - ^

r-. ir>

0 0 o

. *-H

a> to

*-H O «—• «-H

VO O VO 0 0 ^ CSI m csj o^ o 00 r^

• • • • - • • «-H *-H O *-H O O

I w w « ^ w w w I

vo vo r^ vo vo «3-co o o^ o lo m *-H *-H O *-H «-H «-H

o CSJ

• «-H

o

o

00 o • «-H

vo «—t

• •—•

«-H

*-H

00

o • * - l

CSJ

CSJ

co •

«-H

vo o *-H

00

o • *-H

csj

00

o • *-H

o CSJ

*-H

0 0 •

o

m o

0 0 •

o

co o *-H

0 0

• o

r-H

CSJ

r •

o

CSJ

r o

o vo

• o

00 vo

vo o> • o

vo

*-H

CSJ

r •

o

m

0 0 •

o

*-H

o* o

csj

• o

•-H

o *-H *-H «-H O O •-H

o CSJ

co co vo o%

m 00 co

vo 00

Page 136: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

118

are expected to occur at each stte for both extreme wet

and dry condttions.

The major tnput vartables to the computer model,

S0ILSUK2, are the tnittal sotI suctton of the sotI

proflle, equtltbrium sotI suctton, hortzontal and vertl-

cal permeabltttes, values of constants m and a, depth to

equtltbrtum suctfon, edge motsture vartatton dtstance,

predominant clay mtneral, percent of clay In sotl, unit

we i ght of so i1, and vert i caI and hor1zontaI veIoc111es

of moisture movement. Some of the above mentioned input

values were determined from the field observation or

laboratory tests, while others were determined from

values reported in the technical Iiterature for stmtlar

expansive soils.

As stated in Chapter II, the values of constants a

and m are soiI specific. By a trial-and-error proce-

dure, these values were determtned by fitting a theore-

ttcal suction profîle through the tnttîal suctton pro-

file of the open terrain that was measured by the fiIter

paper method. The infiltration velocity generally re-

ported tn the technical literature is 1 X 10 cm/sec. -5

However, Ritchie (1972) measured a value of 3.47 X 10

cm/sec for the infiltration velocity of Houston Black

clay from a large scale field experiment. An tnfiltra-

tton veloctty of 3.47 X lO"^ cm/sec was constdered

approprtate for thts analytsis. From the technlcal

Page 137: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

119

Itterature, tt appears that the fteld permeablItty for

8ome typtcal expanstve sotI ts 1n the range of 2 X 10"^

cm/sec. Thus, thts value for the fteld permeabfltty has

been used tn the computer model. For the College Sta-

tton stte the equtltbrtum suctton was determlned to be

3.8 pF, based on Russam and Coleman (1961) correlatlons

ustng the TMI for the year precedtng slte tnstallatton.

The depth to equtltbrtum suctton at College Station was

extrapolated to be 9 ft.

The predlcted heave for the two conditions consl-

dered (soil profile beneath the covered surface gettlng

wet and the soîl profile beneath the covered surface

gettlng dry) for each slte are presented tn Appendlx D.

These predtcttons are summartzed tn Table 4-3 for each

stte. For a wetttng up condltton at the Amarlllo stte,

thts table reports a predicted total heave of 2.57 fn.

at Column Node 7, which ts located at the edge of the

covered surface. The maxtmum heave measured at thts

potnt fs 2.16 tn. fn Month 3. Therefore, the slab model

has expertenced approxtmately 84 percent of the pre-

dlcted total heave at thts potnt by Month 3. Whtle for

the College Statton stte, there ts a predlcted total

heave of 1.86 tn., for the wetttng up condttton, at

Column Node 5 whtch ts located 3 ft from the edge of the

covered surface. The maxtmum total heave measured at

Page 138: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

120

^* ^" • Q tt) 0)

— T3 9) 4 ^ 0 4 ^

tt) V) L C tt) tt) C

U- tt) 0 M - ^ -

r i?- ^ 0 £ Q t 4->

T3 i - i n C tt) Q C tt)

T3 0) ^ L tt) Q Q — 4 J O — 0 1 0

I - C O 0

TJ4J T3 tt)4-> C •P > Q U - i r 0 T3 tt) — ttjr ^ L4.> —

û. L 0) Q

M- C E 0 - <

tf) > v 3 9) L »r Q 0) 4-> Ê > E Q L 3 0) 0

ton*. •

m 1

^

tt) P ^

n Q

1 -

1 ^,

1 •

«« 4 . l . > .

« e « B « • • - k ( / > < — '

• c

4>>

e å 0»

> > s

81 ^ 4J

* * < u •^ « "O > 0) IB

" O tt > 0» wt

A o E

J X

1

O «1

e

1 o

o

r«»

to

lA

«*•

tn

CVi

^

e o

•^ 4>»

^. "^ •^ ^ e e t/i e w

e o •^ « i *

« u o ^

o 1

_,- ^ «o ^

• CSi

ut •

CSI

• CVJ

^^ to ^ 4

cu

• - « •

CSJ

co •

00 «o • -M

* - ' V

• CM

^* m

CSI

CM

• o eo

• CSi

o. ^ O ) e

•^ •^ 4 1 *

« *

O ff^

^ • r * U

i

m

o

• • 4

ir> .

v N

«o .

^

00

. i i .

o 00

o 9 «

^

**

ê e> e * l ^

>> u o

o ^^ ^» •^ k

1

in

O 1

^f ^f

• ^

cn

co ^

^^ 0 0

• mm

00 •

ro 00

^ *» <-4

^ 4

eo •

00

CSJ

V 4 ^ M >

r^ r». ^ 4

o. ^ e> e ^. ** ** «1

•) e e> o • • . -

^ • *

O 4.» u t/t

a*

o

o

o » 4

«o .

^ CM

. . 4

•-« •

r*.

.

esi

^

• • 9 O o> C

^

r o

•> e ei o t> i ^

^ • * ^ • 1 o «•• 1 U (/) 1

Page 139: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

121

thts potnt fs 1.68 fn. tn Month 9. Thts fs approxtmate-

ly 90 percent of the expected heave.

Ffgures 4-16 and 4-17 fllustrate the posttfon of

the ffnal suctton proftles that are expected beneath the

covered surface, for both wet and dry condlttons, at

each stte. These ftgures also show the tntttal suctton

proftles for the open terratn before the stte were

tnstalled.

For the wet condttton, the extreme condttton would

exlst at the edge of the covered surface. That Is, the

point of expected maxtmum heave and the posttfon of the

extreme wet suctton proftle ts at thts locatton. For

the dry condttton, the extreme dry suctton proftle would

also be at the edge of the covered surface. The extreme

dry suctton proflle does not reach the tntttal suctton

profile of the uncovered surface. The reason for this

is, by covering the surface wtth a relattvely tmpervtous

matertal or structure, there ts a decrease tn the range

of seasonal motsture changes. Thts decrease tn seasonal

molsture change ts due to the preventlon of outflow of

motsture by evaporatton and transptratton. Motsture can

only move laterally from beneath the covered surface.

Thts motsture movement ts further retarded by the cycllc

nature of cltmattc condltlons. The equtltbrlum suctton

proftle ts located between the dry and wet suctfon

proftles.

Page 140: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

AMARILLO

122

5.4 5L2

I-

2-

3-

4-

5-

iZ 6-

Q.

O 81

9-

10-

II-

50 _ l

SOIL SUCTION, pF 4.8 4.6 44 4.2 40 3.8 -j I I I i_i

12-1 Ftgure 4 -16 .

-^INITIAL FIELD æNDITION

-DEQUILIBRIUM CONDITION

WET CONDITION

_».í>DRY CONDITION

Intttal Fteld Suctton Profile for the Uncovered Surface and Equl-librlum, Wet, and Dry Suction Pro-files Beneath the Covered Surface at the Amarlllo Site.

3.6

Page 141: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

123

Û. LU O

COLLEGE STATION

SOIL SUCTION, pF 5.2 5.0 48 46 44 42 4.0 3.8 36 34

Q I « I I I I « « I L

I-

2-

3-

4

5-

6-

7-

8-

9-

X-

D

— X INITIAL FIELD CONDITION

- - o BQUILIBRIUM CONDITION

WET CONDITION

o DRY CONDITION

Figure 4-17. Initial Field Suction Profile for the Uncovered Surface and Equl-llbrium, Wet, and Dry Suction Pro-files Beneath the Covered Surface at the Amarillo Site-

Page 142: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

124

The maxlmum expected total heave for the wet con-

dttton Is a result of changes tn the suctton proftle,

from the tntttal suction profile to the wet suctton

proftle as shown tn Ftgures 4-16 and 4-17. Whtle for

the dry condttton, total heave ts due to changes tn the

suctton proftle, from the tnittal suctton proftle to the

dry suctton proftle.

Page 143: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

From the experimental and analytlcal results re-

ported this thesis, some spectftc conclusfons can be

deduced from the short term conditions that are pre-

sented. However, the conclusions, as outlined below,

have some limîtations because of the short observation

perîod (12 months or a slngle shrînk/swell cycle). That

is, for a longer period of observatton, where a steady

state condîtîon exists, the conclusions drawn might be

more definitive. Recommendations for further research ,

in this field of inquiry are also made in this chapter.

Conclusions

1. The soi1 suction method (MitchelI and Avalle)

that was tested, seems to be appltcable to wet cl tmate,

whtle for dry cltmate the predicted heave is not consis-

tent with the measured heave- Hence, this suggests that

the method ts sensttive to climate and might not be

un i versa11y app11cabIe.

2. The observed edge moisture vaiation dtstance

beneath the covered surface ts greater than was pre-

vtously suggested tn the theorettcal relatlonshtp for

both dry and wet climate. This dtrectly affects the

125

Page 144: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

126

amount of support the sotI gtves to the slab around the

edge.

3. As a result of tnsufftctent data (observatîon

ttme), the Lytton-Gardner-McKeen method to predtct total

and differential heave cannot be completely evaluated,

at this ttme, wtth respect to a final or absolute heave

condition. However, with the constraint of not using

all slte specific inputs, the procedure appears to rea-

sonably model the two condittons (a wetttng and a drytng

state) that are Itkely to occur under a covered surface

followtng construction. Also, the predicted total

surface heave is consistent with the maximum observed

heave during wettîng up condition, for each site.

Recommendat i ons for Further Research

1. The depth to constant suction should be fur-

ther investigated for the Amarillo stte. Thts task

might be accomplished by the Installation and monitor of

an addition "stack" of psychrometers. This stack

should be located Just adjacent to the slab model and

extented to approximately 18 ft below the ground sui—

face.

2. Field observations at the two research sites

should be extended for an additional 12 to 24 months

beyond the scheduled tîme of measurement terminatton.

At such ttme, the long term condtttons, such as equtlt-

brtum suctton proftles, wtI1 be expected to be fully

Page 145: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

127

developed, espectally for the center of the slab. In

addttton, dry condtttons are Ifkely to be measured dur-

fng thts pertod, thus, provtding the complete shrlnk/-

swelI cycle expected beneath an actual sIab-on-founda-

tlon.

3. Field measurement of soîI permeablity should

be carried out at each site.

4. The values of constants, a and m, that are

necessary to apply the Lytton-Gardnei—McKeen method

should be determined experimentally in the laboratory

for the soîl condition at each research stte. Thts

might be accomplished by relating these soil parameters

to some common engineering properties of sol I .

5. Finally, the Lytton-Gardner-McKeen method

should be extended to address transient flow condition,

changes in flux, and to estimate the time for the maxi-

mum differential shrink or swell to be accomplished.

Page 146: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

LIST OF REFERENCES

Attchtson, G.D., ••Relattonshtps of Motsture Stress and Effecttve Stress Functtons In Unsaturated Sofls," Proceedtnqs. Conference on Pore Pressure and Suc-tion lo SoiIs. British National Soctety of Sotl Mechantcs & Foundatton Engtneertng at the Instt-tute of Clvll Engtneers, London, 1960, pp. 47-52.

Attchtson, G.D., and Rtchards, B.G., "A Broad-scale Study of Motsture Condtttons tn Pavement Subgrades throughout Australta," Moisture EquiItbrta and Motsture Changes fn SotIs Beneath Covered Areas, A Symposium In PrInt. Butterworths, Australta, 1965, PP. 184-190.

^Attchtson, G.D., and Rtchards, B.G., "The Fundamental Mechantsms Involved tn Heave and Soil Moisture Movement and the Engineering Properties of Soils Which are Important In Such Movement," Proceed-fngs, 2nd International Reasearch and Enqineerinq Conference on Expans i ve Soi1s, College Station, Texas, 1969, pp. 66-84.

Btshop, A.W., and Henkel, D.J., The Measurement of Sot I Properties tn TriaxiaI Test, 3rd editton, 1978, pp. 180-192.

Y-Bltght, G.E., "A Study of Effecttve Stresses for Volume Change," Moisture EoutItbrta and Motsture Chanqe In SotIs Beneath Covered Areas, Butterworths, Australta, 1965, pp. 259-269.

)^Burland, J.B., "Some Aspects of the Mechantcal Behavtor of Partly Saturated Soils," Moisture EouiIIbria and Moisture Changes in SoiIs Beneath Covered Areas, Butterworths, Australia, 1965, pp. 270-278.

Croney, D., and Coleman, J.D., "Pore Pressure and Suctlon In Sotl," Proceedtngs. Conference on Pore Pressure and Suction in SoiIs, British Nattonal Soctety of SotI Mechantcs & Foundatton Engtneertng at the Instttute of Cfvtl Engtneers, London, 1960, pp. 31-37.

128

Page 147: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

129

de Brutjn, C.M.A., "Annual Redtstrtbutlon of Sotl Mots-ture Suctfon and SotI Motsture Denstty Beneath Two Dtfferent Surface Covers and the Assocfated Heave at the Onderstepoort Test Stte Near Pretorta," Motsture EoutItbrta and Motsture Changes Beneath Covered Areas, Butterworths, Australta, 1965, pp. 122-134.

Desat, C.S., and Chrtsttan, J.T., Editors, NumericaI Methods In Geotechnical Enqineerinq. "Foundations tn Expanstve Sotls," McGraw-HIII Book Co., Inc, 1977, Chapter 13, pp. 427-433.

Donaldson, G.W., "The Occurrence of Problems of Heave and the Factors Affecttng tts Nature," Proceed-tngs, 2nd Internattonal Conference on Expanstve SoiIs. College Station, Texas, 1969, pp. 25-30.

Donaldson, G.W., "Prediction of Differenttal Movement on Expanstve Sotls," Proceedings, 3rd International Conference on Expansive SoJJ_s, Haifa, Israel, 1973, pp. 289-293.

Fawcett, G., and ColIis-George, N., "A Filter-Paper Meth-od for Determinlng the Moisture Characteristics of So iI," Australian Journal of Experimental Aarlcul-ture and Anima1 Husbandry, Vol . 7 1967, pp. 162-167.

Fraser, R.A., and Wardle, L.J., "The Analysis of Stiff-ened Raft Foundations on Expansive Solls," Svmposium on Recent Developments in the AnaIvsis of SoiI Behavior and their APPIicatton to Geotechnical Structure. Universtty of New South Wales, Australta, July, 1975, pp. 89-98.

Gardner, W.R., "Laboratory Studtes of Evaporatton from Sotl Columns tn the Presence of Water Table," SotI Sctence. Vol. 86^ 1958, pp. 2|4.

Gardner, W.R., "Sotl Suctton and Water Movement," Pro-ceedtngs, Conference on Pore Pressure and Suctton tn SoiIs. British National Society of SotI Mechan-tcs and Foundatton Englneertng at the Institute of Ctvtl Engineers, London, 1960, pp. 137-140.

Germann, F., Personal Correspondence, College Statlon, TX, November, 1986.

Page 148: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

130

Goode, J.C, "Heave Predtctton and Moisture Migratton Beneath Slabs on Expansive Sotls," thests present-ed to the Colorado State University, Fort Collins, Colorado, in 1982, tn partial fulftllment of the requtrements for the degree of Master of Science tn Ctvtl Engtneertng.

Haliburton, T.A., and Marks, B. D., "Subgrade Moisture Variatîons in Expansive Soils," Proceedinqs. 2nd International Research and Engineering Conference on Expanstve Clav So iIs. Texas A&M University, College Station, Texas, 1969, pp. 291-307.

Hlllel, D., Introduction to SoiI Physics. Academic Press, 1982, pp. 65.

Holland, J.E., and Lawrence, C.E., "Seasonal Heave of Australian Clay Soils," Proceedings. 2nd Interna-t i onaI Conference on Expansive So iIs. College Station, Texas, 1969, pp. 302-321.

Holt, J.H., "A Study of the Physico-Chemical Mtneralogi-cal and Engineering Properties of Fine-graîned SoiI in Relation to their Expansive Characteris-tics," Technical Report No. AFWL-TR-69-169. Atr -Force Weapons Laboratory, New Mexico, 1970.

Jasubhaî, V.S., "A Study of Procedures to Predict Total Heave in Expansive Clay Soils," a report presented to Texas Tech University at Lubbock, Texas, in 1985, i n part i aI fuIf i11ment of the requ i rement of the degree of Master of Science in Civil Engineer-ing.

Jennings, J.E.B., "The Prediction of Total Heave from Double Oedometer Test," Transaction of the South African Institute of CiviI Engineering. Vol. 7, September, 1957, pp. 13-19.

Jennings, J.E., "A Revised Effective Stress Law for the Prediction of the Behavior of Unsaturated Soils," Proceedings. Conference on Pore Pressure and Suc-tion in SoiIs. British National Society of SoiI Mechanics and Foundation Engineering at the In-stitute of Civil Engineers, London, 1960, pp. 26-30.

Page 149: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

131

Jennings, J.E., "The Predictton of Amount and Rate of Heave likely to be Experienced on Expansive So1Is," Proceedings. 2nd International Research and Engtneertng Conference on Expansive Clav SoIIs. Texas A&M University, College Station, Texas, 1969, pp. 99-109.

Johnson, L.D., "Influence of Suction on Heave on Expan-sive Soils," Mtscellaneous Paper S-73-17. U.S. Army Engtneer Waterways Expertment Statton, Vtcks-burg, MS, Aprtl, 1973.

Johnson, L.D., "Evaluatton of Laboratory Suctton Tests for Prediction of Heave in Foundatton Soils," Technical Report S-77-7, U.S. Army Engineer Water-ways Experiment Station, Vicksburg, MS, August, 1977.

•Johnson, L.D., "Predicttng Potenttal Heave and Heave wtth Ttme tn Swelltng Foundatton Sotls," Technical Report S-78-7. U.S. Army Engineer Waterways Exper-iment Station, Vicksburg, MS, July, 1978.

Johnson, L.D., "Field Test Sections on Expansive Soils," Technical Report GI-81-4. U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, May, 1981.

Jones, D.E., and Holtz, W.G., "Expansive Soils - the Hidden Disaster," CiviI Engineering. ASCE. August, 1973, pp. 49-51.

Kassif, G., et al.. Pavement on Expansive Clavs. Israel Institute of Technology, Jerusalem, Academic Press, Israel, 1969, pp. 125-157.

t Kassif, G., and Ben Shalom, A., "Experimental Relation-shtp between SwelI Pressure and Suction," Geotech-nique. 21, No. 3, 1971, pp. 245-255.

Krohn, J.P., and Slosson, J.E., "Assessment of Expansive Soils in the United States," Proceedings, 4th International Conference on Expansive So iIs. Den-ver Co., ASCE, New York, NY, Vol. I, 1980, pp. 596-608.

Lytton, R.L., "Theory of Moisture Movement tn Expanstve Clays," Research Reoort 118-1. Center for Htghway Research, Untverstty of Texas at Austtn, Septem-ber, 1969.

Page 150: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

132

Lytton, R.L., and Nachtlnger, R.R., "Contfnuum Theory of Mofsture Movement and Swell In Expanstve Clays," Research Report 118-2. Center for Htghway Re-search, Untverstty of Texas at Austtn, September, 1969.

Lytton, R.L., and Kher, R.K., "Predictton of Motsture Movement tn Expansive Clays," Research Report 118-3j_ Center for Highway Research, University of Texas at Austtn, May, 1970.

Lytton, R.L., and Watt, G.W., "Predictton of swelltng tn Expanstve Clays," Research Report 118-4, Center of Htghway Research, University of Texas at Austtn, September, 1970.

Lytton, R.L., and Woodburn, J., "Design and Performance of Mat Foundatton on Expanstve Clay," Proceedtngs. 3rd International Conference on Expansive SoiIs. Hatfa, Israel, Vol. I, 1973, pp. 301-308.

Mathewson, C.C., et al.. "Analysts and Modeltng of the Performance of Home Foundatlons on Expanstve Solls tn Central Texas," Bu11etin of the Association of' Enqineertng GeoloqJsts. Vol. XII, No.4, Fall, 1975, pp. 275-302.

Matyas, E.L., and Radhakrisdhna, H.S., "Volume Change Characteristics of Partially Saturated Soils," Geotechnique, Vol. 18, 1968, pp. 432-448.

^ McDowell, C , "Interrelattonship of Load, Volume Change, and Layer Thickness of Soils to the Behavior of Engtneering Structures," Proceedings. Highway Re-search Board, Washington, D.C, Vol. 35, 1969, pp, 754-770.

Tt. McKeen, R.G., "Characterizing Expanstve Sotls for Destgn," presented at the Joint Meeting of the Texas, New Mexico and Mexico Sections of the ASCE, Albuquerque, New Mextco, October 6-8, 1977.

McKeen, R.G., "Destgn of Airport Pavements for Expanstve Sotls," Report No. DOT/FAA/RD-81/25 prepared for Federal Aviation Admini stration, Washington, D.C, January, 1981.

McKeen, R.G., "Fteld Studtes of Airport Pavements on Expansive Clay," Proceedings. 4th International Conference on Expansive SoiIs, Denver, CO, ASCE, New York, NY, Vol. 1, June, 1980, pp. 242-261.

Page 151: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

133

McQueen, I.S., and Miller, R.F., "Calîbration and Eval-uation of a Wide-Range Gravimetric Method for Measuring Motsture Stress," SoiI Science. Vol. 106, No. 3, 1968, pp. 225-231.

•^Mitchell, P.W., and Avalle, D.L., "A Technique to Pre-dict Expansive SoiI Movement," 5th International Conference on Expansive SoiIs. Adelaide, South Australia, May, 1984, pp. 124-129.

Mowafy, Y.M., et al.. "Prediction of Swelling Pressure and Factors Affecting SwelI Behavior of an Expan-s i ve So iI," Transportat i on Research Board Record 1032 National Research Council, Washington, D.C, 1985.

Mowafy, Y.M., et al.. "Treatment of Expansive Soils: A Laboratory Study," Transport Research Board Record 1032. National Research Councîl, Washington, D.C, 1985.

Post-Tensioning Institute, Design and Construction of Post Tensioned SIabs-on-Ground. Post Tensionîng Institute, Phoenix, AZ, 1980.

Revîew Panel : "Engîneering Concepts of Moisture Equili-bria and Moisture Changes in Soils," Moisture EquiIibria and Moisture Changes in SoiIs Beneath Covered Area. A Svmposium in Print, Butterworths, Australia, 1965.

Richards, B.G., "Moisture Flow and Equiltbrta tn Unsatu-rated Soils for Shallow Foundatlons," PermeabiIIty and CapiIlarity of SoiIs. ASTM STP 417, Am. Soc. Testing Mats., 1967, pp. 4-34.

Richards, B.G., "Measurement of SoiI Suction in Expan-sive Clays," CiviI Engineering. Vol. 22. No. 3, Transactions. Institute of Engineers, Australia, 1980, pp. 252-261.

Ritchie, J.T., et aI.. "Water Movement in Undisturbed SweIIi ng CIay So iI," SoiI Science Soc i ety of Ame-rica Proceedings. Vol. 36, No. 6, December, 1972, pp. 874-879.

Russam, K., and Coleman, J.D., "The Effect of Climatic Factors on Subgrade Moisture Conditions," Geotech-nique, Vol. 11, No. 1, 1961, PP. 22-28.

Page 152: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

134

Schofield, R.K., "Suction In Swollen Clays," Proceed-tnqs. Conference on Pore Pressure and Suction in SoiIs. British National Society of SoiI Mechanics and Foundation Engineering at the Instttute of Civil Engîneers, London, 1960, pp. 59-60.

Snethen, D.R., et al.. "A Review of Engineertng Experi-ences with Expansive Soils in Highway Subgrades," Report No. FHWA-RD-75-48 prepared for Offîce of Research and Development, Federal Highway Admtnis-tration, Washington, D.C, June, 1975.

Snethen, D.R., et aI.. "An Investigation of Natural Mi-croscale Mechanisms that cause Volume change in Expansive Clays," U.S. Army Engîneer Experiment Station, SoiI and Pavement Laboratory, Vicksburg, MS, January, 1977.

Snethen, D.R., et al.. "An Evaluation of Expedient Methodology for Identification of Potentially Expansive Soils," Report No. FHWA-RD-74-94. pre-pared for Federal Highway Administration, Washing-ton, D.C, June, 1977.

Snethen, D.R., "Design and Construction of Residential Slab-on-Ground: State of the Art," Proceedings of Workshop of Committee on Residential SIab-on-Ground. National Research Council, Washington, D.C, June. 20-21. 1978, pp. 10-37.

* Snethen, D.R., "Characterization of Expansive Soils using Soil Suction Data," Proceedinqs. 4th Intei— nat i onaI Conference on Expans i ve SoiIs. Denver, Co, ASCE, New York, NY, Vol. 1, June, 1980, pp. 54-75.

» Snethen, D.R., "Expansive Soils," Ground Failure, Nation-al Research Council Committee on Ground Failure Hazard, Vol. 3, Sprtng, 1986.

Snethen, D.R., and Johnson, L.D., "Evaluation of SoiI Suction from Filter Paper," Miscellaneous Paoer GL-80-4. U.S. Army Engineer Waterways Experiment Station. Vicksburg, MS, June, 1980.

SoiI Survey of Brazos County, Texas, Untted States Department of Agriculture, SoiI Conservation Ser-vice, No. 1, 1951, pp. 44-50.

Page 153: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

135

SoiI Survey of Potter County, Texas, United States Department of Agrculture, SoiI Conservation Sei— vice, 1980, pp. 129.

Stevens, J.B., and Matlock, H., "Measurements Beneath the Surface of Expansive Clay," Transport Research Board No. 568. National Science Research Council, Washington, D.C, 1976.

• Sullivan, R.A., et al.. "Predicting Heave of Buidings on Unsaturated Clay." Proceedings. 2nd International Research and Engineering Conference on Expansive Clav SoiIs. Texas A&M University, College Station, Texas, 1969, pp. 404-420.

Thornthwaite, C.W., "An Approach Towards a Rational Classification of Climate," GeographicaI Review. Vol. 38, No. 1, 1948, pp. 55-94.

, Van der Merwe, D.H., " The Prediction of Heave from Plasticity Index and Percentage Clay Fraction of Soils," The CiViI Engineer tn South Africa. June, 1964, pp. 103-107.

' Walsh, P.F., "The Design of Residential Slabs-on-Ground," CSRIO Austr. Div. Bldg. Res. Tech., No. 5, 1974, pp. 1-25.

Wiggins, J.H., "Towards a Coherent Mutual Hazard Poli-cy," Civil Enqineering. ASCE. April. 1974. pp. 74-76.

Wray, W.K., "Development of a Design Procedure for Resi-dential and Light Commercial Slab-on-Ground Con-structed over Expansive Soils," Dissertation pre-sented to Texas A&M University at College Station, Texas, in 1978, in partial fulfillment of the requirement for the degree of Doctor of Philoso-Phy.

Wray, W.K., "Analysis of Stiffened SIabs-on-Ground over Expansive Soil," Proceedings. 4th International Conference on Expansive SoiIs. Denver, CO, ASCE, New York, NY, June, 1980, pp. 558-581.

« Wray, W.K., "The Principles of SoiI Suction and its Geo-technical Engineering Applications," Proceedings. 5th International Conference on Expansive SoiIs. Adelalde, South Australta, 1984, pp. 114-118.

Page 154: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

136

Wray, W.K., "The Effect of a Dry Clîmate on Expansîve Sotls Supporting on-Grade Structures," accepted for pubIi cat i on, Transport Research Board Record. National Research Council, Washington, D.C, August, 1986.

Yong, R.N., et aK., "Flow of Water in Partially Satu-rated Expansive Soils," Proceed i ngs. 2nd Interna-t i ona1 Conference on Expansive Clav So iIs. Texas A&M University, College Station, Texas, 1969, pp. 85-97.

Yoshida, R.T., et al.. "The Prediction of Total Heave of a Slab-on-Grade Floor on Regina Clay," Canadian Geotechnica1 JournaI, Vol. 20, 1983, pp. 69-81.

Page 155: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

APPENDIX As

2- AND 3-DIMENSIONAL ELEVATION PLOTS

137

Page 156: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

138

10.50- AMARILLO MONTH 2

Flgure A-1. 2- and 3-Dfmensional Repre-sentation of Changes in Rela-tlve Surface Elevation After Month 2 with Respect to the Elevatlon at the Tlme of Stte Installatton for the Amartllo stte.

Page 157: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

I0.50i AMARiLLO MONTH 3

139

t ST ^V^^"^

Ftgure A-2. 2- and 3-Dtmenstonal Repre-sentation of Changes tn Rela-ttve Surface Elevatton After Month 3 wtth Respect to the Elevatlon at the Ttme of Stte Installatlon for the Amarlllo Stte.

Page 158: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

140

10.50

1025

I < o

IQOO

9.75

AMARiLLO MONTH 4

9.50

\ ° v: - ^ •'

Ftgure A-3. 2- and 3-DimensÍonal Repre-sentation of Changes tn Rela-ttve Surface Elevatton After Month 4 wlth Respect to the Elevatlon at the Tlme of Site Installatlon for the Amartllo Stte.

Page 159: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

141

1090

AMARILLO MONTH 5

Ffgure A-4. 2- and 3-Dfmensfonal Repre-sentatfon of Changes In Rela-tlve Surface Elevatfon After Month 5 wfth Respect to the Elevatfon at the Tfme of Sfte ^nstallatlon for the Amarllio

Page 160: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

142

I0.50i AMARILLO MONTH 6

\ ^ ^ ^ ^ - ^ " ^

Ftgure A-5. 2- and 3-Dîmenstonal Repre-sentatlon of Changes tn Rela-ttve Surface Elevatton After Month 6 wtth Respect to the Elevatton at the Ttme of Stte Installatton for the Amartllo Stte.

Page 161: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

143

10.50, AMARILLO MONTH 7

%

•» • - , . * » ' ' " • ^

Ftgure A-6. 2- and 3-Dtmenstonal Repre-sentatlon of Changes In Rela-tlve Surface Elevatlon After Month 7 wtth Respect to the Elevatton at the Ttme of Stte Installatton for the Amartllo Stte.

Page 162: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

144

I0.50i AMARILLO MONTH 6

0l*AeH5K)W5

Ftgure A-7. 2- and 3-Dtmensfonal Repre-sentatton of ttve Surface Month 8 wtth Elevatlon at Installatton Stte.

Changes In Rela-Elevatlon After Respect to the the Ttme of Stte for the AmartIlo

Page 163: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

145

KXSO AMARILLO MONTH 9

Ftgure A-8. 2- and 3-Dimenstonal Repre-sentatlon of Changes tn Rela-tive Surface Elevation After Month 9 with Respect to the Elevation at the Time of Site Installation for the Amarillo Site.

Page 164: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

146

I0.50n AMARILLO ^ l MONTH 10

— — — — — >jSJ • I < \ •^ I

Ftgure A-9 . 2- and 3-Dtmensfonal Repre-sentatfon of Changes fn Rela-ttve Surface Elevatton After Month 10 with Respect to the Elevation at the Ttme of Stte Installation for the Amarlllo Slte.

Page 165: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

147

10.50 AMARILLO MONTH II

Figure A-10. 2- and 3-Dimensional Repre-sentation of Changes In Rela-tive Surface Elevation After Month 11 with Respect to the Elevation at the Time of Stte Installatlon for the Amarlllo Stte.

Page 166: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

148

090

Í&'-«E,»T«T»N

*> •ír-rîA.,-*.^«-e«»»« 0 ' " EåST-

Ftgure A-11. 2- and 3-Dtmensfonal Repre-sentatton of Changes fn Rela-ttve Surface Elevatfon After Month 4 with Respect to the Elevatfon at the Tlme of Slte Installatlon for the College Statlon Slte. ^

Page 167: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

149

1080

Sgy-«E,mTKlH

Flgure A-12. f~ f"? 3-OtiiienslonaI Repre-sentatlon of Changes 1n Rela-tlve Surface Elevatlon After Month 5 wlth Respect to thl Elevat on at the Tlme of sfte

St"a1r^^1ít%"/°^ *^ ^°"-e'

Page 168: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

150

1090

COU.EGE aTATION MONTH 6

Figure A-13. 2- and 3-Dimenstonal Repre-sentation of Changes tn Rela-ttve Surface Elevatton After Month 6 wtth Respect to the Elevatton at the Ttme of Stte Installatton for the College Statton Stte.

Page 169: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

151

nao OOLLEBE fTATION MONTH 7

. 5^?^ ^

40 * *A í» * íftf^

Ftgure A-14. 2- and 3-Dtmenstonal Repre-sentatton of Changes tn Rela-ttve Surface Elevatton After Month 7 wtth Respect to the Elevatton at the Ttme of Stte Installatton for the College Statton Stte.

Page 170: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

152

fOSÛ

KX2S

X S « OJOO

u

I 9i79

9L90

SSiti?f^,«T"»"

r á ' s ^

Ftgure A -15 . 2- and 3-Dfmenstonal Repre-sentatîon of Changes fn Rela-tfve Surface Elevatton After Month 8 wlth Respect to the Elevation at the Ttme of Stte Installatlon for the College Station Site.

Page 171: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

153

KX90i

OOU^GE 8TATI0N MONTH 9

Figure A-16. 2- and 3-DÍmensional Repre-sentation of tive Surface Month 9 with Elevation at Installatton Statton Stte.

Changes in Rela-Elevatlon After Respect to the the Time of Site for the College

Page 172: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

154

mao

£&V?^K)»"*^'ON

' ' ' gure A -J7 .

0 *

1 I I , M 32 16 ^

«fn?at,J;°^?«"«'ona, Rep, . . * '^5 Surface E & f ' " Reia-Month JO wîl-h i ^ * ' * ' ^ >*fter f 'evatfon ât t h e ' í r * * ° ' ' e ' "s ta l ia t ion for th '"^' ' * ' Sfte Statfon Sl te . *^* College

Page 173: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

155

10 y>

KX29

C0LLE6E STATDN MONTH I I

E z < u

IOJOO

».79

9JSÛ

Figure A-18. 2- and 3-DÍmensional Repre-sentatton of Changes tn Rela-tive Surface Elevatlon After Month 11 with Respect to the Elevation at the Tlme of Site Installatton for the College Statton Slte.

Page 174: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

10.20

t 10.15-

9.90

156 —J ' « ' I L —MONTH 0

• MONTH 2 oMONTH 4

I J L COLLEGE STATION

'»119 «20,2', l22,23'24g'5l26,2V POINT NUMBER

(0)

—r-128 129 130

10.20

ÎZ 10.15-

g 10.05

3 io.oo4-UJ

9.95Í 9.90"

118

J. j . JL MONTH 0

• MONTH 5 oMONTH 6

J L JL Jí L

COLLEGE STATION

N-

119 '20 ,2', 122 , i 124 .g's 126 ^^ 128 , ^ 130

POINT NUI\/IBER (b)

10.20

t 10.15

z IO.IOH Q 5 10.05 2 lo.oo-f-

9.951 9.90

—MONTH 0 • MONTH 7 oMONTH 8

J L__J I I I L J-COLLEGE STATION

118 119 121

120 J , 122 I23'24,2'5'26,2V —T" 128 129

POINT NUMBER

(c)

130

Ffgure A-19. Monthly Changes of Surface Elevatlon for Months 4 to 12, of the Lateral Cen-terltne of the Slab Model for the Col-lege Statfon Stte.

Page 175: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

157

10.20"

10.15-

10.10-

—MONTH 0 • MONTH 9 oMONTH 10

X

COLLEGE STATION

I 10.051 y 10.00--kJ

9.95-1 9.90-

118

N-1 ' í ' 120 ' 122 T —I 1 r -

124 . ' 126 T

119 "-^ 121 " ^ 123 "-^ 125 "•*' 127

POINT NUMBER

(d)

128 ,29 130

z o

i UJ

UJ

10.20

10.15-

10.10-

10.05

10 .00--

9.95-

9.90

j _ X X MONTH 0

• MONTH II oMONTH 12

J L X X X X

COLLEGE STATiON

N"

118 „ ; 120 ,2', 122 i ^ 124 , 5 126 .g'y 128 ,29 130

POINT NUMBER

(e)

F f g u r e A - 1 9 . ( C o n t t n u e d )

Page 176: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

APPENDIX B:

LABORATORY TEST DATA

158

Page 177: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

159

Table B-1. Converston Table for Varfous Untts of Sotl Suctton.

Cm of Water

10

100

1,000

10,000

100,000

1,000,000

Units

PF

1

2

3

4

5

6

Bars

0.00981

0.0981

0.981

9.81

98.1

981

Psi

0.142

1.42

14.2

142.2

1422

14220

kPa

0.981

9.81

98.1

981

9810

98100

Page 178: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

160

u

u- -

>» * * • ^ U X

f - Q) 4-* T î U) C íO •—1

LT) ^

1 CM CJ

T3 f - * .> 3 ' i - ^ O" E ^

• ^ • p - *—» - J _ l

o f»^ 1

f - H

* í -

r«* vo 1 ifí ^

CM I

OQ

n Q I -

•J o>o«-^ c c o <U •»- OJ O) U «/) > &. «/> • a> <u (O o •»-

OL. a . z (/)

(O

• ^ i / ) •••*l<i: lO u

tn "O

iT)

I o co

Q>

4-> 4-> O.M-

o

f— Q) •.- E O (O (/) z

o i . O to

00 o

I U )

vo I

I

I in vo

vo I

I

O

ir> I

o

lo a> • o T -c i-(O 0)

tf (/)

> t -S. Q)

I

o 00

t/0 -•->>» * O 4-* (/)

r— O. C (O •r- O >< o M- o o;

l/) O O I—

C tA • I - <u . ^ •!-Vt- s-3 O)

_J t / )

>» •-• O) ir> > tn a* u o •-•

l / ) (O >» • &. 4J tn

r - CO C (O •r- 3 X O H- O O) tn o o •—

Page 179: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

161

Table B-3. In Sttu SotI Properttes for Amartllo Stte—"Boring Number 39.

Depth (ft)

0-1

1-2

2-3

3-4

4-5

5-6

6-7

7-8

8-9

Filter Paper Soil Suction (pF)

5.2

4.9

5.0

4.7

4.5

4.4

4.6

4.2

Moisture Content

(%)

8.7

10.7

10.7

17.7

18.1

21.3

23.2

21.3

21.6

Liquid LÍíTIÍt

(%)

35.6

35.6

36.8

73.3

83.1

69.5

72.0

64.3

67.8

Plastic Limit

(%)

24.1

21.9

24.8

33.8

30.6

38.4

38.4

34.6

30.3

Plas-ticity Index

11.5

13.7

12.0

39.5

52.5

31.1

33.6

29.7

37.5

Percent Passing No. 200 Sieve

(%)

66

61

65

86

71

89

79

80

80

Percent Clay (<0.002 IT Tl)

(%)

49

47

47

68

58

67

61

63

64

Page 180: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

162

Table B-4. In Sttu SotI Properttes for Amartllo Stte—Bortng Number 45.

Depth (ft)

0-1

1-2

2-3

3-4

4-5

5-6

6-7

7-8

8-9

Filter Paper Soil Suction (pF)

5.5

5.0

4.8

4.7

4.7

4.4

4.2

4.3

4.2

Moisture Content

(%)

6.6

8.9

17.3

17.4

19.4

24.5

27.5

24.3

25.5

Liquid Limit

(%)

36.5

32.3

32.4

61.8

67.4

76.6

73.7

69.0

•54.2

Plastic Limit

(%)

19.8

18.4

17.7

21.8

30.0

44.2

26.3

25.4

26.0

Plas-ticity Index

16.7

13.9

14.7

40.0

37.4

32.4

47.4

43.6

28.2

Percent Passing No. 200 Sieve

(%)

54

55

50

96

87

87

82

77

80

Percent Clay (<0.002 iran) (%)

43

43

38

70 '

68

65

66

66

59

Page 181: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

163

Table B-5. In Sttu SotI Properttes for Amartllo Stte—Boring Number 51.

Depth (ft)

0-1

1-2

2-3

3-4

4-5

5-6

6-7

7-8

8-9

Filter Paper Soil Suction (pF)

5.3

5.1

5.0

4.8

4.5

4.4

4.4

4.3

Moisture Content

(%)

7.7

10.2

10.2

17.7

22.2

22.6

27.0

23.5

26.6

Liquid Limit

(%)

39.8

37.1

32.5

57.9

81.1

81.3

77.3

72.9

76.9

Plastic Limit

(%)

25.7

18.7

19.0

22.3

27.1

26.9

28.1

25.9

25.8

Plas-ticity Index

14.1

18.4

13.5

35.6

54.0

54.4

49.2

47.0

51.1

Percent Passing No. 200 Sieve

(%)

66

55

61

64

66

83

87

78

84

Percent Clay

(<0.002 mm) (%)-

50

47

42

49

50

57

65

62

61

Page 182: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

T

164

Table B-6. In Sttu SotI Properttes for Collcge Statton Stte—Borlng Number 40..

Depth (ft)

0-1

1-2

2-3

3-4

4-5

5-6

6-7

7-8

8-9

Filter Paper Soil Suction (pF)

5.0

4.6

4.4

4.2

4.4

4.4

4.4

4.1

4.3

Moisture Content

(%)

4.2

4.5

28.3

19.3

14.5

15.0

26.2

21.5

27.2

Liquid Limit

(%)

24.1

21.2

59.7

48.2

49.4

46.9

54.4

50.6

68.8

Plastic Limit

(%)

16.2

17.9

23.4

20.7

25.0

18.6

27.9

30.1

33.0

Plas-ticity Index

7.9

3.3

36.3

27.5

24.4

28.3

26.5

20.5

35.6

Percent Passing No. 200 Sieve

(%)

29

33

62

69

60

69

66

74

86

Percent Clay (<0.002 mm) (%)

23

21

63

57

43

48

52

46

63

Page 183: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

165

Table B-7. In Sttu Sotl Propertfes for College Statton Stte—Boring Number 45.

Depth (ft)

0-1

1-2

2-3

3-4

4-5

5-6

6-7

7-8

8-9

Filter Paper Soil Suction (pF)

4.8

4.9

4.4

4.4

4.1

4.2

4.1

4.2

4.1

Moisture Content

(%)

6.1

4.7

21.4

14.8

17.7

20.3

18.7

16.3

29.5

Liquid Limit

(%)

23.3

35.7

46.9

40.2

40.1

36.9

42.8

56.3

46.1

Plastic Limit

(%)

16.6

19.6

24.4

19.3

21.6

18.6

20.5

31.8

25.4

Plas-ticity Index

6.7

16.1

22.5

20.9

18.5

18.3

22.3

24.5

20.7

Percent Passing No. 200 Sieve

(%)

39

39

65

59

67

59

64

76

97

Percent Clay

(<0.002 mm)

(%)

28

18

56

40 '

61

37

44

63

82

Page 184: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

166

Table B-8. In Sttu SotI Properttes for College Statlon Stte—Borlng Number 51.

Depth (ft)

0-1

1-2

2-3

3-4

4-5

5-6

6-7

7-8

8-9

Filter Paper Soil Suction (pF)

4.9

4.6

2.0

4.3

4.3

4.5

4.5

4.6

4.5

Moisture Content

(%)

7.1

27.1

18.6

18.4

20.5

18.4

28.1

31.6

32.8

Liquid Limit

(%)

30.9

53.1

49.0

46.9

54.5

52.8

49.2

65.8

78.5

Plastic Limit

(%)

17.4

23.5

19.5

18.7

23.2

19.0

21.1

25.9

33.0

Plas-ticity Index

13.5

29.6

29.5

28.2

31.3

33.8

28.1

42.9

45.5

Percent Passing No. 200 Sieve

(%)

30

36

60

57

58

68

63

88

98

Percent Clay

(<0.002 mm) (%)

18

29

48

49

40

40

53

68

72

Page 185: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

167

Table B-9. Inttfal In Sttu SotI Suctlon for the Amar 111o SIte.

BORING NO.

35 36 37

38 39 40

41 42 43

44 45 46

47 48 49

50 51

Werage

SAMPLE DEPTH (ft)

0-1

5.0 5.05 5.18

5.43 5.24 5.37

5.39 5.30 5.45

5.44 5.46 5.30

5.39 5.47 5.30

5.30 5.38

5.32

1-2

4.92 5.10 4.91

4.88 4.93 5.13

5.14 5.11 5.17

5.04 5.00

4.87

5.11

5.08 4.88

5.02

2-3

5.38 4.83 4.92

4.89 4.95 5.06

5.03 4.81 4.89

4.92 5.78 4.93

4.71 4.86 5.01

5.03 4.72

4.98

3-4

4.72 4.70 4.89

4.91 4.73 4.80

4.74 4.85 4.86

4.89 4.76 4.69

4.77 4.91 4.88

4.79 4.75

4.80

4-5

4.81 4.61 4.69

4.80

4.77

4.71 4.65 4.73

4.73 4.70 4.64

4.68 4.84 4.74

4.53 4.73

4.71

5-6

4.43 4.63 4.96

4.71 4.53 4.64

4.58 4.59 4.65

4.42 4.38 4.57

4.56 4.71 4.55

4.56 4.57

4.59

6-7

4.33 4.37 4.52

4.61 4.37 4.61

4.60 4.40 4.39

4.44 4.24 4.39

4.37 4.68 4.45

4.39 4.41

4.44

7-8

4.22 4.25 4.66

4.51 4.55 4.48

4.32 4.43 4.43

4.43 4.27 4.28

4.47 4.61 4.32

4.40 4.28

4.41

8-9

4.11 4.25 4.34

4.60 4.20 4.32

4.74 4.27 4.32

4.24 4.19 4.21

4.34 4.41 4.27

4.32 4.25

4.32

Page 186: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

168

Table B-10. Intttal Content

In Sttu Sotl Motsture for the Amarlllo Stte.

BORING NO.

35 36 37

38 39 40

41 42 43

44 45 46

47 48 49

50 51

Average

SAMPLE DEPTH (ft)

0-1

9.7 8.0 8.4

9.2 8.7 9.8

6.8 8.4 8.2

8.4 6.6 8.2

8.9 4.9 9.8

7.7 8.8

8.3

1-2

11.6 7.1 12.2

11^4 10.7 9.8

9.7 9.2 9.2

8.7 8.9 13.1

11.7 12.0 10.1

10.2 12.8

10.5

2-3

11.4 17.9 6.2

9.7 10.7 11.3

10.1 15.3 15.2

16.7 17.3 15.5

19.7 13.5 14.5

10.2 18.0

13.8

3-4

18.5 19.4 16.9

15.8 17.7 16.6

19.0 16.5 18.7

17.9 17.4 18.7

19.8 17.3 17.1

17.7 18.5

17.8

4-5

18.4 20.3 19.1

17.3 18.1 19.0

20.3 19.8 19.9

19.7 19.4 21.5

22.0 17.7 19.9

22.2 19.5

19.7

5-6

23.6 21.2 17.5

18.9 21.3 20.5

20.7 21.4 21.1

23.1 24.5 23.6

23.5 20.7 22.9

22.6 21.4

21.7

6-7

24.8 23.3 22.6

20.9 23.2 20.9

21.5 24.8 26.1

24.5 27.5 25.6

25.5 21.8 25.2

27.0 26.0

24.2

7-8

20.8 23.5 21.3

21.5 21.3 21.0

21.7 23.5 24.4

22.8 24.3 25.7

23.9 21.6

23.5 23.1

22.7

8-9

25.0 20.3 22.9

21.8 21.6 22.1

16.8 24.6 25.1

25.0 25.5 24.6

25.7 23.3

26.6 24.8

23.5

Page 187: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

169

Table B-11. Infttal In Sftu Sotl Suctton for the College Statton Stte.

BORING NO.

35 36 37

38 39 40

41 42 43

44 45 46

47 48 49

51

Average

SAMPLE DEPTH (ft)

0-1

4.73 4.81

4.88 5.05 5.01

4.87 4.68 4.92

4.74 4.82 4.95

4.92 4.63 4.98

4.86

4.86

1-2

4.60 4.91 4.71

4.78 4.66 4.63

4.40 4.52 4.98

4.80 4.87 4.70

4.08 3.94 2.99

4.56

4.51

2-3

4.29 4.61 4.35

4.30 4.40 4.40

4.38 4.40 4.83

4.44 4.43 4.30

4.37 2.31 3.90

« » M

4.25

3-4

4.73 4.19 3.95

4.70 4.20 4.20

4.31 4.38 4.46

4.34 4.35 4.07

4.29 4.00 4.20

4.25

4.29

4-5

4.45 4.19 3.86

4.30 4.29 4.39

4.40 4.26 4.24

4.30 4.07 4.49

4.37 3.92 4.18

4.33

4.25

5-6

4.43 4.31 4.20

4.35 4.27 4.36

4.41 4.38 4.27

4.28 4.22 4.26

4.42 4.31 4.33

4.35

4.32

6-7

4.50 4.24 4.00

4.33 4.38 4.35

4.31

4.25

4.25 4.05 4.42

4.32 4.37 4.30

4.45

4.30

7-8

4.34 4.23 4.15

4.26 4.11 4.33

4.38 4.18 4.16

4.30 4.17 4.23

4.30 4.48 4.35

4.56

4.28

8-9

4.35 4.20 4.11

4.35 4.13 4.27

4.23 4.12 4.23

4.20 4.07 4.25

4.29 4.26 4.16

4.51

4.23

Page 188: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

170

Table B-12. Inttfal In Sttu Sotl Motsture Con-tent for the CoIIege Stat1on S1te.

BORING NO.

35 36 37

38 39 40

41 42 43

44 45 46

47 48 49

51

Average

SAMPLE DEPTH (ft)

0-1

14.4 12.7 6.3

7.0 3.3 4.2

5.0 4.4 4.9

8.4 6.1 4.6

4.2 6.3 4.7

6.4

1-2

13.6 10.6 8.7

5.6 2.7 4.5

23.6 16.8 2.5

7.5 4.7 12.1

6.2 8.0 7.4

7.3

8.9

2-3

15.8 15.0 20.8

13.9 26.8 28.9

20.2 15.2 2.8

14.8 21.4 19.6

26.6 7.6 19.8

29.4

18.7

3-4

12.5 16.5 18.2

10.7 16.9 19.3

16.8 15.8 14.3

15.1 14.8 16.4

17.4 31.7 20.3

19.0

17.4

4-5

15.6 16.3 17.9

18.3 16.3 14.5

14.6 17.6 17.4

16.4 17.7 10.0

15.6 21.2 21.0

17.9

16.9

5-6

16.6 18.3 14.5

20.3 17.3 15.0

15.0 16.8 19.3

17.0 20.3 17.2

16.9 16.5 20.0

18.5

17.9

6-7

16.7 22.5 23.8

12.6 17.4 26.2

24.5 21.2 24.4

16.9 16.7 17.7

22.2 20.1 25.6

20.5

20.8

7-8

16.2 25.4 27.2

16.8 18.5 21.5

23.7 23.0 23.3

26.4 16.3 25.5

20.6 32.7 30.6

30.7

23.9

8-9

28.4 27.5 26.9

26.5 36.6 27.2

30.5 30.7 29.1

26.2 29.5 24.5

30.1 30.2 29.6

28.5

29.1

Page 189: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

171

0) t. 3 "0

•ro

ce

a, • 0)

0) 4^ ^ B W

— tn 0 > 0 < —

• D ^ C 1. Q S — < — 9) 9) £. £. O -P 4 •^ L. £ 0

M. c — 0)

> •0 Q 0) 0) 0) X 3

^» 0) Q i. -P 0) 0 + * l -0) E-P Q U l- — i5? 0. 0)

t. - Û. • ^ 0 0 in 4J

• cn

B-1

0)

Tab

4 J <—«. o. v«

»-H . fc .^

««-

o

o

ro 4-»

JP *•-> • - ^

.o *—'

^*» co

4-> «•-

.o ^ '^^

o • ••- >» (• - 4 J • ^ ' ^ (/> (J >cs 0) (O o. s. (/) o

0) í - 4->

4-» 0»«—* (O 4-> ^

*o O £ o

4 - » * - * 0 . 4 J

O ' —

co 00 (O

• o

co vo CVJ

• o

o» CSi

. ^

r>* •

o

ro •

*a-f - 4

IT) CVJ

o •

CVJ

^ •

ir> •

t - 4

1

o

«í-csj a\

• o

o» 1*«. C\J

• o

o r«.-

. m

ir>

• o

00 •

a\ o

\n CVJ

ro •

CNJ

00 •

co . - •

ro 1

i n •

r-«

^^ .—1

. i n

^ 00 o • o

( O U )

• 00

t - H

i O •

o

^ •

^ o

i n CSJ

o •

CSJ

r •

a\ r H

vo 1

co

f - H

vo .

f - H

o m o» • o

CSi • — «

• co

( O ( O

• o<

CVJ .

•—1

o

ir> CSi

o r^

• CSJ

( O .

co CSJ

o> 1

( O

Page 190: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

172

9í l . • D 9)

9) ^

Pro

c

on

S

^ . 9) 4J — Q — 4J Q cn > < 9)

0) •Q 9) C — Q -

0 ^ (J — 0) 9) £. JZ U 4J

4J •r- i -£ 0

d. c

— Cj >

TJ Q Qj 0) ( » X

— «) Q l . 4J 9) 0 4->»-0) E - P Q U U — Q T5 (L 0)

L - 0 . w .

0 0 (D 4^

• • ^

mm

1 (D

9i ^

Tab

4J ^ O. ^

^ H ^ _ »

«f-

o

o 0)

co 4->

V O M ->• -v^

. O r^ - _ ^

co 4->

. «*-^ >*^

.o ^^

u • «* - 4-> • » - • p - (/> O > CS OJ lO o. s-

oo o

0) ( . 4->

o c 4 J O J ' - ^ (/» 4-> X •^ c - o o Z o

f 4-í*—. 0.4-> Q) (f-

Q w

r<«» 1-H

. f—1

( D

vo •

o

vo 00

• CVJ

CNJ LO

• o

r««. •

^ 1-H 1-H

m CSJ »-H

00 •

CM

o •

o>

CSJ

1

o

r^ r^

. 1-H

a* co (O • o

o ir>

f - H

• o

CNJ •

'd-o 1-H

(T) CsJ f - H

o» •

CSJ

o •

o CSJ

f ^

1

CSJ

00 co

. f - H

CSJ co r*«. • o

r^ IT)

• co

r>.* r*<.

• o

0 0 •

00 o»

i n CSJ f - H

00 •

CSJ

i n •

( O CSJ

o» 1

r^

Page 191: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

APPENDIX C:

TYPICAL SOIL SUCTION PROFILES

173

Page 192: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

174

SOIL SUCTION, pF

5.0 4.5 - j

4.0 3.5 3.0 _ j

2.5

- I -

-3-

I- -5-(L UJ

o -7H

-9-

• MONTH D MONTH • MONTH o MONTH A M O N T H A M O N T H

AMARILLO STACK NO. 26

(o)

SOIL SUCTION, pF

5.0 ilÍ 40 t_

3.5 L_

3.0 — j

2.5

0 . UJ

o

- I -

-3 -

-5-

-7 -

-9 ,

AMARILLO STACK NO. 26

o MONTH • MONTH oMONTH AMONTH A MONTH

(b)

Ftgure C-1 Monthly Changes tn SotI Suctton wfth Depth for Instrument Stack No. 26, Located 20 ft Instde the Covered Surface for the AmartIlo Stte.

Page 193: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

175

SOiL SUCTION, pF

5.0 4-—

43 •

4.0 3.5 - j

3.0 —I

23

- I -

-3-

P -5i

- 7 -

- 9 -

AMARILLO STACK NO.

a. bJ O

• MONTH I o MONTH 2 • MONTH 3 oMONTH 4 A M O N T H 5 AMONTH 6

SOIL SUCTION. pF

Ftgure C-2. Monthly Changes tn SofI Suctfon wfth Depth for Instrument Stack No. 28• Located 10 ft Instde the Covered Surface for the AmartIlo Stte.

Page 194: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

176

SOIL SUCTION. pF

5.0

i -

4 3 4.0 3.5 3.0 —I

2 3

AMARILLO STACK NO. 32

I- -5' Q.

-7H

-9-

5.0

-I-

o

o

MONTH MONTH MONTH MONTH MONTH MONTH

(a)

SOIL SUCTION, pF

\

v_ 40 L_

3.5 L .

3.0 *

2.5

AMARILLO STACK NO. 32

o

-3-

-5-

-7 -

-9 l OMONTH • MONTH o MONTH AMONTH LMONTH

T"

8 9 10 tl 12

(b)

Ffgure C-3. Monthly Changes tn SotI Suctton wtth Depth for Instrument Stack No. 32t Located 2 ft Instde the Covered Surface for the AmartIlo Stte.

Page 195: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

177

50

SOIL SUCTION. pF

4 5 I

4 0 35 I

3.0 I

23 2.0

X »-CL UJ O

- I -

- 2 -

- 3 -

- 4 -

- 5 -

- 6 -

- 7 -

- 8 -

- 9 - -

COLLEGE STATION STACK NO. 3

• MONTH oMONTH • MONTH o MONTH A MONTH

2 4 5 6 7

(a)

5.0

SOIL SUCTION. pF

4 5 I

4.0 I

35 _ j

3.0 t

23 I

2.0

b.

a UJ o

- I -

- 2 -

- 3 -

- 4 -

- 5 -

- 6 -

- 7 -

- 8 -

- 9 - - i-

Ftgure C-4 .

(b)

COLLEGE STATION STACK NO. 3

AMONTH 8 •MONTH 9 oMONTH 10 ••MONTH II -MONTH 12

T

Monthly Changes tn Sotl Suctton wtth Depth for Instrument Stack No. 3, Located 2 ft Instde the Covered Surfare for the College Statton Stte.

Page 196: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

178

SOIL SUCTION, pF

5.0 4 5 I

4.0 '

3.5 i

3.0 23 __L_

2.0

0 . UJ

o

- I -

- 2 -

- 3 -

- 4 -

- 5 -

- 6 -

- 7 -

- 8 -

- 9 - -

COLLEGE STATION STACK NO. 9

• MONTH oMONTH • MONTH oMONTH AMONTH

2 4 5 6 7

tL (AJ O

50

- I -

- 2 -

- 3 -

- 4 -

- 5 -

- 6 -

- 7 -

- 8 -

- 9 - -

SOIL SUCTION, pF

4 5 I

40 1

35 _ J _

(b)

3 0 1

23 2.0

COLLEGE STATION STACK NO. 9

A MONTH •MONTH oMONTH • MONTH - MONTH

8 9 10 II 12

F î gure C-5. Monthly Changes tn SotI Suctton wtth Oepth for Instrument Stack No. 9, Located 20 ft Instde the Covered Surface for the College Statton Stte.

Page 197: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

179

I \~

UJ

o

SOIL SUCTION, pF

5 rt-\

- 1 -

- 2 -

- 3 -

- 4 -

- 5 -

- 6 -

- 7 -

- 8 -

- 9 -

0 4 5 •

1

4 0 1

\ 1

1 «

35 1

' 7 ^^

"-^ 1

(a )

3 0 _JL_

23 -_L_

2.0

COLLEGE STATION STACK NO. 15

• MONTH oMONTH • MONTH oMONTH AMONTH

2 4 5 6 7

0. UJ

o

5.0

- I -

- 2 -

- 3 -

- 4 -

- 5 -

- 6 -

- 7 -

- 8 -

-9

4 5 I

SOIL SUCTION, pF

40 35 _-L_

(b)

3.0 I

23 I

2.0

COLLEGE STATION STACK NO. 15

AMONTH •MONTH e»MONTH 4- MONTH - MONTH

8 9 10 II 12

T

Ffgure C-6 Monthly Changes tn SotI Suctton wtth Depth for Instrument Stack No. 15, Located 2 ft Instde the Covered Surface for the College Statton Stte.

Page 198: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

APPENDIX: D

RESULTS AND COMPLETE LISTING OF COMPUTER

PROGRAM, S0ILSUK2

180

Page 199: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

181

AMARILLO (Sotl Prof1le Beneath Covered Surface fs Wetttng Up)

CALCULATION OF VERTICAL AND HORIZONTAL SUCTION PROFILES BY HETHOO BY

LYTTON AND GARDNER

CALCULATE VERTICAL SUCTION PROFILE BEFORE SURFACE IS COVERED

DEPTH TO EQUILIBRIUH SUCTION >

NUHBER OF VERTICAL INCREHENTS »

LENGTH OF EACH VERTICAL INCREHENT

365.76

12

30.4B CH

CH

SOIL PERHEABILITY AT DEPTH OF EQUILIBTIUH SUCTION «

VERTICAL VELOCITY OF HOISTURE FLOW » -.0000347

.00002 CH/SEC

.CH/SEC

EQUILIBRIUH SUCTION 12569.3 CH OF WATER

HIN. SUCTION BENEATH COVERED SURFACE' 3162.26 CH OF WATER

VALUE OF CONSTANT, m 2.502

GARDNER'S CONSTANT Ai lE-09

INITIAL FIELD SUCTION IN pF

5.30 5.00 4.90 4.B0 4.60 4.40 4.30 4.40 4.20 4. 16 4.16 4.10

Page 200: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

182

NODE « — — —

1

2

3

4

5

6

7

II

9

10

11

12

13

DEPTH (CH)

— — 0.0

30.5

61.0

91.4

121.9

152.4

162.9

213.4

243.6

274.3

304.6

335.3

365.6

CHANGE IN SUCTION (CH) — — — — — — —

1061663.0

121720.1

34544.3

14995.0

6174.5

5112.2

34C46,e

2550.4

1947.3

1540.3

1252.6

1041.7

0.0

PERHEABILITY (CH/SEC)

— — — — - — . —

0.000000000976

0.000000006691

0.000000030644

0.000000070676

0.000000129669

0.000000206126

0.000000304951

0.000000419711

0.000000551776

0.000000700537

0.000000665429

0.000001045921

SUCTION (CH)

-.—...—

1290650.0

206966.5

67246.3

52702.0

37707.1

29532.6

24420.4

20921.6

16371.2

16423.9

14663.6

13631.0

12569.3

SUCTION (PF)

6.11

5.32

4.94

4.72

4.58

4.47

4.39

4.32

4.26

4.22

4.17

4.13

4.10

CALCULATE HORIZONTAL SUCTION AFTER SURFACE IS COVERED

HORIZONTAL VELOCITY .0000347 CH/SEC

VERTICAL PROFILE OF HORIZONTAL VELOCITY

NODE #

1 2 3 4 5 6 7 6 9 10 11 12 13

DEPTH (CH)

0.00 30.46 60.96 91.44 121.92 152.40 162.68 213.36 243.64 274.32 304.60 335.28 365.76

HORIZONTAL VELOCITY (CH/SEC)

0.00003470000 0.00002791144 0.00002198961 0.00001689401 0.00001258197 0.00000900852 0.00000612565 0.00000388187 0.00000222112 0.00000108137 0.00000039210 0.00000006922 0.00000000000

Page 201: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

183

VERTICAL SUCTION PROFILE AT EQUILIBRIUH UNDER COVERED SURFACE

NOOE

1 2 3 4 5 6 7 8 9 10 11 12 13

DEPTH (CH)

0.0 30.5 61.0 91.4 121.9 152.4 162.9 213.4 243.6 274.3 304.6 335.3 365.6

SUCTION (CH)

12955.1 12924.6 12694.1 12663.6 12633.1 12602.7 12772.2 12741.7 12711.2 12660.7 12650.3 12619.6 12569.3

SUCTION (pf)

4.11 4.11 4.11 4.11 4.11 4.11 4.11 4.11 4.10 4.10 4.10 4.10 4.10

VERTICAL SUCTION PROFILE FOR HOISTURE ENTERING SYSTEH FROH SURFACE

NODE

1 2 3 4 5 6 7 6 9 10 11 12 13

DEPTH (CH)

0.0 30.5 61.0 91.4 121.9 152.4 162.9 213.4 243.6 274.3 304.8 335.3 365.6

SUCTION (CH)

6749.3 6991.7 7255.5 7544.0 7861.4 6213.0 6605.3 9047.0 9S49.4 10127.6 10603.6 11606.6 12569.3

SUCTION (pF)

3.63 3.64 3.66 3.68 3.90 3.91 3.93 3.96 d.96 4.01 4.03 4.06 4.10

Page 202: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

184

HORIZONTAL SUCTION PROFILE (NEGATIVE CENTIHETERS OF WATER)

LENGTH OF EDGE PENETRATION - 274.32 CH

NUHBER OF HORIZONTAL INCREHENTS « 6

LENGTH OF EACH HORIZONTAL INCREHENT » 45.72 CH

H-O-R-I-2-O-N-T-A-L S-U-C-T-I-0-N (CH OF WATER) AT NODE VERT NODE

1 2 3 4 5 6 7 6 9 10 11 12 13

1

9159.7 9160.6 9161.9 9163.0 9164.1 9202.6 9328.7 9546.7 9665;9 10301.4 10876.1 11623.6 12589.3

2

6878.7 6679.6 6880.9 6862.0 6915.5 9020.0 9198.9 9459.2 9611x9 10272.0 10864.0 11621.1 12589.3

3

6522.6 6523.9 6525.0 6575.5 6681.1 6845.1 9073.1 9373.4 9757.6 10242.6 10851.9 11618.6 12589.3

4

6037.0 6062.5 6166.3 6290.8 6459.5 8677.4 6951.0 9289.4 9704.7 10213.6 10839.6 11616.1 12589.3

5

7556.6 7682.6 7637.7 6025.3 6249.7 ' 8516.4 6832.5 9207.0 9652.3 10164.9 10827.8 11613.6 12589.3

NODE

1 2 3 4 5 6 7 6 9 10 11 12 13

7130.6 7321.0 7535.2 7777.0 6050.7 6361.6 6717.3 9126.2 9600.5 10156.3 10615.6 11611.1 12569.3

6749.3 6991.7 7255.5 7544.0 7661.4 6213.0 6605.3 9047.0 9549.4 10127.6 10803.6 11608.6 12569.3

6 10

Page 203: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

185

o a

o (O

S

o

I o i

T I

u I

3 i

I

I I -i

I o i

N i

T Û: I

O I

o I — i

i i

i I

o i i I

00 i i i

I m ^ v û C D o — m\ûCD — fovDO I 0 0 0 0 0 0 G 0 0 ^ ( ^ 0 N ( ^ ( ^ O O O - «

^ i • • • • • • • • • • • • • I mmmmmmmmm^^yt^ i

I i / )ooo(^ — (NJ' sDOO — rnvDo I 0 0 0 0 0 0 0 0 ( ^ ( ^ ( ^ ( ^ ( ^ 0 0 0 —

vû I I

I oo9^(^ocMfnmvDoo — m v ø o I 000000 (^ (^ (^ (^Ch(^OOO-«

in I

i

I — — — csjrr)5íinf^(r> — ^ r * » o •V i

i

i fnmfnfn^ invor^C^ — ^ r ^ o I C^0^(f\<J\(T^(J\(!\(J\(f\OOO^

m i i mmmmmmmmm^^^^ i i I iominir)invDvDco(^ — ^ r * » o

(VI i ( ^ ( ^ ( ^ ( ^ O N ( ^ a ^ ( ^ ( ^ o o o - -i I m m m m m m m m m ^ ^ ^ ^ I I vDvDvDvDvDvDr^COÍT^ — ^ r ^ o I o^o^o^(7^(r«(7^(r^o^o^ocbo««

— I I f o r o r o m r o o f n f n f n ^ ^ ^ ^ i

uj I Q : O i UJQ i > z i

o — (Nj fn (Mfn^»f ivDf^CD(^ — — — —

Page 204: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

186

CALCULATE CHANGE IN SURFACE ELEVATION DUE TO SOIL SHRINK OR SWELL

5HRINK OR SWELL PER VERTICAL INCREHENT

VERT NODE

2 3 4 5 6 7 6 9 10 11 12 13

1

-.0414 -.0321 -.0290 -.0259 -.0197 -.0133 -.0099 -.0126 -.0056 -.0044 -.0029 0.0000

2

-.0416 -.0325 -.0294 -.0263 -.0200 -.0135 -.0100 -.0126 -.0058 -.0045 -.0029 0.0000

3

-.0424 -.0331 -.0299 -.0267 -.0202 -.0137 -.0102 -.0127 -.0059 -.0045 -.0029 0.0000

HORIZONTAL 4

-.0431 -.0337 -.0304 -.0270 -.0205 -.0139 -.0103 -.0128 -.0059 -.0045 -.0029 0.0000

NODE 5

-.0438 -.0342 -.0308 -.0273 -.0207 -.0140 -.0104 -.0129 -.0059 -.0045 -.0029 0.0000

6

-.0444 -.0348 -.0312 -.0277 -.0210 -.0142 -.0105 -.0129 -.0060 -.0045 -.0029 0.0000

7

-.0450 -.0353 -.0316 -.0280 -.0212 -.0144 -.0106 -.0130 -.0060 -.0045 -.0029 0.0000

NODE 6 10 11 12

2 3 4 5 6 7 6 9 10 11 12 13

-.1971 0.0000

-.1995 0.0000

-.2021 0.0000

-.2049 -.2076 -.2102 -.2127

Page 205: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

187

u o < X u û: 3 (A

O Z < z u o o: 3 ffi Q:

u > o o H

UJ 3 O

- 1 . J UJ 3 lA

Z M

Z

TIO

u D O UJ tt

UJ »-< 3 U ^ 1 < 1 U 1

te i u - J

HOR

H

i Z

•• UJ

a >-

_ i

8

«« tr\ %0

• >-< _J U H UJ u o: i

u. u X . tn ffi . j

m CVJ mm

« _ l

SOI

u. O 1 -Z

o « • UJ

1 -M

§

u. ifí >. ( 0 ffi ^ o

URE

cn U) UJ ÛC Q.

UJ o Û: < Z u tt 3 tf)

»-Z l*J u o: iS! m 0\ o • <n

• o z . J -J UJ 3 (/)

FOR

z M

< Q: 1 -(0

i l < Q:

UJ u Q:

^

m o* o

« UJ Q: 3 (A (n UJ Q: 0.

RGE

< z ^ P (A 1

Z UJ o Û : 3 ffi Q: UJ > O

h z « M

< o: >-(A

^ U 1-< tt

z u (M o 1

UJ lA lA lA ^ (M •

^

• 1

SAT

z UJ Q.

O u

i mm

tt z (A V , z O " •

UCT

o UJ ÛC

..J - 1 UJ 3 (A

U < •-e

Page 206: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

188

O (J l i j o o

in

u (n i

X (n o

UJ

o

< > u

UJ u < u. Q :

( 0

LJ

o

o

o ( J ^

UJ o o

1 0> 1 (VJ 1 • 1 vD

00

n • (M

o u llJ o o

o u UJ o o

(NJ

o u UJ

o

m VD (NJ

(NJ —

• • vD (NJ

o

vD

00 m (SJ

O U o w — o

ON

o u (O UJ o o

1 o 1 (VJ 1 • 1 vD

^ •^

• (VJ

O u UJ o o

00

o u UJ o o

o u UJ o o

vD

Csj r^

m in • •

vD (VJ

(0 UJ

u —

ir> " •^ in

• • VD (VJ

U —

Ul

UJ tr UJ

fn

o I

o o

• o I

vD o o

I U

r*- (j\ "^ —

• •

o o I I

fn

o •

o I

• o i

CD

o o VD

o I

UJ cc

UJ

in

ui

u. o Q: Q.

o (/)

Vi^ w O

Page 207: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

189

AMARILLO (Soîl Profiîe Beneath Coverecj Surface 1s Drylng Out)

CALCULATION OF VERTICAL AND HORIZONTAL SUCTION PROFILES BY HETHOD BY

LYTTON AND (SARDNER

CALCULATE VERTICAL SUCTION PROFILE BEFORE SURFACE IS COVERED

DEPTH TO E(XJILIBRIUH SUCTION « 365.76

NUHBER OF VERTICAL INCREHENTS « 12

LENGTH OF EACH VERTICAL INCREHENT - 30.46 CH

SOIL PERHEABILITY AT DEPTH OF EQUILIBTIUH SUCTION •

VERTICAL VELOCITY OF HOISTURE FLOW • .0000347

CH

.00002 CH/SEC

CH/SEC

EQUILIBRIUH SUCTION 12589.3 CH OF WATER

HIN. SUCTION BENEATH COVERED SURFACE' 3162.26 CH OF WATER

VALUE OF CONSTANT, m • 2.502

GARDNER'S CONSTANT A> lE-09

INITIAL FIELD SUCTION IN pF

5.30 5.00 4.90 4.60 4.60 4.40 4.30 4.40 4.20 4.16 4.16 4.10

LENGTH OF EDGE PENETRATION . 274.32 CH

NUHBER OF HORIZONTAL INCREHENTS • 6

LENGTH OF EACH HORIZONTAL INCREHENT - 45.72 CH

Page 208: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

190

u. a

UJ

u. s Q. Z

o U z> ifi

s

UJ

o

a

i o I

T » -i u I

3 I

0)

I

I o i

N i

T o:

I O i

i o i — i

I I

i I

O I i I

i i

00 i I i

I v D ( ^ o o o ^ o r ^ ^ ( s i « « — o o i vD^(nfn(Nj ( \ j — — — — — — —

t^ I i ^ r ^ ^ ^ n ^ ^ ^ ^ ^ ^ ^ n i

I OONCVJvD(NJflOvD^(NJ — — O O I mfnmcsjísí — — — — — — — —

VD I • . • I

i oo(Njr* ' (Nj(M^^fn(vj — o o o I fnfn{Nj(vj — — — — — — — — —

in I

i

I (^ir>(Nj(^r*-mfn(Nj — — o o o I CNJ(\J(VJ — — — — — — — — — —

^ i i

i ( v j o o o v D i n ^ f n c v j - — o o o i CVJfNJ — — — — — — — — — — —

fn i

I

I I vD iD '^ fn fn fs j f v j - — o o o o

cvj I ^ — « — — — — — — — — — « i • • . •

i I — — — — — — — — o o o o o I ^ - - — - - - - - - « — —

— i I

l-UJ I Q : O I UJQ I > z I

o — (vj (n — (vj(n^insor^flD(y> — — — —

Page 209: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

191

I I

-J i -J I UJ i

I (/) i i

I i

— i Q: i z I (0 i

I

i UJ I 3 I O i

i Z i O i — i H i < i > i UJ i - J i UJ I

i UJ I U I

i I i I

(n i i z i

— I I

UJ i o i z I < I z i u I

I ^ I < I I Q I

u. Û :

UJ

o

in

O u o UJ — o

o u UJ

o

in m o u

ui o o

o\

o u UJ o o

m

m in

.

0 O u LJ O

o

flO

o u UJ o o

(VJ

flO vD 00

-J o u UJ o o

o u Ul

o

fn oo

o Ov

o u UJ o o

vD

(^ tn vD <«

• • fn —

u —

in in o m

. •

m —

z z u —

i I i i i I ON I — I • i o I i

I i i I VD i CVJ I • o

i

i I I fn i fn

o I

i i i

^ I (0 I UJ I o^ z I fn u I

I — i

i z i — I w I

I - I i .j i UJ i 2 i (n i

o i

— i I - i z i UJ i Q: I UJ u. u.

i in i ^ i • o

I

m in

• • — o

o o

UJ

(O

o o o

Q: o (n

UJ

u.

UJ Q: UJ

o I

o (0

^ %^ o

Page 210: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

19:

COLLEGE STATION (Soll Proflle Beneath Coverecí Surface fs Wettfng Up)

CALCULATION OF VERTICAL AND HORIZONTAL SUCTION PROFILES BY HETHOD BY

LYTTON AND (âARDNER

CALCULATE VERTICAL SUCTION PROFILE BEFORE SURFACE IS COVERED

OEPTH TO EQUILIBRIUH SUCTION • 274.32

NUHBER OF VERTICAL INCREHENTS • 9

LENGTH OF EACH VERTICAL INCREHENT • 30.46 CH

SOIL PERHEABILITY AT DEPTH OF EQUILIBTIUH SUCTION •

VERTICAL VELOCITY OF HOISTURE FLOW • -.0000347

CH

.00002 CH/SEC

CH/SEC

EQUILIBRIUH SUCTION 6309.6 CH OF WATER

HIN. SUCTION BENEATH COVERED SURFACE' 3162.28 CH OF WATER

VALUE OF CONSTANT, m 2.652

GARDNER'S CONSTANT Ai lE-09

INITIAL FIELD SUCTION IN pF

4.66 4.51 4.29 4.25 4.25 4.20 4.00 3.90 3.80

LENGTH OF EDGE PENETRATION • 274.32 CH

NUHBER OF HORIZONTAL INCREHENTS • 6

LENGTH OF EACH HORIZONTAL INCREHENT • 45.72 CH

Page 211: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

193

UJ u u. Q:

(0

o UJ Q: UJ

o u Q: UJ o

I-Q:

i u. i a i ^ i

I

E\ Pî U I ^ I CO i

Q: CD mm .J M M

o o UJ

<

Ul .J wm

u. § Q.

2 O P U 3 (0

1 ^

1 u 1 ^ 1 2 1 o 1 1 u 1 ^ 1 (O

! £ u I 1-a Ul o

ÍMfNj - —.—. — — O O O €D0D0O(DflDGOflOflO0O0O • • • • ' • • • • . . m (n fn co co fn m fn cn tn

w I ( ^ ^ o i / > o i n o v D — vD

-^ i

w I

f n f n f n c o c v j - — o o ( ^ c o i n c v i c ^ v D f n o i ^ ^ o m m i n ^ ^ ^ ^ f n m f n ^ v D ^ ^ ^OvDvDvDvD

i o m o ^ o ^ ^ ( ^ ^ f l O f n o o — — —(sicvjmfn^

mvD^> (sjmco — ^ ^ * — — — rg (VI (SJ

I ui I Q I —(Njrr)^mvDr*>00(^o O I -z I

i

UJ

u <

u. Q: D (0 X s u. z Ul 1-(0 > •

(n o z ft Ul 1-z Ui UJ 1 Q: O 1 1- 1 m 1 — 1 O I Z 1

Q: I O 1 U. 1

UJ 1 -J 1 — 1 U. 1 s a 1 Z 1 O 1

K 1 U 1 3 1 tn 1 mj 1 < 1 U 1 mm 1

ERT

> 1

! ^ 1 U.

a ^*'

2 o H

u o in

^ » r u w« z o H U o (0

^ .

u ^

z H

a UJ o

NO

DE

i 1 i i i i i 1 i i i 1

1 1 i i 1 1 1 1 1 1 1 i i

i i i i 1 1 i i i 1 i 1

i I 1 i i

mmr<^O(sjmfl0 —mo mmmvDvDvDvDr c -oo mmmmmmmmmm

,

^OOvD — v D m ^ v D ( ^ v D

^ ^ ^ 0 0 — m v D O > ^ ( ^ <^mmmr*»^vDmmo mmr^O^ — ^r*--vDm m m m m ^ ^ ^ m m v D

omo^(7^^<^^flOm • • . . . . . * • •

o o — — — csicsjmm^ mvDO (simflO — ^r^ — — — (VJ (Ví (VJ

— c v i m ^ m v D r ^ O D í ^ o • "

Page 212: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

194

UJ

o

a i ^ i

I o i I

I (n

I i i i i I I 1 I ov i i i i i i i 00

i u i

o I — i

i i

i VD i i

r I

I mmr^o(sjmflO — m o 1 mmmvDvDvDvDr*>r^0D

^ i m I •

i m m m m m m m m m m i

I v D o o í ^ - m m o o — m o i mmmvDvDvDvDr^r^oo I • • • • • • • • • • i m m m m m m m m m m I

I o o — rsi^vDoo — m o i \DvDvDvDvDvDvD^*>r>'00

I i i m m m m m m m m m m

^ i u. i a 1 ^ i

1 UJ i -J 1 — i U. i

S! a i i Z i O j P 1 U 1 3 1 (0 1

1 - 1 1 < i »- 1 Z 1 O 1 N i — 1 Q: i

i 1 -i

z i o 1 N 1

• . •

1 Q: i o i

z

1 1

i 1 i i 1 ^ i i i i 1 i i m i 1 i 1 i

(VJ

K U J Q:O

i m m m ^ m v D ( ^ ( v j m o I vøsDvDvDvDvDvDr^l^OO I • • • • • • • • • • i m m m m m m m m m m i

I mmmmvDf^(^(vjmo i vDvDvDvDvDvDvDr^r*«^0O I • • • • • • • • • • I m m m m m m m m m m I i i vDvDvDvDr*-r^<^(vjmo I vûsDvDvDvDvDvDr^r**-0O I • • • • • • • • • • I mmmmmmmmmm i I I

— i i I

r r r r r coovívjmo v D ^ v D v D v D O v D r ^ r ^ O O

• • • • • • • • • • mmmmmmmmmm

^ii- (vj m o

m vD r* 00 (^ —

Page 213: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

195

I I

- I i . j I UJ i » I \fí i i i

il — i Q: i z i cn i

i O I

UJ i 3 i o i

1 z i O I — i »- i < i > I UJ i - 1 i UJ I

I UJ i u i

i u. Q:

I i i

(0 i I

z i — i

i UJ I o I z I < i z I u I

I - I I < I •- I g|

UJ

o

m VD 00

. J o u o UJ —

o

o u Ul o

VD VD

m co u

UJ

o

o\

o u UJ o o

m

Ov m co

- J o u UJ o o

00

o u UJ o o

CVJ m m

.

co .

O u UJ

o

o u u o

Ov f^ f*

o u UJ

o

vD

00 (SJ 00 o

. •

n —

(0 UJ z u

u —

— o 00 co

• • ^ —

z z u —

. J UJ

m

UJ Q : UJ

o i

o

o I

(VJ

o o I

m

o i

ON m m —

. • o o i I

UJ

(n

o o

• o

m •

o i

^ w O

u a UJ

u.

o

o

< z

a o o

UJ

m

ui

a

o (n

Page 214: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

1S6

COLLEGE STATION (SoH Proffle Beneath Covered Surface is Drylng Out)

CALCULATION OF VERTICAL AND HORIZONTAL SUCTION PROFILES BY HETHOO BY

LYTTON AND GARDNER

CALCULATE VERTICAL SUCTION PROFILE BEFORE SURFACE IS COVERED

DEPTH TO EQUILIBRIUH SUCTION •

NUHBER OF VERTICAL INCREHENTS •

LENGTH OF EACH VERTICAL INCREHENT -

SOIL PERHEABILITY AT DEPTH OF EQUIl

VERTICAL VELOCITY OF HOISTURE FLOW

EQUILIBRIUH SUCTION 6309.6

HIN. SUCTION BENEATH COVERED SURFACE

274.32

9

30.46 CH

BTIUH SUCTION •

.0000347

Cn OF WATER

3162.28

CH

.00002 CH/SEC

CH/SEC

CH OF WATER

VALUE OF CONSTANT, m 2.652

GARDNER'S CONSTANT A« lE-09

INITIAL FIELD SUCTION IN pF

4.66 4.51 4.29 4.25 4.25 4.20 4.00 3.90 3.60

LENGTH OF EDGE PENETRATION • 274.32 CH

NUHBER OF HORIZONTAL INCREHENTS • 6

LENGTH OF EACH HORIZONTAL INCREHENT • 45.72 CH

Page 215: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

197

u. a Ul

u (n

o N

i

UJ

o

u. a

i o i

T » -

i u I

i m

I < i

i Z i o i

N i

T Q: i

O i

I I

O i

00 i i i

i ^ cvj • vo csjvD m —o o I O ^ — O O 00 OOflOOO OD

^ I • • • * • • • • • • i m ^ ^ ^ m m m m m m i

i c v j m v D ^ o v m m - o o I mcvio^oDODODQoaoao ^ l • • • • • • • • • • j ^^^ff ícommmmm i

i m o o»csj QD ^ (vj —o o I CSJ-O^C^aDODODOOOOOD

1^1 • • • • • • • • • • ^ ^ m í n m m m m m m

I

i c^o^^i£'mcvi — o o I OO(^0DC'0C*0D00000D

^ i • • • • • • • • • • I ^^míooommmmm i

i r - m í ^ v D ^ m - — o o I ( ^ ( ^ GD OD OD OD 00 flO flO OD

( r > | • • • . • • . . . • I mmmmcommmmm I

i (^r*'m'^<Tí(vj—— o o (vj I QOCDOOODC'OC'OOOOflOOD

I • • • • • • • • • •

i mmmmcTiff mmmm

i CVJ cvj — — — — — o o o I cO0O0O0DC'C>flO000O0D j , • • • • • • • • • I mmmmff;»mimmmm i

HUJ i Q: O i ii — cvjm^ir«^Æ^*flD(^ —

Page 216: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

198

I i

^ I - j i UJ i 3 i (n i I I

^ i z i — i Q: I z i cn i

i

gi i

UJ i O i O I

— i K i < I > i Ul i ^ i UJ i

I UJ I U i < I u. i Q: I o i (n i

i z i — I

I UJ I o I z i < I z I u i

I - j I < I

o u UJ o

m m

(VJ

SD

o UJ — o

o u UJ

o

m ^ — (VJ

• •

m —

O U ui

o

Os

O U

UJ o o

m m — m m

• •

m —

- J O u UJ o o

00

- j o u Ul o o

(SJ

00

m m

O U

UJ o o

o u UJ o

vD .

m

isj u Ul o o

sD

r- m m <J\

. . cvj o

u —

O VD r o

. . (VJ —

z z u —

I i i i i i m i (VJ i • i o i i

i i I — i m i • i o i i

I I I 00 I m I o

I

I ^ I m i ui i z i u i z 1 — i

1 z i — I ^ i

i - I i -1 i Ul i 2 i tn i

o i

- I i — i

i i

UJ i Q: i UJ u. u. o

u

^ ON (VJ ^

• • — o

. J Ui

(n

i ov m

ui Q: UJ

3 O

b z > Q: o (n

UJ

u. i a

o (n

Page 217: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

S0ILSUK2

199

10 REH ii^^nn***i*i**^**ii**i**i***i***44**^***ii*^i*4i*m^^*4**i***t 20 REH THIS PROGRAH ESTIHATES THE DIFFERENTIAL SWELLING THAT NIGHT 4-30 REH BE EXPECTED TO OCCUR BENEATH A SLAB-ON-GROUND CONSTRUCTEO OVER 4 40 REH EXPANSIVE SOILS. IT IS BASED ON LYTTON'S APPLICATION OF GARONER'S 50 REH WORK TO THE PRDBLEH ANO THE THEORY IS DECRIBED IN "NUHERICAL 60 REH HETHODS IN GEOTECHNICAL ENGINEERING " EDITED BY C. S. DESAI AND 70 REH J. T. CHRISTIAN. CHAPTER 13. HCCÍRAH-HILL BOOK CO., 1977. 80 REH THE NETHOO APPLIED TO A FORTRAN IV COHPUTER PROGRAH IN DECENBER. 90 REH 1977, BY H. K. WRAY FOR HIS DOCTORAL DISSERTATION, ENTITLEO 100 REH *A DESIGN PROCEDURE FOR RESIDENTIAL AND LKÎHT COHHERCIAL SLABS-ON-110 REH GROUNO CONSTRUCTED OVER EXPANSIVE SOILS*. AT TEXAS AtH UNIVERSITY. 120 REH COLLEGE STATION, TX, 1978. 130 REH THIS PROGRAH HAS CONVERTED TO AN INTERACTVE BASIC PRDGRAH BY 140 REH H. A. ABDALLAH AT TEXAS TECH UNIVERSITY. LUBBOCK, TX, IN JANUARY, 1967. 150 REH S.H. AUSTIN HOOIFIED THE PROGRAH TO ACCOHNOOATE THE INITIAL FIELO SOIL 160 REH SUCTION PROFILE AND THE HINIHUH SOIL SUCTION EXPECTEO UNOER A COVEREO 170 REH SURFACE IN HIS HASTER'S THESIS, ENTITLEO "ESTIHATING SHRINK/SHELL IN 180 REH EXPANSIVE SOILS USING SOIL SUCTION", AT TEXAS TECH UNIVERSITY, 190 REH LUB60CK, TX, NAY, 1967. 200 fiE.H-*-*^i4*****iA4*4**4***4m**4-H"*-¥44*i444*4'**i*4444**4*44* **********

DEFINITION OF PRINCIPLE VARIABLES GARONER'S SUCTION CONSTANT PERCENTAGE OF CLAY IN SOIL BEING ANALYZEO,IN PERCENT CHANGE IN HORIZONTAL SUCTION CHANGE IN VERTICAL SUCTION CHANGE IN OVERBURDEN AND SURCHARGE PRESSURE (CONHON LOG) CHANGE IN HORIZONTAL SUCTION EXPRESSED IN pF LENGTH OF EACH HORIZONTAL INCREHENT OF EDGE PENETRATION IN CH LENGTH OF EACH VERTICAL INCREHENT OF OEPTH IN CH DEPTH BELOH ORIGINAL SOIL SURFACE UNIT HEIGHT OF SOIL,IN LBS PER CUBIC FEET HORIZONTAL SUCTION EXPRESSEO IN pF VERTICAL SUCTION EXPRESSED IN pF INITIAL VERTICAL FIELD SUCTION EXPRESSED IN pF VERTICAL SUCTION DUE TO HATER ENTERING FROH SURFACE (pF) VERTICAL SUCTION EXPRESSED IN NEGATIVE CH'S OF HATER HORIZONTAL VELOCITY OF HOISTURE FLOH IN CH/SEC HINIHUH VERTICAL SUCTION IN CH HORIZONTAL SUCTION DUE TO HATER ENTERING FROH SURFACE (CH) NUHBER OF HORIZONTAL INCREHENTS (TO LESSER HHOLE NO.) NUHBER OF VERTICAL INCREHENTS (TO LESSER HHOLE MO.) NUHBER OF DIFFERENT aAY X'S TD BE STUDIEO HORIZONTAL PERHEABILITY IN CH/SEC TYPE OF PREDOHINATE aAY HINERAL (S-SHECTITE»I-ILLITE|K-KAO

LINITE) FIELD PERHEABILITY IN CH/SEC VERTICAL PERHEABILITY IN CH/SEC NUHBER OF DIFFERENT HOISTURE VELOCITIES TO BE STUOIEO EXPONENT IN EXPONENTIAL EQUATION OF HORIZONTAL NOISTURE VARI-ATION NINIHUH SOIL SUCTION EXPRESSEO IN pF SUH OF OVERBURDEN AND SURCHARGE AT ANY 6IVEN DEPTH RATE OF CHANGE OF STRAIN DUE TO OVERBURDEN AND SURCHARGE UPHARD HOVEHENT OR SHELL DUE TO CHANGE IN SOIL SUCTIOH SURCHARGE IN LBS PER SQUARE INCH RESISTANCE TD SHELL DUE TD OVERBURDEN AND SURCHARGE

210 REH 220 REH 1 230 REH 240 REH 250 REH 260 REH 270 REH 280 REH 290 REH 300 REH 310 REH 320 REH 330 REH 340 REH 350 REH 360 REH 370 REH 380 REH 390 REH 400 REH 410 REH 420 REH 430 REH 440 REH 450 REH

460 REH 470 REH 480 REH 490 REH

500 REH 510 REH 520 REH 530 REH 540 REH 550 REH

DEFINITK A a A Y DELHH DELHV DELOGP DELPFH DELXl DELX3 DEPTH GAHHA HPFH HPFV HPFVF HPFW HV HVEL HVHIN HW IH IV aAY KH KLAY

1 o KV KVEL N

HS P PCON PUSH Q RESIST

Page 218: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

200

560 REH 570 REH 580 REH 590 REH 600 REH

610 REH 620 REH

SHCON SHDIF SHDIFI SHELL WEL

XI X3

RATE OF CHANGE OF STRAIN DUE TO CHANGE IN SUCTION.DECINAL DIFFERENTIAL SHELL IN CENTIHETERS DIFFERENTIAL SHELL IN INCHES DIFFERENCE BETHEEN "PUSH" AND "RESIST" VERTICAL VELOCITY OF NOISTURE HOVEHENT.IN CH/SEC (NEGATIVE VELOCITY INDICATES NOISTURE ENTERING FROH SURFACE) HORIZONTAL DISTANCE OF SUCTION VARIATION BENEATH SLAB, IN CH VERTICAL DEPTH DUE TD EQUILIBRIUH SUCTION.IN CH

630 REH44-f4-f*"H-"l-H~f4-f+++++++++++4+++++-f++++4+++4++++4+-H-++++++4-++^ 640 REH 650 OPEN "OUTPUT" FOR APPEND AS «1 660 DIH HVEL(I00),KH(20,20),HPFW(20),HH(20,20),DELHH(20,20),PUSH(20) 670 DIH HPFH(20,20),HV(20),DEPTH(20),HPFV(20),KV(20),DELHV(20).HVV(20) 680 DIH DELPFH(20,20).SHELL(20).OELOGP(20).LOGP(20,20).SUR(20.20) 690 DIH P(20.20).RESIST (20).SSHELL(20).DIFFSH(20).HPFVF(20) 700 PRINT#l.tPRINT#l. 710 PRINT ENTER PARAHETERS AS REQUESTED " 720 PRINT 730 PRINT 740 INPUT "ENTER THE LAST RUN NUHBER. IF THIS THE FIRST RUN. ENTER ZERO!".RN 750 PRINTtPRINT 760 INPUT; "I. H-C0N5TANT« ",H:INPUT " 2. FIELD PERHEABILITY (CH/SEC)« ",K0 770 INPUT "3. VERTICAL PERHEABILITY (CH/SEC)« ", KI 780 INPUT "4. VERTICAL SUCTION IN NE6AT1VE CH'S OF HATER« ",HV(1) 790 AsIE-09 800 INPUT "5. VERTICAL DEPTH OF EQUILIBRIUH SUCTION (CH). ",X3 810 INPUT "6. HORIZONTAL DISTANCE OF SUCTION BENEATH SLAB (CH)« ",X1 820 INPUT "7. LENGTH OF HORIZONTAL INCREHENTS OF OEPTH (CH)« ",OELXI 830 INPUT "6. LENGTH OF HORIZONTAL INCREHENTS OF EDGE PENETRATION= ", 0ELX3 840 INPUT "9. PREDOHINATE CLAY TYPE S-SHECTITE. I-ILLITE. K-KAOLINITE —".Kf 850 INPUT "10. DENSITY OF SOIL IN PCF« ".GAHHA 860 INPUT "II. SURCHAR6E ON AREA IN PSI« ".Q 870 INPUT "12. PERCENTAGE OF CLAY CONTENT IN SOIL (IN I)» " ,aAY 880 PRINT " VELOCITY OF HOISTURE HOVEHENT IN CH/SEC" 890 INPUT; "13. VERTICAL VELOCITY- ",VVELiINPUT " 14. HORIZONTAL VELOCITY. ", HVEL(l) 900 IH«XI/30.48:IV«X3/30.48 910 INPUT; "15 HINIHUH VERTICAL SUCTION IN CH »*, HVHIN 920 KK>IV+I 930 FOR I»2 TO KK 940 BUHsI-1 950 PRINT "DEPTH", BUH 960 INPUT "17 INPUT SOIL SUCTION IN pF » ", HPFVF(I) 970 NEXT I 980 INPUT "HOULO YOU LIKE TO CHANGE ANY OF THE PARAHETERS (Y/N)";Y$ 990 IF Y$ » "N" THEN 1190 1000 INPUT "ENTER THE NUHBER OF THE PARAHETER YOU HISH TO CHANGE ",CH 1010 IF CH«1 THEN INPUT "H-CONSTANT« ",H 1020 IF CH«2 THEN INPUT "FIELD PERHEABILITY {CH/SEC)« ",K0 1030 IF CH.3 THEN INPUT "VERTICAL PERHEABILITY (CH/SEC)« ",KI 1040 IF CH«4 THEN INPUT "VERTICAL SUCTION IN NEGATIVE CH'S OF HATER« "^HVd) 1050 IF CH=5 THEN INPUT "VERTICAL DEPTH OF EQUILIBRIUH SUCTION (CH)» ".X^

Page 219: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

201

S5J r í°5 W* ^ ^ "HORIZONTAL DISTANCE OF SUCTION BENEATH SLAB (CH)» ".XI íoS r ÍS'Z l^l** ^^^^ "'- • ^ " °^ HORIZONTAL INCREHENTS OF DEPTH (CH « -.DELX 1080 IF CH«B THEN INPUT "LENGTH OF H0R120NTAL INCREHENTS OF EDGE PENETRATION« -,

1090 ^^CH«9 THEN INPUT "PREDOHINATE CLAY TYPE S-SHECTITE, I-ILLITE, K-KAOLINITE

1100 IF CH.10 THEN INPUT "OENSITY OF SOIL IN PCF= ",6AHHA 1110 IF CH«I1 THEN INPUT "SURCHARGE ON AREA IN PSI- ",Q II20 IF CH.12 THEN INPUT "PERCENTA6E OF CLAY CONTENT IN SOIL (IN %)« ".CLAY 1130 IF CH«13 THEN INPUT "VERTICAL VELOCITY. ".VVEL 1140 IF CH.14 THEN INPUT "HORIZONTAL VELOCITY» ".HVEL(l) 1150 INPUT "ANY HORE CHAN6ES (Y/N)-;Y$ II60 IF Y$. "Y" THEN 1000 1170 IF Y$. -N" THEN 1190 1180 PRINT "PLEASE ANSHER Y OR N FOR YES OR NO" :GOTO 1150 II90 REH +++++++++++++++++++4.4++++++++++^.»^.^..HH^4.H.4.^.^.4.H-f++++++++4 + 1200 REH+++++++++DETERH1NE THE RATE OF STRAIN CHAN6E AS A FUNCTION OF 1210 REH+++++++++CLAY CONTENT 1220 IH.XI/30.46 :IV»X3/30.48 1230 REH SUBROUTINE STRAIN ..==.=..==.«=......=====«=.=«==«=«.«=..=„„.„„ 1240 COSUB 5830 1250 REH 1260 REH CALCULATE VERTICAL SUCTION PROFILE BEFORE SURFACE IS COVERED. 1270 REH++++++++READ IN BASIC DATA OF 0RI6INAL PERHEABILITY. 1280 REH++++++++EQUILIBRIUH SUCTION.DEPTH AND LENGTH OF EACH VERTICAL 1290 REH++++++++INCREHENT (6RAVITY POTENTIAD.AND VERTICAL FLOH VELOCITY 1300 REH++++++++OF HOISTURE TRANSFER. 1310 DEPTH (I)»OI 1320 HV(1)»ABS(HV(1)) 1330 HPFV(I).L06(HV(l))/2.302581 1340 AVEL - ABS(VVEL) 1350 REH 1360 REH++++++++FIND CHAN6E IN PERHEABILITY OUE TO CHAN6E IN SUCTION 1370 FOR J . 1 TO IV 1380 REH++++++++++++CALCULATE CHAN6E IN PERHEABILITY DUE TO CHAN6E IN SUCTION 1390 SUCKsABS(HV(J)) 1400 KV(J)»K0/(1+(A»(SUCK*H))) 1410 REH++++++++++++CALCULATE CHAN6E IN SUCTION DUE TO GRAVITY POTENTIAL AND

CHAN6E IN PERHEABILITY 1420 OEPTH(J+I).DEPTH(J) + DELX3 1430 DELHV(J) . DELX3«(1+(AVEL/KV(J))) 1440 REH++++++++++++CALCULATE NEH SUCTION 1450 HV(J+I)«HV(J)+DELHV(J) 1460 HPFV(J+1)»L06(HV(J+I))/2.3025B1 1470 NEXT J 1480 REH++++++++PRINT OUTPUT 1490 PRINT#1.:PRINT#1.:RN«RN+I 1500 PRINT#I. "••••••• RUN NUHBER ".RN, ••.•..•.. 1510 PRINT#1.:PRINT#1. 1520 PRINT#1. "CALCULATION OF VERTICAL AND HORIZONTAL SUCTION PROFILES BY NETHOO BY LYTTON AND 6ARDNER" 1530 PRINT#1.:PRINT#1.:PRINT#1. 1540 PRINT#1. "CALCULATE VERTICAL SUCTION PROFILE BEFORE SURFACE IS COVERED" 1550 PRINT#1. " "

Page 220: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

202

1560 1570 1580 1590 1600 1610 1620 1630 1640 1650

1660 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 ON 1800

1810

1820

1830

PRINT#1. tPRINT#l. PRINT#1. -DEPTH TO EQUILIBRIUH SUCTION «".X3."CH" PRINT#1, PRINT#1, -NUHBER OF VERTICAL INCREHENTS »-,1^ PRINT#1, PRINT#1, -LEN6TH OF EACH VERTICAL INCREHENT «-DELX3,-CH" PRINT#1, PRINT#1, -SOIL PERHEABILITY AT DEPTH OF EQUILIBTIUH SUCTION »-,KO,-CN/SEC-PRINT#1, PRINT#1, -VERTICAL VELOCITY OF NOISTURE FLOH »-,WEL,-CH/SEC-PRINT#l,iPRINT#l, PRINT#1, -EQUILIBRIUH SUCTION .-,HV(1),-CH OF HATER" PRINT#l,tPRINT#l, PRINT#1, -HIN. SUCTION BENEATH COVERED SURFACE»-,HVHIN.-CH OF HATER" PRINT#1. tPRINT#l. PR1NT#1. " INITIAL FIELD SUCTION IN pF" PRINT#1. " " PRINT#1. FOR J»2 TO KK P3$= " #####.## PRINT#1. USIN6 P3$;HPFVF(J) NEXT J PRINT#l.:PRINT#I.tPRINT#l.tCLS PRINT#1, "

SUCTION" PRINT " SUCTION-

5UCTI0N (CH) PRINT#1, "NODE # (pF)

PRINT "NODE # (PF)

PRINT#1,

DEPTH

DEPTH

(CH)

(CH)

CHAN6E IN

CHAN6E IN

SUCTION (CH)

PERHEABILITY

PERHEABILITY

(CH/SEC)

(CH/SEC)

SUCTI

SUCTION

(CH)

(CH)

1840 PRINT --

1850 1860 1870 1880

1890 1900 1910 1920

1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050

KK»IV+1 NN«IH+I FOR J « 1 TO KK Pl$= -#### ####.# ########.#

IF (j«l) THEN PR1NT#1, US1N6 Pl$;J;DEPTH(J);HV(KK-J+1);HPFV(KK-J+1) IF (J«I) THEN PRINT US1N5 P1$;J;DEPTH(J);HV(KK-J+1);HPFV(KK-J+1) IF (J»I) THEN 1950 P2U -#### ####.# «.##«######### «#######.#

##.##" PR1NT#1, USIN6 P2$;J;DEPTH(J);KV(KK-J+I);HV(KK-J+1);HPFV(KK-J+I) PRINT USIN6 P2$;J;DEPTH(J);KV(KK-J+I);HV(KK-J+1);HPFV(KK-J+1) IF (J»KK) THEN 1960 P3$« - #####««««.« PRINT«1, USIN6 P3$;DELHV(KK-J) NEXT J REH R£M DETERHINE HORIZONTAL VELOCITY OF NOISTURE FLOH REH VELOCITY IS AS5UHED TO VARY ACC0RDIN6 TO EXPONENTIAL PE:H EQUATION OF FORH: Y.C»X**H C » HVEL(I)/{X3 -H) R£M DISTIBUTE HORIZONTAL VELOCITY HITH OEPTH KKK»KK+1

Page 221: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

203

2060 FOR J « I TO KK 2070 HVEL(KKK-J)»C»(DEPTH(J)-N) 2080 NEXT J 2090 PRlNT«l,iPRINT«U»PRINT«UiPRINT«MPRINT«MPftINT«l, 2100 PRINT«1, - CALCULATE HORIZONTAL SUCTION AFTER SURFACE 15 COVERED"

2120 PR1NT«1,

2130 PRINTtli " HORIZONTAL VELOCITY «",HVEL(I);"CH/SEC" 2140 PftlNT«l«iPRINT#], 2150 PRINT«1, • VERTICAL PROFILE OF HORIZONTAL VELOCITY " 2160 PR1NT«1, • « 2170 PR1NT#1. 2180 PRINT#1. " HORIZONTAL

VELOCITY" 2190 PRINT#1." NODE # DEPTH (CH) {CH/

SEC) 2200 PR1NT#1, "

2210 FOR J » 1 TO KK

222? K ***** ******* «.««««##«#««#-2230 PRINT#1. USIN6 P4$;J;DEPTH(J);HVEL(J) 2240 NEXT J 2250 REH 2260 REH CALCULATE HORIZONTAL SUCTION AT EACH OEPTH 2270 REH CALCULATE VERTICAL SUCTION PROFILEAT EQUILIBRIUH AFTER SLAB IS 2280 REH PLACED AND EVAPO-TRANSPIRATION PREVENTED. 2290 REH SINCE NO EVAPO-TRANSPIRATION OCCURS. VERTICAL VELOCITY IS 2300 REH ASSUHED TO BE NE6LI61BLE. 2310 REH 2320 REH CALCULATE EQUILIBRIUH SUCTION PROFILE BENEATH SLAB DUE 2330 REH TO HOISTURE ACCUHULATIONBENEATH THE SLAB 2340 HH(KKK-1,I)»HV(1) 2350 HPFH(KKK-I.I)»L06(HH(KKK-1.I))/2.302581 2360 FOR I » 2 TO KK 2370 HH(KKK-I,I).HH(KKK-I+I.I)+DELX3 2380 HPFH(KKK-l.I)»L06(HH(KKK-I.I))/2.302581 2390 NEXT I 2400 PRINT#1.îPRINT#l,:PR1NT#1.:PR1NT#1,tPRINT#l. 2410 PR1NT#1." VERTICAL SUCTION PROFILE AT EQUILIBRIUM UNDER COVER

ED SURFACE" 2420 PRINT#1."

2430 PR1NT#1.:PRINT#1. 2440 PRINT#1. " NODE DEPTH (CH) SUCTION (CH) SUCTION

(pF) " 2450 PRINT#I, •

2460 P5$«- #### ####.# «#######.# ««.«« 2470 FOR J » 1 TD KK 2480 PRINT«1, USINC P5$;J;DEPTH(J);HH(J,1);HPFH(J,1) 2490 NEXT J 2500 IF (WEL > 0 ) THEN 3120 2510 REH 2520 REH IF HOISTURE 15 ENTERIN6 SOIL FROH THE SURFACE AND N0VIN6 2530 REH UNDER THE SLAB.DIFFERENT "INITAL" CONDITIONS ARE IN EFFECT. 2540 REH CALCULATE EQUILIBRIUH SUCTION PROFILE DUE TO 2550 REH HOISTURE ENTERING 50IL FROH THE SURFACE

Page 222: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

204

2560 HW(I) » HV(1) 2570 HPFW(l) »L06(HVV(l))/2.302581 2580 N5. LOG(HVHIN)/2.3025B1 2590 FOR 1 « 1 TO IV 2600 SUCK > ABS(HVV(I)) 2610 KV(I)-KI/(I •(AMSUCK^H))) 2620 DELHV(I)»DELX3+(DELX3»VVEL/KV(I)) 2630 HVV(I+1)-HVV(I) • DELHV(I) 2640 IF (HWd + lXO) THEN HPFW(I + t).HS 2650 IF HW(I + 1)<0 THEN HVV(I + I)«HVHIN 2660 IF (HWd+IXO) THEN GOTO 2700 2670 HPFVV(I+l)»L06(HVV(I+l))/2.302581 2680 IF HPFWd + IXHS THEN HPFVV(I + 1 ).HPFW( I)-. 15 2690 IF H W d + lXHVHlN THEN HVV(I+1)»HVV(I)-1.413 2700 NEXT 1 2710 PRINT«1.:PRINT«1. 2720 PR1NT«1. " VERTICAL SUCTION PROFILE FOR HOISTURE ENTER1N6 SYSTEH FROH SURFACE " 2730 PR1NT«1." ___________ m

2740 PRlNT«l.tPRINT«l. 2750 PRINT«1. " NODE DEPTH (CH) SUCTION (CH) SUCTION (p

F) " 2760 PRINT«1. "

__ m

2770 P6$. " «««# ««««.« «««««««#.# #«.«« 2780 FOR I « 1 TO KK 2790 PR1NT«1, USIN6 P6$; I;DEPTH(I );HVV(KKK-I );HPFW(KKK-I) 2800 NEXT I 2810 REH 2820 REH DETERHINE HORIZONTAL SUCTION PROFILE OUE TO HOISTURE 2830 REH ENTERING HORIZONTALLY BENEATH THE SLAB. 2840 FOR I . 1 TO KK 2850 HH(KKK-I,NN)«HW(I) 2860 IF HH(KKK-I,NN)<0 THEN HH(KKK-I,NN)«HVH1N 2870 IF HH(KKK-I,NN)<0 THEN HPFH{KKK-I,NN)»HS 2880 IF HH(KKK-I,NN)<0 THEN OOTO 2930 2890 HS(KKK-I,NN).ABS(HH(KKK-I,NN)) 2900 HPrH(KKK-I,NN).L06(HS(KKK-I.NN))/2.302581 2910 IF HPFH(KKK-1.NN)<HS THEN HPFH(KKK-I.NN).HPFH(KKK-1+1.NN)-.15 2920 IF HH(KKK-I.NN)<HVHIN THEN HH(KKK-I,NN).HH{KKK-I+1.NN)-1.413 2930 NEXT I 2940 NNN.NN+I 2950 FOR I » 1 TO KK 2960 FOR J » 1 TO IH 2970 SUCK »ABS(HH(KKK-1.NNN-J)) 2980 KH(KKK-I.NNN-J).KO/d + (A«(SUCK-H))) 2990 DELHH(KKK-I,NNN-J)«DELX1»HVEL(KKK-1)/KH(KKK-I.NNN-J) 3000 HH(KKK-I.NNN-J-1).HH(KKK-I.NNN-J)+DELHH(KKK-I.NNN-J) 3010 IF HH(KKK-I.NNN-J-I) < 0 THEN HPFH(KKK-I.NNN-J-1) . NS 3020 IF HH{KKK-I,NNN-J-1)<0 THEN HH(KKK-I,NNN-J-1).HVHIN 3030 IF HH(KKK-I,NNN-J-1) < 0 THEN 3070 3040 HPFH(KKK-I,NNN-J-l)«L06(HH{KKK-I,NNN-J-l))/2.302581 _ . . . . » . 3050 IF HPFH(KKK-I,NNN-J-I)<HS THEN HPFH(KKK-I,NNN-J-1).HPFH(KKK-1+1,NNN-J-1)-.I

5

Page 223: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

/

205

3060 IF HH(KKK-I,NNN-J-I)<HVHIN THEN HH{KKK-I ,NNN-J-I )»HH(KKK-1+1,MNN-J-1)-1.4I3 3070 NEXT J 3080 NEXT 1 3090 REH DETERHINE HORIZONTAL SUCTION PROFILE DUE TO NOISTURE 3100 REH ACCUHULATION BENEATH THE SLAB AND LEAVIN6 HORIZONTALLY 3110 GOTO 3300 3120 FOR I » 1 TO KK 3130 FOR J » 1 TO NN 3140 SUCK»ABS(HH(KKK-I,J)) 3150 KH(KKK-l,J)»KO/d + (A»{SUCK-H))) 3160 DELHH(KKK-I,J).DELXI"HVEL{KKK-I)/KH(KKK-I,J) 3170 HH(KKK-1,J+I)«HH{KKK-I,J)+0ELHH(KKK-I,J) 3180 REH THE F0LL0HIN6 STATEHENT HILL LIHIT SUCTION TO THE SUCTION VALUE 3190 REH EQUAL TO THE VERTICAL SUCTION BEFORE SURFACE 15 COVERED 3200 IF HH(KKK-I,J+1) > HV(I) THEN HH(KKK-I,J+I)«HV(I) 3210 IF HH(KKK-I,J+1) < 0 THEN HPFH(KKK-I,J+1).HS 3220 IF HH(KKK-|,J+1)<0 THEN HH{KKK-I,J+1).HVHIN 3230 IF HH(KKK-I,J+I) < 0 THEN 3270 3240 HPFH{KKK-I,J+I) »L06{HH(KKK-I,J+I))/2.302581 3250 IF HPFH{KKK-I,J+I)<HS THEN HPFH(KKK-I,J+1).HPFH(KKK-1+1,J+I)-. 15 3260 IF HH(KKK-I,J+1)<HVH1N THEN HH(KKK-I,J+I).HH{KKK-I+1,J+1)-1.4I3 3270 NEXT J 3280 NEXT I 3290 REH PRINT OUTPUT 3300 PRINT«l,:PRINT#l,:PRlNT#l.:PRlNT#l.îPRlNT#l.îPRINT#l.:PRlNT#l. 3310 PR1NT#1. "HORIZONTAL SUCTION PROFILE (NE6ATIVE CENTIHETERS OF HATER)" 3320 PRINT#1."

3330 PRINT#1,:PRINT#1,:PRINT#1, 3340 PRINT#1, " LEN6TH OF E06E PENETRATION «";X1;"CH-3350 PRINT#1, 3360 PR1NT#1, • NUHBER OF HORIZONTAL INCREHENTS »";1H 3370 PRINT#1, 3380 PR1NT#1, • LEN6TH OF EACH HORIZONTAL INCREHENT »";DELXI;"CH" 3390 PRlNT#l,tPRINT#l,tPRINT#I, 3400 PR1NT#I, • H-0-R-I-Z-O-N-T-A-L S-U-C-T-1-O-N (CH OF H

ATER) AT NODE " 3410 PRINT#1. "VERT

\m

3420 PRINT#I, •NODE 5 •

3430 PRINT#I, •

3440 P7$. -########.« 3450 FOR I • 1 TO KK 3460 PRINT«1, 1; 3470 PRINT«1, TABdl); 3480 FOR J » 1 TO 5 3490 PRINT«I, USIN6 P7$;HH{I,J){ 3500 NEXT J:PRINT«l,tNEXT I 3510 PRINT«l,tPRINT«l, 3520 PR1NT«1, -NODE 6 7 8

10-3530 PRINT«I. •

3540 FOR I » I TO KK 3550 PRINT«U It

Page 224: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

206

3560 PRINT«I, TABdl); 3570 FOR J » 6 TO NN •3960 PRINT«I, UÔING P7||HH(1,J)| 3590 NEXT JtPRINT«l,:NEXT I 3600 PRINT«I,tPRINT«l,:PRINT«l,iPRINT#l, 3610 PRINT«1. "HORIZONTAL 5UCTI0N PROFILE (pF)" 3620 PRINT«1. • • 3630 PRINT«1, •3640 PR1NT#1, " H-0-R-I-Z-O-N-T-å-L 5-U-G-T-l-^N (RT) AT

NODE " 3650 PRINT«I. "VERT

3660 PRINT«1. •NODE 1 2 3 4 5 6 7 8 9 10"

3670 PRINT«I. •

3680 P8$- •#«.«« • 3690 FOR I » 1 TO KK 3700 PRINT«1. I; 3710 PRINT«1. TAB{B); 3720 FOR J » 1 TO NN 3730 PRINT«1. USIN6 P8$;HPFH(I.J). 3740 NEXT J:PRINT«l.tNEXT 1 3750 REH 3760 REH CALCULATE CHAN6E IN STRAIN OUE TO CHAN6E IN SUCTION 3770 REH READ IN UNIT HEI6HT OF SOIL. AHOUNT OF SURCHAR6E. 3780 REH AND STRAIN CONSTANTS. 3790 FOR I » 2 TO KK 3800 FOR J . 1 TO NN 3810 DELPFHd.J) .SHCON«(HPFH(I .J)-HPFVF(I)) 3820 IF VVEL < 0 THEN DELPFH(I.J) -SHCON«{HPFH(I.J)-HPFVF{I)) 3830 NEXT J:NEXT I 3840 REH PRINT CHAN6E IN ELEVATION OUE TO CHAN6E IN SUCTION 3850 PRlNT«l.:PRlNT#l.:PRlNT#l,:PRlNT#l.:PRlNT#l.:PRlNT#l.tPRINT#l. 3860 PRINT#1. •CALCULATE CHAN6E IN SURFACE ELEVATION DUE TO SOIL SHRINK OR SHELL

3870 PRINT#I. • _»

3880 PRINT#l,îPRINT#I, 3890 PRINT#1, "SHRINK OR SHELL PER VERTICAL INCREHENT" 3900 PRINT#I, " 3910 PRINT#l,tPRlNT#I, 3920 PRINT#I. "VERT HORIZONTAL NOOE 3930 PRINT#I. •NODE 1 2 3

5^ 3940 PRINT#I. •

3950 P9$. •#.##«« 3960 FOR I - 2 TO KK 3970 PRINT«1. It 3980 PRINT«1. TAB{9); 3990 FOR J • 1 TO 5 4000 PR1NT«1. USIN6 P9$;DELPFH{l,J)t 4010 NEXT J:PRlNT«I.tNEXT 1 4020 PRINT«I.:PRINT«1. 4030 PRINT«I, •NODE 6 7 8

10" 4040 PRINT#1, •

Page 225: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

207

4050 FOR I « 2 TO KK 4060 PRINT#1, I; 4070 PRINT#1, TAB(9); 4080 FOR J » 6 TO NN 4090 PR1NT#1, USIN6 P9$;DELPFH(I,J); 4100 NEXT J:PRINT#l,tNEXT I 4110 PRINT#1, •

4120 FOR J » 1 TO NN 4130 Hao - 0 4140 FOR I - 2 TO KK 4150 HOLD - DELPFH{l.J)+HaO 4160 PUSH(J)«HOLD 4170 NEXT ItNEXT J 4180 P10$. "#.#### 4190 PRINT#1, TAB(9) 4200 FOR I « 1 TO 5 4210 PRINT#1, USIN6 PIO$;PUSH(I); 4220 NEXT 1 4230 PRINT#1, TAB(9) 4240 FOR I « 6 TO 10 4250 PRINT#I, USIN6 P10$;PUSH(I); 4260 NEXT I 4270 PRINT#l,:PRINT#l,tPRINT#l, 4280 REH 4290 REH CALCULATE REDUCTION IN SHELL DUE TO OVERBURDEN 4300 REH CALCULATE LOAD AT HIDPOINT OF IST SOIL INCREHENT 4310 FOR I « 1 TO IV 4320 FOR J « I TO NN 4330 SUR(I,J)«0 4340 NEXT JtNEXT I 4350 FOR J«l TO NN 4360 Pd,J)«(Q/6.4516) + .5«{6AHHA/283l6.85)"DELX3 4370 L06P(I,J)«L06(P(l,J))/2.302581 4380 NEXT J 4390 REH CALCULATE LOAD AT HIDPOINT OF REHAIN1N6 VERTICAL INCREHENTS 4400 FOR J«I TO NN 4410 FOR I « 2 TO IV 4420 P{I,J)«P(I-l,J)+(6AHHA/28316.85)*0ELX3+SUR(I,J) 4430 L06P{I,J)«L06(Pd,J))/2.302581 4440 NEXT ItNEXT J 4450 HH.IV-1 4460 REH CALCULATE CHAN6E IN ELEVATION DUE TO OVERBURDEN AND SURCHAR6E 4470 FOR J » 1 TD NN 4480 DUHHY»0 4490 FOR 1» 1 TO NH 4500 0ELOGP(I)»{LOGP(I+l,J)-LOGP(I,J))«PCON 4510 RESIST{J).DELOGP{I)+DUHHY 4520 DUHHY « RESIST{J) 4530 NEXT ItNEXT J 4540 AA«100*SHCON 4550 BB.100*PCON

Page 226: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

208

4560 PRINT#],tPRINT#I,tPRINT#l, 4570 PRINT#1, •CALCULATE REDUCTION IN 5HELL DUE TO OVERBURDEN AND SURCHARGE"

4560 PRINTfl, " 4590 PR!NT#1, 4600 IF K$ . •$" THEN PRINT#1, "SOIL TYPE: NONTNORILLONITE" 4610 IF K$ « "I" THEN PRINT#1, "SOIL TYPE: ILLITE" 4620 IF K$ . "K" THEN PR1NT#1, •SOIL TYPEi KAOLINITE" 4630 PRINT#I, 4640 PRINT#1, "PERCENT a AY -•;aAY;^t" 4650 PRINT#1, 4660 PR1NT#I, "UNIT HEIGHT OF SOIL -•;6AHHA;"LBS/CF" 4670 PRINT#1, 4680 PR1NT#1, "SURCHARCE PRESSURE -";Q;^LBS/SF-4690 PR1NT#1, 4700 PR1NT#1, "RATE OF STRAIN FOR SHELLIN6 -"tAA;"PERCENT" 4710 PRINT#1, 4720 PR1NT#1, "RATE OF STRAIN OF 0VERBURDEN-SURCHAR6E PRESSURE -•;BB;^PERCENT" 4730 PR1NT#1,:PRINT#1. 4740 PR1NT#1. "TOTAL SHELL REDUCTION/SHRINK COHPENSATION «";DUHHY;"CH" 4750 PRINT#1.:PR1NT#1,:PR1NT#1.:PRINT#1.:PR1NT#1. 4760 REH CALCULATE CHAN6E IN SURFACE ELEVATION 4770 FOR 1«1 TO NN 4780 SHELL{I)«RESIST(I)-(PUSH(I)*DELX3) 4790 NEXT I 4800 REH PRINT OUTPUT 4810 PRINT#1. "TOTAL CHAN6E IN SURFACE ELEVATION DUE TO SHRINK-SHELL" 4820 PRINT#1. " " 4830 PRINT#1. 4840 PRINT#1. 4850 PR1NT#1. " NODE COLH NODÉ COLH NOOE COLH HOOE COLH

NODE COLH" 4860 PRINT#1. " 1 2 3 4

5" 4870 PRINT#I, • 4880 PI2$="##.## 4890 PRINT#I. "(CH) •; 4900 FOR I « 1 TO 5 4910 PRINT#1. USIN6 PI2$;SHELL(I); 4920 NEXT I 4930 FOR I - 1 TD NN 4940 SSHELLd)«SHELL{I)/2.54 4950 NEXT I 4960 PRINT#1, 4970 PRINT#1, •(IN.) •; 4980 FOR I - 1 TO 5 4990 PRINT#I, US1N6 PI2$;SSHELL(I): 5000 NEXT I 5010 PRINT#l,tPRINT#I, 5020 PRINT#I,^ NODE C a H NODE COLH NODE COLH NOOE C a H

NODE COLH" 5030 PRINT#1. " 6 7 8 9

10" 5040 PRINT#I.• 5050 PRINT#1. •(CH) •;

Page 227: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

209

5060 FOR I - 6 TO NN 5070 PRINT#I. USIN6 P12$;SHELLd)î 5080 NEXT I 5090 PRINT#I. 5100 PR1NT#1. •dN.) •; 5110 FOR I - 6 TO NN 5120 PRINT#I. USIN6 PI2$;SSHELL{I); 5130 NEXT I 5140 PRINT#I.tPRINT#l.îPRINT#l. 5150 FOR I « 1 TO IH 5160 IF VVEL<0 THEN DIFFSH(1+1)« SSHELLd)-S5WELL(I+l) 5170 DIFFSH(I).SSHELL(I)-SSHELL{1) 5180 IF VVEL<0 THEN 60T0 5210 5190 DIFFSH(NN).SSHELL(NN)-SSHELL{NN) 5200 01FFSH(NN-I).SSHELL{NN)-SSHELL{NN-I) 5210 NEXT I 5220 PRINT#1. •DIFFERENTIAL SHELL (IN INCHES)" 5230 PRINT#1. •

5240 PI3$="##.## 5250 PRINT#1. TAB{9); 5260 FOR I « 1 TO 5 5270 PRINT#1. USIN6 P13$;DIFFSH{I); 5280 NEXT I 5290 PRINT#1. TAB(9); 5300 FOR I « 6 TO NN 5310 PRINT#1. USIN6 PI3$;DIFFSHd); 5320 NEXT I 5330 REH DETERHINE HAXIHUH DIFFERNTIAL SHELL 5340 SHDIF«SHELL(1)-SHELL{NN) 5350 SHDlFI«SHDIF/2.54 5360 REH PRINT OUTPUT 5370 PR1NT#1.:PRINT#1.:PRINT#1. 5380 PRINT:PR1NT;PRINT 5390 P14$="##.## ##.##-5400 PR1NT#1. "HAXIHUH DIFFERNTIAL SHELL «-;SHDlF;"CH { ";SHD1F1;"IN.)" 5410 PRINT "HAXIHUH DIFFERNTIAL SHELL «";SHDIF;"CH ( "^SHDIFI^^IN.)" 5420 PRINT#1.:PR1NT#I. 5430 PRINT:PRINT 5440 PRINT -•••••••••• • • 5450 PR1NT#1. • •.•...•...-5460 IF VVEL > 0 THEN PRINT " SOIL PROFILE 15 DRYING OUT" 5470 IF VVEL > 0 THEN PRINT#I. • SOIL PROFILE IS DRYING OUT"tOOTO 5500 5480 PRINT • SOIL PROFILE 15 HETTING [iP" 5490 PRINT#1. • SOIL PROFILE IS HETTING UP* 5500 PRINT 5510 PRINT#1. " 5520 PRINT#l.tPRINT#l. 5530 PRINT#I. " • 5540 PR1NT#I. " END OF DATA FOR RUN #".RN 5550 PRINT#1. • •

Page 228: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

210

5560 PRINT#1.tPRINT#l,tPRlNT«I,iPRlNT«I.íPRlNT«l, 5570 INPUT "HOULD YOU LIKE TO HAKE ANOTHER DATA RUN {Y/N)";Y$

5560 !f t|-"N" THEN 5620 5590 IF Y$«"Y" THEN 5620 5600 PRINT "PLEASE ANSHER Y OR N FOR YES OR NO" 5610 GOTO 5570 5620 CLS 5630 PRINT " ••••••••THESE ARE THE PRESENT PARAHETERS ••" 5640 PRINTtPRINT 5650 PRINT "1. N-CONSTANT« ".H 5660 PRINT "2. FIELO PERHEABILITY {CH/SEC)« ",K0 5670 PRINT "3. VERTICAL PERHEABILITY {CH/SEC)« ".KI 5680 PRINT "4. VERTICAL SUCTION IN NEGATIVE CH'S OF HATER. ",HV(1) 5690 PRINT "5. VERTICAL DEPTH OF EQUILIBRIUH SUCTION (CH). ",X3 5700 PRINT "6. HORIZONTAL DISTANCE OF SUCTION BENEATH SLAB (CH). ",X1 5710 PRINT "7. LEN6TH OF HORIZONTAL INCREHENTS OF DEPTH (CH). •,DELX1 5720 PRINT •8. LEN6TH OF HORIZONTAL INCREHENTS OF ED6E PENETRATION. ",DELX3 5730 PRINT "9. PREDOHINATE CLAY TYPE S-SHECTITE, I-ILLITE, K-KAOLINITE —",K$ 5740 PRINT "10. DENSITY OF SOIL IN PCF. ",GAHHA 5750 PRINT "11. SURCHAR6E ON AREA IN PSL ",Q 5760 PRINT "12. PERCENTA6E OF CLAY CONTENT IN SOIL (IN X). ",aAY 5770 PRINT " VELOCITY OF NOISTURE FLOH" 5780 PRINT "13. VERTICAL VELOCITY. ",VVEL; 5790 PRINT " 14. HORIZONTAL VELOCITY. ",HVEL(I) 5800 PRINT "15. NINIHUH SUCTI0N-,HVH1N 5810 GOTO 9B0 5820 END 5830 REH SUBROUTINE STRAIN 5840 IF K$ . "S" THEN SHCON . .00056«CLAY-.00433: GOTO 5870 5850 IF K$ . "I" THEN SWCON ..00047*CLAY-.00351: GOTO 5870 5860 IF K$ . "K" THEN SHCON ..0001B*aAY-9.799999E-05 5870 PCON=SWCON 5880 RETURN

Page 229: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

APPENDIX E:

FIELD MEASUREMENT5 OF SOIL SUCTION

211

Page 230: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

212

Table E-1 Monthly SoH Suctfon Measurements for the Amartno Stte.

Bor-Ing

No.

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 6 6 6

' 6

7 7 7 7 7

Psy-chrom-eter No.

32 89 69 64 95

31 29 60 70 94

85 50 57 92 117

48 45 102 116 132

53 98 134 114 173

107 140 142 167 199

126 131 176 180 179

Depth (ft.)

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1 8/85

» M

4.6 4.4 3.6 3.7

4.9 4.8 3.8 4.0 3.9

•••

4.3 4.4 4.0 4.0

4.7 4.7 ...

4.3 3.6

4.8 4.6 4.5 4.3 4.0

4.7 ...

4.6 4.3 4.0

4.0 4.8 4.5 4.2 4.0

Soll Suction, PF

Sequential Month or Calendar Month

2 9/85

2.3 4.4 4.3 3.2 3.4

4.6 4.0 ...

3.9 3.6

4.8 4.2 4.2 3.4 3.9

4.2 4.5 4.4 4.2 4.0

4.3 4.2 4.5 4.1 4.0

4.2 4.6 4.5 4.1 3.7

3.4 4.6 4.4 4.0 3.8

3 10/85

4.8 4.4 4.2 2.7 3.6

« « w

3.7 ...

3.7 3.2

4.6 4.2 4.1 3.0 3.3

. 4.2 4.4 4.2 4.1 3.8

4.2 3.7 4.4 3.9 3.7

...

4.5 4.4 4.0 3.5

3.8 4.5 4.3 3.9 .3.7

4 11/85

4.7 4.3 4.1 2.9 3.4

...

...

...

3.3 3.6

4.0 4.1 4.0 ...

3.0

4.0 4.4 4.2 4.1 3.8

2.7 ...

4.3 3.9 3.7

...

4.4 4.4 4.0 3.5

3.4 4.5 4.3 3.6 3.2

5 12/85

4.0 3.9 2.9 3.4

...

...

...

3.3

3.9 3.6 3.6 ... —

4.0 4.2 3.8 3.6 3.5

«•« • ••

4.2 3.7 2.5

...

4.2 4.3 3.7 2.5

...

4.2 4.1 3.1 ...

6 1/86

4.2 3.9 3.2 3.6

» 9 *

•»»

2.3 3.4

3.9 4.0 3.8 2.7

4.3 4.3 4.0 3.6 3.7

4.2

4.2 3.6 3.3

*•*

4.4 4.3 3.7 3.2

4.2 3.7 4.4 3.0 2.7

7 2/86 " # **

• ••

••• » » w

^

* « w

• w «

...

...

... —

...

...

...

3.3

...

2.7

*«• • ••

3.6 ... ...

s * v

3.5 2.7 ... ...

(contlnued)

Page 231: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

213

Table E - 1 . (Contlnued)

Bor-ing No.

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 6 6 6 6

7 7 7 7 7

Psy-chrom-eter No.

32 89 69 64 95

31 29 60 70 94

65 50 57 92 117

48 45 102 116 132

53 98 134 114 173

107 140 142 167 199

126 131 176 180 179

Depth (ft.)

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

8 3/86

4.5 4.2 3.8 3.6

3.8 ... ... ... ...

3.9 ... ... ...

2.7

4.2 ... ... ...

3.0

3.3 ... ... ... ...

w w »

3.6 3.4 2.7 ...

4.8 3.8 3.4 ...

3.7

Sequen

9 4/86

W M

...

3.8 3.8 3.8

4.8 4.3 3.6 3.8 3.4

4.3 4.3 4.2 3.3 3.3

4.7 4.6 4.3 4.1 3.8

...

3.9 4.4 4.1 3.8

...

4.7 4.4 4.2 2.7

...

4.7 4.4 3.9 3.6

Soil Suction, pF

tial Honth or Calendar Month

10 11 12 5/86 6/86 7/86

^^ »•• ... ... ...

3.6 3.9 — 4.0 0.0 — 3.7

4.6 4.4 4.5 3.5 4.3 4.4 3.5 4.0 4.1 3.8 4.0 4.1 3.4 3.9 4.0

4.0 4.4 4.3 4.3 4.5 4.6 4.2 4.4 4.4 3.4 3.7 3.9 3.2 3.9 4.0

.4.6 — 4.8 4.5 4.7 4.7 4.3 4.5 4.5 4.2 4.3 4.5 3.8 4.2 4.2

4.8 3.8 4.2 4.2 4.5 4.6 4.6 4.1 4.3 4.3 3.7 4.0 4.1

4.2 4.0 4.6 4.8 4.7 4.4 4.5 4.6 4.2 4.3 4.4 3.6 4.1 4.1

4.8 4.6 4.8 4.8 4.4 4.5 4.6 3.9 4.2 4.3 3.6 3.9 4.2

(contlnued)

Page 232: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

214

Bor-ing

No.

8 8 8 8 8

9 9 9 9 9

10 10 10 10 10

11 11 11 11 11

12 12 12 12 12

13 13 13 13 13

14 14 14 14

"

Psy-chrom-eter No.

155 175 186 197 211

135 172 195 201 206

154 191 188 160 205

115 152 161 189 203

106 127 158 164 194

40 90 156 141 174

41 77 145 130 113

Table E

Depth (ft.)

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1 8/85

4.9 4.7 4.5 4.3 4.0

4.2 4.7 4.3 4.0 4.1

...

4.5 4.3 4.3 4.2

...

4.7 4.3 4.1 4.1

4.8 4.6 4.4 4.2 4.0

...

4.6 4.4 ...

3.7

...

4.5 4.5 4.3 3.7

>1. (Contfnuecj)

Soil Suction, PF

Sequential Month or Calendar Month

2 9/85

4.6 4.4 4.2 3.7

4.6 4.4 4.1 3.7 3.6

4.7 4.4 4.1 4.0 4.0

4.9 4.4 4.4 3.9 3.6

4.7 4.5 4.4 4.0 3.9

4.8 4.4 4.5 4.2 3.3

4.7 4.3 4.3 4.1 ...

3 10/85

4.5 4.3 4.1 3.4

4.7 4.4 3.9 3.7 3.6

4.7 4.3 4.0 3.7 3.9

' 4.8 4.4 4.1 3.7 3.3

4.6 4.4 4.4 3.8 3.9

...

...

4.1 4.0 ...

...

...

4.2 4.1 ...

4 11/85

4.5 4.3 4.0 3.3

4.0 4.3 4.0 3.7 3.4

4.4 4.1 4.0 3.6 3.9

4.5 4.3 4.1 3.7 3.3

4.3 4.4 4.3 3.9 3.9

...

...

4.1 4.1 ...

...

3.4 4.0 3.7 ...

5 12/85

4.2 4.1 3.7

3.9 4.0 3.6 3.6 ...

4.3 3.6 3.7 ...

3.7

4.3 4.0 3.8 3.0 ...

4.1 4.0 3.9 3.2 3.9

...

...

3.7 3.9 ...

...

2.7 ... ... ...

6 1/86

4.4 4.1 3.9 3.4

4.0 4.3 3.7 3.7 3.3

4.4 4.0 3.9 3.4 3.5

4.5 4.3 3.9 3.4 3.4

4.3 4.2 4.0 3.7 3.8

...

...

3.9 3.9 ...

...

2.7 3.2 3.5 ...

(conti

7 2/86

3.2 3.5 3.6

3.4

3.0 3.0

2.7 3.6

3.7

2.7 2.7

3.3

3.0 2.7 2.7 3.8

...

...

...

3.8 ...

...

4.6 ... ... ...

nued)

Page 233: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

215

Table E - 1 . (Contfnued)

Bor-ing No.

P$y-chrom-eter No.

Depth iftj.

Soil Suction, pF

Sequential Month or CaTendar Month

8 9 10 11 12 3/86 4/86 5/86 6/86 7/86

8 8 8 8 8

9 9 9 9 9

10 10 10 10 10

1] 11 11 i: 11

12 12 12 12 12

13 13 13 13 13

14 14 14 14 14

155 175 186 197 211

135 172 195 201 206

154 191 188 160 205

115 152 161 189 203

106 127 158 164 194

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

4.6 4.3 4.1

4.1 3.9

3.3 2.7

3.9 3.7 3.7

3.9

4.0 4.0 3.2

3.3

4.1 3.5

3.7

40 90 156 141 174

41 77 145 130 113

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

3.6 4.8 4.1 4.1 ...

...

...

...

...

••••

4.6 4.3 4.1 3.5

4.1 4.5 4.2 3.9 3.7

4.5 4.4 4.1 4.0 3.9

4.5 4.2 3.7 3.2

4.6 4.3 4.2 4.0 3.8

3.4 4.8 4.1 4.2

4.0 3.9

4.6 4.4 4.1

3.9 4.5 4.1 3.6 3.7

4.1 4.3 4.1 4.0 3.9

4.8 4.5 4.3 3.9 3.7

4.3 4.1 4.4 4.1 3.9

4.7 4.2 4.3 3.7

4.2 4.0 2.7

4.7 4.5 4.3 4.0

4.3 4.6 4.3 3.9 4.1

4.4 4.5 4.3 4.4 4.2

3.9 3.7 4.1 4.0

4.0 4.1 4.3 3.8 4.0

3.0

4.2 4.3 3.5

4.4 4.1

4.7 4.5 4.4 4.1

4.2 4.7 4.4 4.1 4.2

4.3 4.7 4.3 4.5 4.3

4.7 4.4 4.1 3.9

3.9 4.2 4.3 4.2 4.1

4.3 4.3 3.8

4.4 4.2 3.6

(continued)

Page 234: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

Table E - 1 . (Contfnued)

216

Bor-ing No.

15 15 15 15 15

16 16 16 16 16

17 17 17 17 17

18 18 18 18 18

19 19 19 19 19

20 20 20 20 20

21 21 21 21 21

Psy-chrom-eter No.

35 46 52 99 151

83 25 67 66 103

84 82 56 55 96

87 86 49 79 101

81 88 62 72 91

28 75 78 147 120

44 80 148 111 136

Depth (ft.)

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1 8/85

4.8 4.5 4.4 4.2 4.0

...

...

4.4 ...

3.9

...

4.7 4.4 2.7 3.8

4.8 4.7 4.4 4.3 3.0

4.8 4.6 4.3 3.9 3.2

...

4.6 4.5 4.4 3.9

...

4.6 4.5 4.3 4.3

Soil Suction, PF

Sequential Month or Calendar

2 9/85

...

4.3 3.7 3.6

...

...

3.7 3.6 ...

*•»«

...

4.1 ...

2.7

2.7 4.4 4.2 3.6 ...

...

4.4 4.2 3.3 ...

4.7 4.4 4.3 4.0 3.9

4.8 4.4 4.4 3.9 4.0

3 10/85

^

...

...

3.2 3.0

...

...

...

3.3 ...

...

...

...

3.2

• . . .

4.3 4.4 3.3 ...

...

4.4 4.0 2.7 ...

4.7 4.4 4.2 3.9 3.9

4.7 4.3 4.4 3.7 4.1

4 11/85

...

3.9 3.4 3.3

...

...

...

3.2 ...

...

...

...

3.5

...

4.4 4.2 3.2 ...

...

4.3 4.0 ... ...

3.7 4.3 4.2 3.9 3.8

4.4 4.2 4.3 3.2 3.9

5 12/85

*** ... ... ... ...

...

...

...

...

...

...

...

...

...

...

3.0 ... ... ...

...

4.0 3.6 ... ...

3.0 4.0 3.7 3.5 3.7

4.2 3.3 4.2 ...

3.8

Month

6 1/86

...

...

...

...

...

...

...

2.7 ...

...

3.4 ... ...

3.2

4.7 4.1 ... ... ...

...

4.2 3.7 ... ...

3.7 4.3 4.0 3.5 3.9

4.5 4.1 4.2 3.2 3.8

7 2/86

M * v

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

3.7 — •••

...

3.5 ... ... ...

...

...

...

2.7

Page 235: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

217

Table E - 1 . (Contfnued)

Bor-ing No.

15 15 15 15 15

16 16 16 16 16

17 17 17 17 17

18 18 18 18 18

19 19 19 19 19

20 20 20 20 20

21 21 21 21 21

P$y-chrow-eter No.

35 46 52 99 151

83 25 67 66 103

84 82 56 55 96

87 86 49 79 101

81 88 62 72 91

28 75 78 147 120

44 80 148 111 136

Depth (ft.)

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

8 3/86

...

...

...

...

...

...

...

...

...

...

3.5 ... ... ... ...

...

4.4 3.9 3.5 ...

...

4.4 4.1 ...

2.7

4.5 4.4 4.2 3.9 3.9

4.8 4.4 4.3 3.2 3.9

Soil Suctii

Sequential Month or

9 10 11 4/86 5/86 6/86

... ... ...

4.7 3.4 3.9 3.9 3.8 3.9 4.1 3.0 3.6 3.7

... ... ...

... ... ...

3.3 3.7 3.7

... ... ...

3.7 — 3.5 3.6 3.7 3.0 3.4 4.2 ... ... . —

3.4 3.6

... . — ...

4.3 4.4 4.7 4.0 4.4 4.4 3.8 3.8 4.0

3.0

... ... ..-

4.4 4.4 4.6 4.1 4.2 4.3

2.7 3.2 3.7

4.6 4.5 4.7 4.5 4.4 4.6 4.3 4.3 4.5 4.0 4.1 4.1 4.0 3.9 3.9

4.8 4.7 4.8 4.4 4.3 4.5 4.3 4.3 4.5 3.2 3.5 3.9 3.9 3.9 4.1

3n, pF

Calendar Month

12 7/86

...

...

...

...

...

...

...

...

3.9 3.7

...

...

3.5 ...

3.8

...

4.7 4.4 4.2 3.6

...

4.6 4.4 3.9 3.6

4.7 4.6 4.5 4.4 4.1

4.9 4.5 4.5 4.1 4.3

(continued)

Page 236: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

Table E-1. (Contfnued)

218

Bor-ing

No.

22 22 22 22 22

23 23 23 23 23

24 24 24 24 24

25 25 25 25 25

26 26 26 26 26

27 27 27 27 27

28 28 28 28 28

P$y-chroin-eter

No.

68 97 119 128 166

146 118 143 169 200

123 129 163 196 181

125 170 187 178 209

139 248 190 185 208

138 168 193 183 210

122 124 165 202 192

Depth (ft.)

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1 8/85

4.9 4.7 4.5

4.1

...

4.7 4.6 4.3 4.0

3.9 4.8 4.5 4.3 4.0

3.5 4.7 4.4 4.3 4.2

...

4.6 4.4 4.2 4.0

...

4.6 4.4 4.0 3.9

...

4.7 4.5 4.1 4.0

Soil Suction, . pF

Sequential Month or Calendar

2 9/85

4.7 4.5 4.3

3.9

4.8 4.5 4.4 4.1 3.9

4.1 4.5 4.3 3.9 3.8

3.3 4.5 3.8 3.8 3.6

4.2 4.4 3.9 3.9 3.7

4.7 4.5 4.2 3.3 3.0

4.8 4.5 4.3 3.8 3.3

3 10/85

4.6 4.5 4.2

3.7

4.4 4.5 4.4 4.1 3.7

3.9 4.5 4.3 3.8 3.8

4.4 4.5 3.5 3.7 3.5

4.0 4.4 3.7 3.7 3.7

4.7 4.5 4.2 3.7 ...

4.5 4.2 4.2 3.5 ...

4 11/85

4.2 4.4 4.2

3.8

3.6 4.4 4.3 4.1 3.8

3.6 4.4 4.2 3.7 3.9

4.4 4.4 3.6 3.4 3.6

3.8 4.3 3.3 3.6 3.8

4.4 4.4 4.1 3.7 ...

...

4.4 4.2 3.5 ...

5 12/85

3.9 4.2 4.0

3.5

4.2 4.3 4.1 3.4

3.8 4.3 4.1 3.4 3.7

3.9 4.3 3.6 2.7 3.4

3.8 4.0 ...

3.6 3.8

4.4 4.3 4.0 3.6 2.7

...

4.1 3.9 ... ...

Month

6 1/86

4.3 4.3 4.1

3.7

4.4 4.4 4.3 4.0 3.7

3.9 4.4 4.2 3.7 3.9

4.2 4.4 3.8

3.7

3.9 4.3

3.6 3.8

4.4 4.3 4.0 3.7 2.7

4.1 4.3 3.9 ... ...

(conti

7 2/86 ^f %*w

...

...

...

3.5

3.0

W M M

3.2

3.4 3.5

2.7

3.4

3.0 3.6

3.6 3.5

...

4.8 ...

2.7

nued)

Page 237: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

219

Table E - 1 . (Contfnued)

Bor-Ing No.

22 22 22 22 22

23 23 23 23 23

24 24 24 24 24

25 25 25 25 25

26 26 26 26 26

27 27 27 27 27

28 28 28 28 28

P$y-chrom-eter No.

68 97 119 128 166

146 118 143 169 200

123 129 163 196 181

125 170 187 178 209

139 248 190 185 208

138 168 193 183 210

122 124 165 202 192

Depth (ft.)

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

8 3/86

4.7 4.5 4.2 ...

3.9

...

4.5 4.4 4.2 3.7

4.8 4.6 4.3 3.8 3.9

4.5 4.5 3.9 3.5 3.8

4.7 4.5 3.8 3.9 3.9

4.7 4.5 4.2 3.7 ...

3.7 2.7 ... ... ...

Soil Sucti(

Sequential Month or

9 10 11 4/86 5/86 6/86

4.7 4.6 4.7 4.5 4.5 4.7 4.4 4.4 4.5 ... ... ...

3.9 3.9 4.2

4.8 4.7 4.6 4.7 4.4 4.4 4.5 4.2 4.2 4.3 3.6 3.4 3.9

4.7 4.6 4.6 4.7 4.4 4.4 4.4 3.9 3.9 4.1 4.0 3.9 3.9

4.5 4.4 4.4 4.6 4.5 4.6 3.9 3.9 4.1 3.7 3.9 3.9 3.8 3.7 3.9

4.8 4.5 4.5 4.6 4.1 4.0 4.2 4.0 4.0 4.1 3.9 3.7 3.8

4.7 4.4 4.5 4.5 4.5 4.6 4.2 4.3 4.3 3.6 3.8 3.7 2.7 3.2 3.4

4.9 4.8 3.9 4.5 4.5 4.0 4.3 4.4 4.4 3.8 3.9 4.1

3.0 3.6

9n, pF

Calendar

12 7/86

4.7 4.7 4.6 ...

4.2

...

4.7 4.6 4.3 4.0

...

4.8 4.5 4.3 4.1

4.5 4.7 4.3 4.2 ...

...

4.7 4.4 4.2 4.0

4.4 4.7 4.6 4.2 4.0

4.6 4.5 4.1 4.0

Month

(continued)

Page 238: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

220

Table E - 1 . (Contfnued)

Bor-ing No.

29 29 29 29 29

30 30 30 30

31 31 31 31 31

32 32 32 32 32

33 33 33 33

34 34 34 34 34

P$y-chrom-eter No.

105 112 109 177 184

76 144 137 121

38 37 150 108 31

33 74 73 149 110

24 47 71 104

26 23 36 43 100

Depth (ft.)

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

1 8/85

3.6 4.7 4.4 3.9 4.2

...

4.7 4.5 4.2

5.0 4.5 4.6 3.9

...

4.6 4.4 4.0 3.9

4.6 ...

3.9 3.5

4.9 4.8 4.4 3.9 3.9

Soil Suction, PF

Sequential Month or Calendar Month

2 9/85

4.7 4.5 4.3 3.6 3.9

4.8 4.4 4.3 3.8

4.5 4.2 4.4 3.7 ...

...

4.3 4.3 3.7 3.4

4.4 ... ... ...

...

4.5 4.0 3.3 3.5

3 10/85

4.6 4.3 4.1 2.7 3.8

4.6 3.0 4.2 3.6

...

...

4.2 ... ...

...

....

4.0 3.0 3.5

...

...

...

...

...

3.7 3.4 ...

4 11/85

4.4 4.0 4.0 3.2 3.8

...

...

4.0 3.6

...

...

4.1 3.2 ...

...

...

4.0 3.3 3.6

2.7

...

...

...

...

3.2 3.7

5 12/85

4.2 3.7 3.6 ...

3.4

...

3.4 ... ...

...

...

3.6 ... ...

•»»»

...

...

...

2.7

2.7 ... ... ...

...

...

3.5

6 1/86

4.4 4.1 3.8 2.7 3.7

...

...

3.7 3.3

...

...

3.6 ... ...

...

...

3.2 3.4 3.5

3.5 ... ... ...

...

...

3.6 2.7

7 2/86

...

...

... »«•«

...

...

3.0 ...

...

...

...

...

...

...

...

...

...

3.2

2.7 ... ... ...

...

...

...

Page 239: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

221

T a b l e E - 1 . ( C o n t f n u e d )

Bor-Ing No.

29 29 29 29 29

30 30 30 30

31 31 31 31 31

32 32 32 32 32

33 33 33 33

34 34 34 34 34

P$y-chrom-eter No.

105 112 109 177 184

76 144 137 121

38 37 150 108 31

33 74 73 149 110

24 47 71 104

26 23 36 43 100

Depth (ft.)

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00

1.00 3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

3.00 5.00 7.00 9.00

1.00 3.00 5.00 7.00 9.00

8 3/86

4.0 3.6

3.3

4.0

2.7

3.7

3.0

3.4

Soil Sucti(

Sequential Month or

9 10 11 4/86 5/86 6/86

4.8 4.6 4.6 4.3 4.4 4.1 4.3 4.3 4.4 3.6 3.8 3.9 3.9 3.9 4.0

4.1 — 3.7 3.7 — 3.9 4.2 3.9 4.1 3.7 3.9 4.1

3.9 3.7

4.1 4.2 3.6 3.8 4.0 3.6 3.8 3.9

3.3 — 3.8 4.0 4.0 4.2 3.8 3.8 4.0

3.5 4.0

3.9 3.8 3.9 0.0 3.0 3.7

3.3

3.7 3.9

>n, pF

Calendar Month

12 7/86

4.7 4.0 4.5 4.0 4.1

3.9 4.1 4.4 4.2

3.8

4.1 4.2

3.7 4.2 4.1 4.0

4.0

3.7 3.3

4.1

Page 240: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

PERMISSION TO COPY

In presenting this thesis in partial fulfillment of the

requirements for a master*s degree at Texas Tech University, I agree

that the Library and my major department shall make it freely avail-

able for research purposes. Permission to copy this thesis for

scholarly purposes may be granted by the Director of the Library or

my major professor. It is understood that any copying or publication

of this thesis for financial gain shall not be allowed without my

further written permission and that any user may be liable for copy-

right infringement.

Disagree (Permission not granted) Agree (Permission granted)

Student's signature Student'áysignabare

Date Date

Page 241: ESTIMATING SHRINK/SWELL IN EXPANSIVE SOILS USING SOIL …

Recommended