+ All Categories
Home > Documents > Expanding the Processability and Applications of Cellulose and Chitin Nanomaterials · 2020. 12....

Expanding the Processability and Applications of Cellulose and Chitin Nanomaterials · 2020. 12....

Date post: 02-Feb-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
25
Transcript
  • Expanding the Processability and

    Applications of Cellulose and Chitin

    Nanomaterials

    Carson Meredith

    School of Chemical & Biomolecular

    Engineering

    Renewable Bioproducts Institute

  • Solid

    Particles in composites, adhesives and films

    Solid

    Cellulose Nanofillers for

    Polymers and CoatingsChitin-based Barrier

    Materials

    Engineering of Particles and Particle Interfaces

  • Nanomaterials from Cellulose

    4

    Acid Digestion

    Cellulose

    Nanocrystals (CNCs)

    J. Mater. Chem., 2012, 22, 20105; Wood Handbook, 2010

  • Nanomaterials from Chitin

  • Nanomaterials from Chitin

    Chitin Nanofibers Chitin Nanocrystals

    1 µm

    Acid Hydrolysis

    Zeng et al. (2012)

  • Stiffness & Density Comparison

    CNC on Par w/ Kevlar

    MP

    a

    g/cm3

  • Objectives

    Develop approaches to increase processability and utilization

    of pilot/industrial-scale cellulose nanocrystals (CNCs) or chitin

    nanofibers (ChNFs)

    1) CNCs in polyurethane and acrylics

    2) Spray coating of CNCs

    USDA Forest Products Laboratory

    CNC Pilot Production Facility

    3) Process monitoring for optimization

    of ChNF production

    4) Spray-coated ChNF barrier

    materials

    ChNF Lab Production Facility

    Georgia Tech

  • Chemical Modification of CNC Surface

  • Di-isocyanate Modification

    +

    IPDI Modified Cellulose (m-CNC)Cellulose (um-CNC)

    60 °C

    Catalyst

    2 NCO: dibutyltin dilaurate (DBTDL)

    2

    1

    Onset of degradation

    increases by 20 °C for 5 wt.%

    m-CNC composite

    200

    210

    220

    230

    240

    250

    260

    270

    280

    290

    300

    Onse

    t o

    f d

    eg

    rad

    atio

    n (C

    )

    0%

    1% um-CNC

    5% um-CNC

    1% m-CNC

    5% m-CNC

    ACS Applied Materials & Interfaces, 2016

  • Mechanical Properties of poly(urethane)

    nanocomposites

    1 wt.% m-CNC 5 wt.% m-CNC

    1 wt.% um-CNC 5 wt.% um-CNC

    0 wt.% CNC

    200 um

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    To

    ug

    hne

    ss [J

    /cm

    3̂]

    0%

    1% um-CNC

    1% m-CNC

    5% um-CNC

    5% m-CNC

    257 %

    0

    2

    4

    6

    8

    10

    12

    14

    16

    Te

    nsile

    Str

    eng

    th [M

    pa]

    0%

    1% um-CNC

    1% m-CNC

    5% um-CNC

    5% m-CNC

    226 %

    5 wt.% m-CNC0 wt.% CNC 5 wt.% um-CNC

  • NCO chemistry as route to other

    polymers

    + =

    IEM

    2-isocyanatoethylmethacrylate

    CNC IEM/CNC

    In-situ polymerization

    + =

    MMA IEM/CNC IEM/CNC_PMMA

  • 13

    CNC Dispersion in Acrylic Polymers

    IEM/CNC_PMMA

    2.0 wt.%

    CNC_PMMA

    2.0 wt.%

  • Spray coating CNC-filled epoxy

    Spray coating chitin

    He

    ate

    d S

    urf

    ace

    Ba

    se

    Po

    lym

    er

    Nitrogen

    Supply

    Ch

    itin

    Su

    sp

    en

    sio

    nSu

    bstr

    ate

    Water-

    borne

    CNC-

    Epoxy

    Prior work on CNC-waterborne

    epoxy formulations

    Xu,Girouard,Schueneman,Shofner Meredith Polymer 2013

    Girouard,Xu,Schueneman,Shofner Meredith Polymer 2015

  • Neat 15% CNC

    100 um

    Spray coated epoxy – CNC composites

  • pH tracking

    Reactors11 Nos.

    Blocked

    end

    High Pressure

    Orifice0.005”(Z5), 0.008”(Z8)

    Cavitation & Shear Shear & Collisions

    Lowered Pressure

    Outlet

    22 LPH (max)30,000 psi (max)

    ChNF Production via Homogenization

  • ChNF Production via Homogenization

    NH

    HC=ONH2

    Monitoring of surface area during processing via pH

    +n m

    ++

    + +

    ++

    +

    +

    + +

    +

    ++

    + +

    + ++ +

    pH

    Cycles

  • Low (8,600 psi), Mixed (15,000 & 22,000 psi) & High (25,000 psi)

    0.5 wt. % pure chitin suspension in acetic acid (pH 3)

    pH tracking

    Use of pH to monitor chitin defibrillation

  • 5 cycles 15 cycles

    20 cycles 30 cycles

    ChNF Morphology during processing

  • Spray coating chitin nanofibers

    Spray coating chitin

    He

    ate

    d S

    urf

    ace

    Ba

    se

    Po

    lym

    er

    Nitrogen

    Supply

    Ch

    itin

    Su

    sp

    en

    sio

    n

  • Barrier properties of chitin coated-PLA

    0.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0.035

    0.040

    0.045

    0.00 0.10 0.20

    Oxygen

    Tra

    nsm

    issi

    on B

    arri

    er @

    50

    % R

    H (

    bar

    rer)

    Loading (g-coat/g-PLA)

  • Water vapor transmission

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    0 10 20 30 40 50 60 70 80 90 100

    Wat

    er V

    apor

    Tra

    nsm

    issi

    on R

    ate

    (g-W

    ater

    /m2/d

    ay)

    Relative Humidity (%)

    Coated Film 0.21 g-coat/g-

    PLA loading

    Control Film

  • Conclusions

    CNCs

    • Modification of CNC with IPDI was successful with improved

    dispersion, thermal, and mechanical property compared to the

    neat polyurethane

    • NCO a practical route to other functional groups and polymers

    • Spray-coating up to 15 wt% CNC in waterborne formulations

    ChNFs

    • pH a simple and useful measure of defibrillation

    • Spray coating of ChNF aqueous dispersions

    • Upgrading barrier properties of base films

  • Acknowledgements

    Coauthors:

    • Dr. Meisha Shofner, Georgia Tech MSE Faculty

    • Dr. Greg Schueneman, USDA Forest Products Laboratory

    • Dr. Shanhong Xu, GW University (former postdoc)

    • Dr. Natalie Girouard, PolyOne (former PhD student)

    Funding:

    • USDA Forest Products Lab

    • Georgia Tech Renewable Bioproducts Institute

    PSE Fellowships & Equipment Grants


Recommended