+ All Categories
Home > Documents > Evolution of Quantum Theory - Condensed Matter...

Evolution of Quantum Theory - Condensed Matter...

Date post: 26-May-2018
Category:
Upload: doanliem
View: 214 times
Download: 0 times
Share this document with a friend
24
Evolution of Quantum Theory E. Schrödinger P. A. M. Dirac D. R. Hartree W. Kohn J. Pople J. C. Slater P. Hohenberg L.J. Sham 1926 Schrödinger 1937 Slater APW 1951 Slater exchange 1964 DFT: Hohenberg, Kohn, Sham 1928 Dirac, Hartree 1920 1950 2000 1930 Fock, Slater 1981 FLAPW 1985 Car-Parrinello 1986 Gradient corrected DFT 1972 Spin-polarized DFT 1959 Pseudopotential method 1998 Nobel Prize for Kohn and Pople 1933 Wigner, Seitz 1975 LMTO and LAPW A. J. Freeman
Transcript

EvolutionofQuantumTheory

E. Schrödinger P. A. M. Dirac D. R. Hartree W. Kohn J. PopleJ. C. Slater P. Hohenberg L.J. Sham

1926

Schrö

dinger

1937

Slate

r APW

1951

Slat

er ex

chan

ge19

64 D

FT: H

ohen

berg

, Koh

n, Sham

1928

Dira

c, Har

tree

1920 1950 2000

1930

Fock

, Slat

er

1981

FLAPW

1985

Car

-Par

rinell

o

1986

Gra

dient c

orre

cted D

FT

1972

Spin

-pol

arize

d DFT

1959

Pse

udopot

entia

l meth

od

1998

Nob

el Priz

e for

Koh

n and P

ople

1933

Wig

ner, S

eitz

1975

LM

TO and LAPW

A.J.Freeman

ComputationalPhysicsToday• Ameanstounderstandcomplexphenomenathatgoesbeyondthelimitationsofanalytictheory

• TheThirdBranchofPhysics–alongwithAnalyticTheoryandExperiment.

• Modeling/simulationas“experimentaltheory”or“theoreticalexperiments”.

• Reliesonunderstandingthelimitationsandidiosyncrasiesoftheequipment–theComputer.

• Stillinitsinfancy–40yearsvs.>400yearsofexperimentalphysics.

• Ofrapidlygrowingimportanceandimpactforbasicresearchanddeviceapplications.

HOWDIDWEGETHERE?

{..}coulexKEVVE++!=!

!•Hartree‐FockTheorysatisfiesPauliprinciplewithamany‐electronwavefunction.Wavefunctionisadeterminantofsingleparticlewavefunctions.Complexsetofcoupledintegraldifferentialequations.Treatsexchangebetweenpairsofsamespinelectronsexactly.Successfulforatomsandmolecules.(HartreeandHartree)

RoadtoDensityFunctionalTheory• Schrödinger‐DiracEquation:“God’sLaw”

Diracwassoimpressedwiththebeautyofthetheorythathesaid“TheadventofquantummechanicshasturnedChemistryintoabranchofAppliedMathematics”(1926)Forhimtheproblemwasfullysolved–fortherestofusittook80yearssofar,andstillcounting.

HE!=!

..HKEV=+

RoadtoDensityFunctionalTheory• Forsolids,therewastheseeminglysimplebandequation:

{K .E.+V (r)}!k(r) = "

k!

kr( )

ButwhatisV(r)?

Thishasbeenthestrugglesincetheearly1930’s(Wigner,Seitz,Slater)–nowconqueredbyDFT

V (r)= periodic potential

RoadtoDensityFunctionalTheory

• ImportantsimplificationofHartree‐FocktheorybySlater(1951)

whereρ(r)isthechargedensitylocallyatpointr.

Theresultisthesimplebandtheorypotentialenergy

Surprisingly,thisledtosomeimportantapplicationsformagnetism.

V

exr( )= ! "

1/3

r( )

V r( )=V

coulr( )+! "1/3 r( )= periodic

ImpactofEarlyEnergyBandStudiesinMagnetism

• Bandtheoryaccountsforthenon‐integralatomicmagneticmomentsinFe,Co,andNimetalsandtransitionmetalalloys.

• Anearlyremarkablesuccess:─ JohnWood(1962)calculatedthebandsofparamagneticbccFe;

MickLomer(1962)usedarigidbandmodeltodeterminethebandsofCr–predictedtheFermisurfacenesting(“ballsandjacks”)andobtainedthefamousSDW.

• 4fRare‐earthmetals–Dimmock,FreemanandWatson(1964)– Completelytransformedpreviousunderstandingofanomalouselectronic,

opticalandmagneticpropertiesofrare‐earthsasthatoffree‐electronmetals.

– Demonstratedthattheyareliketransitionmetals(5dand6s,pconductionbands)butwithlocalized4felectrons.

Basic Concepts of Density Functional TheoryHohenberg-Kohn Theorem (1964)

and is a minimum for theground state density

E

tot= E[!]

Kohn-Sham Equations (1965)

[K .E.+ V

eff!( )]"

i=#

i"

i

V

eff!( )=V

coul!( )+ µ

xc[!]

!=i

" #i

2

µ

xc

istheexchangeandcorrelationpotential

BasicConceptsofDensityFunctionalTheory

• Revolutionarydevelopment

– Focusisonthechargedensity–notonthemany‐electronwavefunction,Ψ,asinHFtheoryandallofchemistry

– But,whatistheexchange‐correlationpotential,μxc?

– Itisnotknown,butgiventheexactμxcwewouldhavetheexactsolution.Toapproximateμxc,usethemany‐bodysolutionfortheinteractingelectrongas.Thefirstterminthedensityexpansionisρ1/3(r).

– LocaldensityapproximationworksbecauseoftheshortrangeoftheFermiholeasshownbySlater(1951).

!

Magnetic

Optical

Information Storage

Electronic StructureOrigin of all properties

Structural Electronic

MechanicalCommunications

Simulation /Modeling Assisted materials design

Automotive

Spintronics

Steels, coatings, and superhard materials

Aerospace

Permanent Magnets

Solar Devices

Semiconductor electronics

Photovoltaics

BroadImpactofDFT‐FLAPWinElectronicStructureandProperties

FLAPWapplicationshaveproducedanumberoftriumphsforDFTcoveringthewholerangeofproperties.

Nano-magnetism

ElectronicStructure—Importance

• Basis for understanding fundamental properties ofmaterials:

1. elastic constants2. cohesive energies3. thermal properties4. magnetism (ordering and dynamics)5. optical response6. phase transitions7. surface phenomena8. interface phenomena9. transport

Importance–continued

• Underpins the science for properties determined atmesoscale

1. dislocations2. pinning (dislocations, magnetic domain walls, …)3. grain boundaries4. cracks, defects, impurities, strains5. strength6. nucleation and growth of microstructures

Importance–continued

• Coupled with modern computers, electronicstructure “engineers” have teamed withexperimental groups to

1. design new magnetic materials for data storage2. design new microstructures for alloys

applications3. investigate GMR interfaces4. study protein folding and biological issues5. etc.!

History

DensityFunctionalTheory

1. Freeze the Lattice (separate nuclear coordinates)

2. Work only with electron HamiltonianKE + electron-proton + electron-electron interactions

3. Original References:P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965)

Phys. Rev. 145, 561 (1966).

4. All ground state properties of a many electron system are determined by afunctional depending only on the density function. Variational principle forground state energy.

Density...continued

5. Some relevant equations:

Write the electron density as:

Local Density Approximation (LDA)

for spin polarized case

The exchange-correlation functional is obtained by manybody calculations for the uniform interacting electron gas!

BreakdownofLDA

1. Single atoms and surfaces (low density tails)2. Self-interaction (e.g., hydrogen atom exchange)3. Strongly correlated electron systems

(e.g., rare earth materials, La2CuO4, Fe3O4, etc.)

SuccessofLDA

Nobel Prize: Walter Kohn, 1998 (in Chemistry!)http://www.physics.ucsb.edu/~kohn

Nobel lecture: Rev. Mod. Phys. 71, 1253 (1999).

General References:

1. “The density functional formalism, its applications and prospects,”R. Jones, and O. Gunnarsson, Rev. Mod. Phys. 61, 689-746 (1989).

2. For Chemistry perspective see “Advanced Electronic StructureTheory” by Dr. Fred Manby, http://www.chm.bris.ac.uk/pt/manby/

3. For MO - New Book by Antonov, Harmon, and Yaresko

BeyondLDA

1. Weighted DensityO. Gunnarsson and R. Jones, Physica Scripta, 21, 391 (1980).

2. Gradient CorrectionJ. Perdew and Y. Wang, Phys. Rev. B33, 8800 (1986).A. Becke, Phys. Rev. A33, 2786 (1988).

3. Self Interaction Correction (SIC)A. Svane and O. Gunnarsson, Phys. Rev. Lett. 65, 1148 (1990).Z. Szotec, W. Temmerman and H. Winter, Phys. Rev. B47, 4027

(1993); and for La2CuO4, A. Svane, Phys. Rev. Lett. 68, 1900(1992).

Beyond...

1. LDA + U (treatment of strong correlation, 3d’s, 4f’s)V. Anisimov, J. Zaanen, and O. Andersen, Phys. Rev. B44, 943 (1991); V. Anisimov, I. Solovev, M.

Korotin, M. Czyzyk, and G. Swatsky, Phys. Rev. B48, 16929 (1993).

2. Orbital Polarization (account for Hund’s second rule)O. Eriksson, B. Johansson, R. Albers, A. Boring, and M. Brooks, Phys. Rev B42, 2707 (1990). O.

Eriksson, M. Brooks, and B. Johansson, Phys. Rev. B41, 7311 (1990).

3. Excitations (quasi-particles, Greens function approach)GW-approximation for the self-energyL. Hedin and S. Lundqvist, Solid State Physics, 23 (1966)L. Hedin, Phys. Rev. 139, A796 (1965)M. Hybertsen and S. Louie, Phys. Rev. B34, 5390 (1986)F. Aryasetiawan and O. Gunnarsson, Phys. Rev. Lett. 74, 3221 (1995)

Beyond...

7. Dynamical Mean Field TheoryFrequency dependence of the self-energyW. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1995)T. Pruschke, M. Jarell, and J. Freericks, Adv. Phys. 44, 187 (1995)A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg. Rev. Mod. Phys. 68, 13

(1996).S. Savrasov, G. Kotliar, E. Abrahams, Nature 410, 793 (2001)S. Savrasov and G. Kotliar, preprint cond-mat/0106308 (2001)A. Lichtenstein and M. Katsnelson, Phys. Rev. B57, 6884 (1998)M. Katsnelson and A. Lichtenstein, Phys. Rev. B61, 8906 (2000)

ComputationalMaterialsScience—Future

Some Past Predictions:• 1943

"I think there is a world market for maybe five computers."-- Thomas Watson, chairman of IBM

• 1949"Computers in the future may weigh no more than 1.5 tons.” – Popular Mechanics, forecasting the relentless march of science

• 1977"There is no reason anyone would want a computer in their home."-- Ken Olson, president, chairman and founder of Digital Equipment Corp.

• 1981“640K ought to be enough for anybody”– Bill Gates

DramaticAdvancesinTheoryandAlgorithms

1970 1975 1980 1985 1990 1995 2000

1

10

100

1000

10000

100000

1000000

1E7

1E8

1E9

1E10

relative performance

computer speed

Moore’s law

In Computational Materials Science the amplification fromintellect (new theory, algorithms, and insights) is at least equal tothe speed -up from hardware

David Landau: UGA

Relative performance increase of Ising model simulations compared the normalized speed of thecomputers the simulations were executed on. The dashed line is a schematic of the increase inpeak performance of the fastest supercomputers since 1972.

Many CMS application codes scale on parallel computers

Compaq, PSC

4.58 Tflops!

0

1000

2000

3000

4000

5000

0 500 1000 1500 2000 2500 3000 3500

LSMS Performance

GFLOPSGFLOPS (Ideal)

Execution Rate [GigaFlops]

Number of CPUsPSC_Execution_Rates_Gflops.QPC

Compaq AlphaSever TCS

Pittsburgh SuperComputer Center x ! Similar data for other codes

" Paratec

" FLAPW

! Gordon Bell Prizes

" 1992 – KKR-CPA: Price Performance

" 1995 - TBMD: Fastest real application

" 1999 – LSMS: Fastest real application

! 104 improvement since 1988

" GB Prize

! 1988 - 1 Gflop/s

! 2001 - 11 Tflop/s


Recommended