+ All Categories
Home > Documents > EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE)...

EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE)...

Date post: 10-Jan-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
37
DISSERTATION EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) TOWARD UNDERGROUND MINERS IN PT FREEPORT INDONESIA ARIF SUSANTO NIM: 30000213510002 DOCTORATE PROGRAM IN ENVIRONMENTAL SCIENCE SCHOOL OF POSTGRADUATE STUDIES UNIVERSITY OF DIPONEGORO SEMARANG 2018
Transcript
Page 1: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

DISSERTATION

EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST

(DEE) TOWARD UNDERGROUND MINERS IN

PT FREEPORT INDONESIA

ARIF SUSANTO

NIM: 30000213510002

DOCTORATE PROGRAM IN ENVIRONMENTAL SCIENCE

SCHOOL OF POSTGRADUATE STUDIES

UNIVERSITY OF DIPONEGORO

SEMARANG

2018

Page 2: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST

(DEE) TOWARD UNDERGROUND MINERS IN

PT FREEPORT INDONESIA

Dissertation

To Obtain Doctorate Degree

in Environmental Science

To be defended in front of

Open Senate Meeting of Diponegoro University

on 11 May 2018

by

Arif Susanto

Born in Salatiga

Page 3: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

DISSERTATION

EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST

(DEE) TOWARD UNDERGROUND MINERS IN

PT FREEPORT INDONESIA

Arif Susanto

NIM: 30000213510002

Has been approved by:

Promotor

Prof. Dr. Ir. Purwanto, DEA.

Date: 11 May 2018

Co-Promotor 1

Dr. Henna Rya Sunoko, Apt., MES.

Date: 11 May 2018

Co-Promotor 2

dr. Onny Setiani, Ph.D.

Date: 11 May 2018

Doctorate Program in Environmental Science

School of Postgraduate Studies University of Diponegoro,

Head,

Dr. Dra. Hartuti Purnaweni, MPA.

Page 4: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST

(DEE) TOWARD UNDERGROUND MINERS IN

PT FREEPORT INDONESIA

Arif Susanto

NIM: 30000213510002

Has been defended to obtain Doctorate Degree in Environmental Science in front of Jury

on 11 May 2018

Team of Jury

1. Prof. Dr. Ir. Purwanto, DEA.

(Head/Promotor/Jury)

2. Dr. Henna Rya Sunoko, Apt., MES.

(Co-Promotor/Jury)

3. dr. Onny Setiani, Ph.D

(Co-Promotor/Jury)

4. Dr. Hartuti Purnaweni, MPA.

(Secretary/Jury)

5. Dr. H. Totok Prasetyo, B.Eng., M.T.

(External Jury)

6. Dr. Ir. KRMT Haryo Santoso Harjokusumo, MM.

(External Jury)

7. Dr.Ing. Sudarno Utomo, S.T., M.Sc.

(Jury)

Page 5: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

untuk Eyang-uti, untuk Eyang-kung dari putra-putriku:

Rayhanna Nafila Zahra Najmatullail,

Heaven Abqary Odyssey,

Keyzein Abqary El-Ayyuby,

Farrel Atthar Firdauzy,

dan ibuk mereka: Enisah

Page 6: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational
Page 7: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

STATEMENT

Signed below,

Student : Arif Susanto

NIM. : 30000213510002

declares that :

1. Dissertation entitled 'Exposure Response of Diesel Engine Exhaust (DEE) toward

Underground Miners in PT Freeport Indonesia’ is the original scientific paper and has

never been submitted to obtain an academic degree (doctorate) at any college.

2. This dissertation does not contain works or opinions that have been written or

published by others except the works or the opinions as a reference by mentioned by

author’s name and original title as well as listed in the bibliography.

This statement has been made in truth and if there was any distortion and untruth in this

statement, I am willing to accept any academic sanction in the form of revocation of the

degree I have obtained, and other sanctions in accordance with applicable norms at

University of Diponegoro.

Semarang, 11 May 2018

The Author,

Arif Susanto

Page 8: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

CURRICULUM VITAE

Name : ARIF Susanto

Place, date of birth : Salatiga, 04 Juni 1979

Address : Buana Cigi Regency No. C4

Jl. Cijaura Girang V, Kel. Sekejati, Kec. Buahbatu, Kota Bandung, 40286

Education : Doctor of Science in Environmental. School of Postgraduate Studies, University of

Diponegoro. Semarang, 2018.

Master of Business Administration. School of Business and Management.

Postgraduate Program. Bandung Institute of Technology. Bandung, 2017.

Master of Science in Environmental. School of Postgraduate Studies, University of

Diponegoro. Semarang, 2011.

Master of Management in Health. Postgraduate Program, Management High

School. Jakarta, 2009.

Bachelor of Engineering in Environmental Engineering. Faculty of Civil and

Planning Engineering, University of Kebangsaan. Bandung, 2005.

Diplome of Health in Medical Records & Health Information. Polytechnic of

Ganesha. Bandung, 2002.

Diplome of Health in Environmental Health. Polythechnic of Health, The Ministry

of Health. Bandung, 2000.

Occupation : Superintendent, Environmental Engineer & Health-Safety Training.

Environmental, Safety & Health Department, Concentrating Division, PT Freeport

Indonesia, 2017-present.

Superintendent Environmental Engineer. Safety & Health Department,

Concentrating Division, PT Freeport Indonesia, 2013-2017.

Chief Environmental Engineer. Loss Control Department, Concentrating Division,

PT Freeport Indonesia, 2012-2013.

Environmental Engineer. Loss Control Department, Concentrating Division, PT

Freeport Indonesia, 2011-2012.

Public Health & Diseases Control. International SOS, 2004-2011.

Industrial Hygiene & Sanitation Supervisor, Production Department, PT

Gizitatapangan Sejahtera, 2002-2004.

Organization : Member of Indonesian Environmental Scientist Association (IESA).

Member of Indonesian Industrial Hygienist Association (IIHA).

Member of the Institutions of Engineers Indonesia (PII).

Member of Environmental Health Specialist Association (EHSA).

Member of the Indonesian Society of Sanitary and Environmental Engineer

(IATPI).

Member of the Indonesian Environmental Pollution Control Association (APPLI).

Journal : Arif Susanto, Purwanto Purwanto, Henna R. Sunoko & Onny Setiani. Assessment

of Diesel Particulate Matter Exposure of Underground Miners in Indonesia.

Journal of Ecological Engineering; 19(4) (2018) pp. 34-42 . ISSN 2299-8993.

Arif Susanto & Nur Budi Mulyono. Risk Assessment Method for Identification of

Environmental Aspects and Impacts at Ore Processing Industry in Indonesia.

Journal of Ecological Engineering; 19(2) (2018) pp. 72-80. ISSN 2299-8993.

Arif Susanto & Nur Budi Mulyono. The Transitional Change on The

Implementation of ISO 14001:2015 in Copper Ore Mill – Case Study . Journal of

Ecological Engineering; 18(5) (2017) pp. 27-36. ISSN 2299-8993.

Page 9: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational Exposure to Lead in

the Quality Control Laboratory. Journal of Industrial Pollution Control 33(1)

(2017) pp. 670-673. ISSN 0970-2083.

Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Chemical Inventory and Management

in PTFI Quality Control Laboratory. Journal of Industrial Pollution Control 33(1)

(2017) pp. 689-695. ISSN 0970-2083.

Arif Susanto, Purwanto Purwanto, Henna R. Sunoko & Onny Setiani. Diesel

Engine Exhaust Emisions Survey of Underground Mine in Indonesia. Journal of

Industrial Pollution Control 32(2) (2016) pp 608-616. ISSN 0970-2083.

Arif Susanto, Roro N. Wulan & Edi K. Putro. Used Oil Utilization for Lime

Production as Hazardous Waste Minimization. International Journal of Waste

Resources 6(4) (2016). ISSN 2252-5211.

Arif Susanto. The Influence of Green Open Space Re-vegetation toward

Microclimate Modifications in the Control of Malaria Diseases. 2012. Bulletin of

SPIRAKEL Paper Competition on Mosquitos and Borne Diseases. The Ministry

of Health of Republic Indonesia. Indonesia. ISSN 2086-1346.

Proceeding : Arif Susanto & Nur Budi Mulyono. Information Management of Web Appilication

Based Environmental Performance Management in Concentrating Division of

PTFI. E3S Web Conference 31, 12001 (2018). ISSN 2267-1242.

Arif Susanto, Purwanto Purwanto, Henna R Sunoko & Onny Setiani. A Kriging

Method for Mapping Underground Mine Air Pollution. Advance Science Letters

23(3) (2017) pp. 2329-2332(4). ISSN 1936-7317.

Arif Susanto, David Suryanegara & Edi K. Putro. Indoor Air Quality in Quality

Control Laboratory Concentrating Division, PT Freeport Indonesia. 2013.

National Conference on Environmental and Natural Resources Management.

Program of Environmental Studies Graduate School of University of Diponegoro.

Semarang, Indonesia. ISBN: 978-602-17001-1-2.

Arif Susanto, Edi K. Putro, Roro N. Wulan & Wiliam Yochu. Globally

Harmonized System (GHS) Implementation and Management of Hazardous

Substances (B3) in PT Freeport Indonesia. 2013. 1st International Conference on

Sustainable Agriculture and Environment. Graduate School of University of

Sebelas Maret. Solo, Indonesia.

Bustanul Arifin & Arif Susanto. Personnel Protective Equipment Compliance

Determination at Coal Yard PT X Unit 3 and 4, Jepara year 2012. 2012.

Proceeding Occupational Health & Safety. University of Gadjah Mada.

Yogyakarta, Indonesia. ISBN: 978-602-95436-7-4.

Arif Susanto, Hendrikus Budyanto & Edi K. Putro. Waste Utilization for Coal Ash

and Tailings Utilization as Bricks. 2012. 1st International Conference on

Sustainable Civil Engineering Structure and Construction Material. Department of

Civil and Environmental Engineering. Gadjah Mada University. Yogyakarta,

Indonesia. ISBN 978-602-95687-7-6.

Hendrikus Budyanto & Arif Susanto. Coal Ash and Tailings Utilization as Road

Construction Material. 2012. 1st National Seminar on Waste Management.

Proceeding Waste Management for Sustainable Urban Development. Institut

Teknologi Sepuluh November. Surabaya, Indonesia. ISBN 978-602-95595-4-5.

Arif Susanto, Purwanto Purwanto & Agus Hadiyarto. Model Analysis of Water

Quality on the Fluoridation Water System of Drinking Water Distribution Network

in the City of Tembagapura. 2011. The 2nd International Seminar on

Environmental Health. Proceeding Water and Green Hospital. Universitas

Airlangga. ISBN 978-602-19420-0-0.

Page 10: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational
Page 11: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

i

FOREWORD

The author would like to express gratitude to Allah SWT, the Almighty God for the

blessing and kindness, shalawat and Salam for the Prophet Muhammad SAW, so that the

dissertation entitled: ‘Exposure Response of Diesel Engine Exhaust (DEE) Toward

Underground Miners in PT Freeport Indonesia’ can be accomplished.

Honorably, I express gratitude to:

1. Prof. Dr. Ir. Purwanto, DEA., as Director of School of Postgraduate Studies University

of Diponegoro and lecturer of Chemical Engineering Department of Faculty of

Engineering who has been willing to be Promoter and also provides guidance and

direction in the preparation of this dissertation.

2. Dr. Dra. Henna Rya Sunoko, Apt., MES as lecturer of Faculty of Medicine and

Postgraduate Studies in Environmental Science University of Diponegoro who has

been willing to be Co-Promoter 1 and also provides guidance and direction in the

preparation of this dissertation.

3. dr. Onny Setiani, Ph.D., as lecturer of Faculty of Public Health and Postgraduate

Studies in Environmental Science University of Diponegoro who has been willing to

be Co-Promoter 2 and also provides guidance and direction in the preparation of this

dissertation.

4. Dr. Dra. Hartuti Purnaweni, MPA., as Head of Postgraduate Studies in Environmental

Science University of Diponegoro who has been willing to be reviewer and also

provides guidance and direction in the preparation of this dissertation.

Page 12: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

ii

5. Mr. Riza Sani, MBA., who has provided the willingness to provide locus, focus, data

and information for this dissertation.

6. Mr. Edi K. Putro, S.Pd., MBA., who has supported the author to be able to complete

the education in the environment field.

7. Parents and families who have given encouragement and prayer so that this dissertation

can be properly completed.

8. Management of PT Freeport Indonesia and all those who have given contribution in a

composing this dissertation which could not be mentioned one by one.

May Allah SWT reciprocates the kindness from all of beloved colleagues, with a hope that

this dissertation can be useful for the advancement of science and technology in our

beloved country.

Tembagapura, 11 May 2018

The Author,

Arif Susanto

Page 13: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

iii

TABLE OF CONTENTS

Page

Foreword i

Table of Contents iii

List of Tables vi

List of Figures viii

List of Appendices xi

Abbreviation xii

Abstrak xvi

Abstracts xvii

Ringkasan xviii

Summary xxiii

Chapter 1 Introduction

1.1. Background 1

1.1.1. Sustainable Development 1

1.1.2. Sustainable Concept in Mining Industry 3

1.1.3. Sustainable Mining in Indonesia 6

1.1.4. Underground Mines Air Pollution 8

1.1.5. Diesel Fuel and Engine Exhaust 13

1.2. Research Problem Identification and Steps of Research 16

1.3. Research Objectives 17

1.4. Originality and Novelties 18

1.5. Research Benefits 21

Chapter 2 Literature Review

2.1. Underground Mine 28

2.2. Ventilation System 37

2.3. Diesel Engine Exhaust (DEE) 39

2.3.1. DEE Composition 41

Page 14: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

iv

2.3.2. DEE as Indoor Air Pollutant Component 44

2.3.3. Primary Emissions 46

2.4. Geostatistics 49

2.4.1. Kriging 50

2.4.2. Universal Kriging 52

2.5. Diesel Particulate Matter and Product of Combustion Gases 55

2.5.1. Diesel Particulate Matter (DPM) 55

2.5.2. Nitrogen Oxide as Product of Combustion (POC) 56

2.5.3. Carbon Monoxide as Product of Combustion (POC) 57

2.5.4. DEE Acute and Chronic Exposure 58

2.5.5. Functions of Lungs and COPD 61

Chapter 3 Theoritical Framework, Conceptual Framework & Hypothesis

3.1. Theoritical Framework 64

3.1.1. Indoor Air Pollution in Workk Environmental 66

3.1.2. Response of Air Pollution on Lungs Functions 67

3.1.3. Lungs Functions 71

3.1.4. Respiration Mechanism 72

3.1.5. Change in Lungs Functions due to Air Pollution 74

3.1.6. Measurement of Lungs Functions 76

3.2. Conceptual Framework 78

3.3. Hypothesis 79

Chapter 4 Research Methods

4.1. Research Location and Time 80

4.2. Research Design 84

4.3. Research Population and Sample 85

4.3.1. Miners population and samples 85

4.3.2. DEE as air pollutant samples 86

4.4. Research Variables 93

4.4.1. Dependent Variables 93

4.4.2. Independent and Interventing Variables 93

Page 15: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

v

4.5. Definitions of Conceptual Variables 93

4.6. Data Collections 95

4.7 Data Analysis 113

Chapter 5 Results & Discussion

5.1. Research Results 120

5.1.1. General Characteristics of Research Site 120

5.1.2. Miners Characteristics 133

5.1.3. Result of DEE Survey and Measurement 135

5.1.4. Distribution of DEE Pollutants in DOZ Underground

Mine

137

5.1.5. Miners Respiratory Health 145

5.2. Discussions 148

5.2.1. Air Pollution Caused by DEE in DOZ Underground Mine 148

5.2.2. Distribution of DEE Pollutant in DOZ Underground Mine 155

5.2.3. Miners Respiratory Health 172

5.2.4. Model Development of safety and Environmental

Management in Underground Mine

187

5.3. Research Limitation 195

Chapter 6 Conclussions & Recommendations

6.1. Conclussions 198

6.2. Recommendations 201

References

Appendices

Page 16: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

vi

LIST OF TABLES

Page

Table 1.1 Previous air pollutants researches 22

Table 1.2 Previous studies of PM and gaseous pollutants related to lung

function

24

Table 4.1 Considerations in performing spirometry 112

Table 4.2 Corresponding value the number of area samples used and citation

threshold

117

Table 4.3 Classification of COPD based on GOLD 2017 119

Table 5.1 Descriptive statistics of miners’ demography 133

Table 5.2 Descriptive Statistics for Miners who Smoke 134

Table 5.3 Descriptive statistics of DOZ Truck Haulage for POC components 135

Table 5.4 Descriptive statistics of DOZ Truck Haulage for DPM 136

Table 5.5 Descriptive Statistics of Spirometric Measurement Results 145

Table 5.6 Descriptive statistics for GOLD classification 146

Table 5.7 Result of assessment of airflow limitation with COPD 147

Table 5.8 Main fans performance 149

Table 5.9 Exhaust fans performance balance 150

Table 5.10 Intake fans performance balance 151

Table 5.11 Types and quantity of diesel equipment in use and total airflow

quantity

152

Table 5.12 Diesel fuel quality analysis 155

Table 5.13 Severity of airflow limitation assessment with COPD 183

Table 5.14 Model summary test results 185

Table 5.15 ANOVA test results 186

Table 5.16 Airflow quantity requirement based on Government of Indonesian

Regulation

192

Table 5.17 Optimised airway sizes and air velocities according to typical 193

Page 17: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

vii

airflow quantities

Table 5.18 Air velocity criteria 194

Table 5.19 Specific areas direct to exhaust 195

Page 18: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

viii

LIST OF FIGURES

Page

Figure 2.1 Block caving method 28

Figure 2.2 Undercut level 29

Figure 2.3 Draw point 31

Figure 2.4 Panel 32

Figure 2.5 Draw point and panel 33

Figure 2.6 Production level 34

Figure 2.7 Truck haulage level 35

Figure 2.8 Exhaust (Gallery) level 36

Figure 2.9 Main fan 2200 HP 37

Figure 2.10 Diesel smoke 40

Figure 2.11 DEE schematic diagram 42

Figure 2.12 Deposition and particulate diameter 43

Figure 2.13 Special chemical composition for DPM (PM2.5) heavy duty

engine

47

Figure 3.1 Theoretical framework 64

Figure 3.2 Conceptual framework 78

Figure 4.1 PT Freeport Indonesia project area 80

Figure 4.2 Location of DOZ mine operation 81

Figure 4.3 DOZ underground mine production area and its ventilation

system

82

Figure 4.4 Flow of the survey 87

Figure 4.5 Grid sampling at truck haulage area for POC and DPM

measurement

88

Figure 4.6 Grid sampling at panel area for POC and DPM measurement 89

Figure 4.7 Grid sampling at undercut area for POC and DPM measurement 90

Page 19: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

ix

Figure 4.8 Grid sampling at gallery drift area for POC and DPM

measurement

91

Figure 4.9 Grid sampling at intake drift area for POC and DPM

measurement

92

Figure 4.10 OC-EC aerosol analyzer 95

Figure 4.11 Escort pump 96

Figure 4.12 Cassette 105

Figure 4.13 Gas detector 107

Figure 4.14 Wheathemeter 107

Figure 4.15 Spirometer 111

Figure 5.1 Mining and processing operations 123

Figure 5.2 Grasberg open pit mine 124

Figure 5.3 Grasberg open pit mine process schedule 126

Figure 5.4 Overburden placement 127

Figure 5.5 Golden horsehoe 128

Figure 5.6 DOZ production profile 129

Figure 5.7 Grasberg open pit and underground mine complex 130

Figure 5.8 DOZ ore production rate 131

Figure 5.9 Topographic of truck haulage in DOZ underground mine 132

Figure 5.10 Age frequency distribution and the miners’ height 133

Figure 5.11 Frequency distribution of miners’ working duration 134

Figure 5.12 Frequency Distribution of Miners who Smoke and Not 135

Figure 5.13 CO pollutant concentration map at turck haulage area 137

Figure 5.14 CO pollutant concentration map at panel 138

Figure 5.15 CO pollutant concentration map at gallery drift area 139

Figure 5.16 CO pollutant concentration map at intake area 140

Figure 5.17 CO pollutant concentration map at undercut area 141

Figure 5.18 DPM pollutant map at the truck haulage area 142

Figure 5.19 Descriptive statistics for GOLD classification 143

Figure 5.20 DPM pollutant map at the intake drift area 144

Figure 5.21 Frequency distribution of Spirometrically measurement results 145

Page 20: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

x

Figure 5.22 Frequency Distribution of GOLD Classification 146

Figure 5.23 Size and morphology (SEM images) of DPM in intake area with

different magnification x5,000 (DPM size 0.291~1.449 µm);

x10,000 (DPM size 0.180~0.372 µm); x15,000 (DPM size

0.137~0.275 µm); and x20,000 (DPM size 0.112~0.278 µm)

156

Figure 5.24 Size and morphology (SEM images) of DPM in truck haulage

area with different magnification x5,000 (DPM size 0.344~1.682

µm); x10,000 (DPM size 0.297~2.005 µm); x15,000 (size

0.161~2.009 µm); and x20,000 (size 0.071~2.009 µm)

157

Figure 5.25 Size and morphology (SEM images) of DPM in panel area with

different magnification x5,000 (DPM size 0.256~1.488 µm);

x10,000 (DPM size 0.120~1.195 µm); x15,000 (size

0.057~1.437 µm); and x20,000 (size 0.058~1.434 µm).

158

Figure 5.26 Size and morphology (SEM images) of DPM in gallery drift area

with different magnification x5,000 (DPM size 0.349~2.096

µm); x10,000 (DPM size 0.072~2.108 µm); x15,000 (size

0.048~0.840 µm); and x20,000 (size 0.063~0.599 µm)

159

Figure 5.27 Exposure assessment and estimating intakes concept 173

Figure 5.28 Etiology, pathobiology and pathology of COPD 177

Figure 5.29 FEV1 progression over time 178

Figure 5.30 Spirometry for Normal Trace and Obstructive Disease 180

Figure 5.31 Pathways to the diagnosis of COPD based on research condition 180

Figure 5.32 Spirometric classification of COPD severity based on post-

bronchodilator

182

Figure 5.33 Flow of map generation 188

Page 21: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

xi

LIST OF APPENDICES

Appendix 1 Surat Keterangan Hasil Analisis Sampel

Appendix 2 Descriptive Frequencies of Miners’ based on Age

Appendix 3 Descriptive Frequencies of Miners’ based on Body Height

Appendix 4 Descriptive Frequencies of Miners’ based on Working Years

(Experiences)

Appendix 5 Descriptive Frequencies of Miners’ based on FEV1/FVC Ratio

Appendix 6 Standard Operating Procedure (SOP) for the Analysis of Organic and

Elemental Carbon (OC/EC) on Quartz Fiber Filters

Page 22: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

xii

ABBREVIATION

Au : Aurum

AD : Articulate Dump

CAD : Computer-aided Drafting

CDS : Callibration Data Sheet

CFM : Cubic Feet Meter

CH4 : Methane

CO : Carbon Monoxide

CO2 : Carbon Dioxide

COPD : Chronic Obstructive Pulmonary Disease

CSD : Commission on Sustainable Development

Cu : Cuprum

DAE : Diameter Aerodinamic

DE : Diesel Exhaust

DEE : Diesel Engine Exhaust

DEMS : Diesel Exhaust in Miner Study

DEP : Diesel Exhaust Particulate

DOZ : Deep Ore Zone

DPM : Diesel Particulate Matter

DWP : Dewatering Plant

EC : Elemental Carbon

EC/TC : Elemental Carbon to Total Carbon ratio

EGFR : Epidermal Growth Factor Receptor

EPA : Environmental Protection Agency

FEV1 : Forced Expiratory Volume in First Second

FID : Flame Ionization Detector

Ft : Feet

FPM : Feet per Minute

FVC : Forced Vital Capacity

FVC : Forced Vital Capacity

Page 23: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

xiii

GIS : Geogrpahic Information System

GoI : Government of Indonesia

GOLD : Global Initiative for Chronic Obstructive Lung Disease

GRI : Global Report Initiative

HAPs : Hazardous Air Pollutants

HEAT : Heavy equipments access trails

HP : High-powered

HR : Hazard Ratio

H2S : Hydrogen Sulfide

IARC : International Agency for Cancer Reasearch

ICMM : International Council on Mining and Metals

IISD : International Institute for Sustainable Development

IR : Infrared

IUCN : International Union for the Conservation of Natural Resources

JPOI : Johannesburg Plan of Implementation

LEL : Lower Exposure Limit

LHD : Load Haul Dump

LP : Loading Point

MEFR : Maximum Expiratory Flow Rate

MEFV : Maximum Expiration Flow Volume

MMSD : Mining, Mineral and Sustainable Development

MMSS : Mining and Metals Sector Supplement

MSHA : Mine Safety & Health Administration

NAAQS : National Ambient Air Quality Standards

NIOSH : National Institute of Occupational Safety and Health

Nm : Nanometer

NO : Nitrogen Monoxide

NOx : Nitrous Oxides

NO2 : Nitrogen Dioxide

OC : Organic Carbon

OEM : Original Equipment Manufacturer

Page 24: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

xiv

OHS : Overburden handling systems

OSHA : Occupational Health and Health Administration

O2 : Oxygen

PAH : Polycyclic Aromatic Hydrocarbon

PBEC : Primary Bronchial Epithelial Cells

PEL : Permissible Exposure Limit

PID : Photo Ionized Detector

POC : Product of Combustion

PTFI : PT Freeport Indonesia

REC : Respirable Elemental Carbon

SD : Sustainable Development

SOF : Soluble Organic Fraction

SOx : Sulfur Oxide

SO2 : Sulphur Dioxide

STEL : Short Term Exposure Limit

TC : Total Carbon

TGFɑ : Transforming Growth Factor Alpha

TWA : Time Weighting Average

UCL : 95% Upper Confidence Limit

UG : Underground Mine

UN : United Nations

UNCED : United Nations Conference on Environment and Development

UNCSD : United Nations Conference on Sustainable Development

USEPA : United State Environmental Protection Agency

UTM : The Universal Transverse Mercator

VC : Vital Capacity

VOCs : Volatile Organic Compounds

WBCSD : World Business Council for Sustainable Development

WCED : World Commission on Environment and Development

WCS : World Conservation Strategy

WGS : World Geodetic System

Page 25: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

xv

WSSD : World Summit on Sustainable Development

µg/m3 : Micrograms per Cubic Meter

µg/ml : Micrograms per Milliliter

Page 26: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

xvi

ABSTRAK

Sesuai Undang-undang Nomor 32 Tahun 2009 yaitu untuk menjaga fungsi maupun

kualitas lingkungan yang berkelanjutan, khususnya udara yang merupakan sumberdaya alam

yang harus dilindungi untuk kehidupan manusia dan mahluk hidup lainnya, maka kualitas

udara harus memenuhi peraturan perundangan agar sesuai dengan standar kualitas

lingkungan.

Di PT Freeport Indonesia, terdapat tambang logam mineral seperti tembaga (Cu) dan

emas (Au), yang dilakukan dengan membuat terowongan menuju tambang bawah tanah.

Diesel engine exhaust (DEE) merupakan campuran gas nitrogen oksida (NOx), karbon

monoksida (CO), dan diesel particulate matter (DPM) yang dihasilkan dari penggunaan

bahan bakar diesel untuk mesin berupa kendaraan alat berat bertenaga diesel yang beroperasi

di lingkungan bawah tanah operasi tambang .

Tujuan studi ini adalah untuk menganalisis respon pemajanan Diesel Engine Exhaust

(DEE) pada tambang bawah tanah di PT Freeport Indonesia terhadap kesehatan pernapasan

pekerja tambang bawah tanah. Data diesel particulate matter (DPM) diukur dengan metode

NIOSH No. 5040 dan menerapkan metode geostatistikal dalam memetakan kosentrasi di area

tambang bawah tanah. Pengukuran spirometrik dilakukan untuk mendiagnosis Chronic

Obstructive Pulmonary Disease (COPD) pada 314 pekerja.

Hasil menunjukkan bahwa konsentrasi diesel engine exhaust (DEE) khususnya diesel

particulate matter (DPM) tinggi dan melebihi permissible exposure limit (PEL) yang

ditetapkan yaitu 160 TC µg/m3. Adapun hasil pengukuran spirometrik mengindikasikan

bahwa sebanyak 26 pekerja (8.3%) mengalami COPD (post bronchodilator <0.70). Adapun

hasil pengukuran keparahan gangguan aliran udara pada pekerja yang mengalami COPD,

keparahan batasan aliran udara klasifikasi sedang didapati pada 14 pekerja (54%); klasifikasi

parah (GOLD 3) didapati pada 10 pekerja (38%), dan klasifikasi sangat parah (GOLD 4)

didapati pada 2 pekerja (8%).

Terkait topik, permasalahan dan tujuan penelitian dapat disimpulkan bahwa pengaruh

paparan khususnya oleh DPM terhadap keparahan batasan aliran udara dengan COPD yaitu

bernilai 0.03. Pemetaan konsentrasi DEE dapat diterapkan pada area tambang lain untuk

mengukur dampaknya pada kesehatan pekerja berdasarkan pada perkiraan paparannya di

operasi tambang bawah.

Rekomendasi yang dapat diberikan yaitu pekerja tambang bawah tanah yang telah

mengalami keparahan gangguan aliran udara dapat berotasi ke area tambang terbuka atau

tugas lainnya di luar area tambang. Untuk perlindungan bagi pekerja tersebut yaitu dengan

program perlindungan pernapasan, melalui kewajiban penggunaan masker partikulat P100

yang memiliki efektifitas 99,9% dalam mencegah respirable particulate masuk melalui sistem

pernafasan. Peningkatan pengetahuan gaya hidup bersih dan sehat juga dilakukan bagi pekerja

yang menderita COPD untuk mencegah tingkat keparahan yang lebih tinggi.

Kata kunci: gangguan aliran udara; COPD; DEE; geostatistik; pekerja tambang bawah tanah.

Page 27: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

xvii

ABSTRACT

Based on Act Number 32 year 2009, i.e. to keep the function and sustainable

environmental quality, especially the air that has been natural resources that must be protected

for human and other creatures’ life, then the air quslity must comply regulations so that it is in

line with the environment quality standard.

At PT Freeport Indonesia (PTFI), there is a mine for mineral metal like copper (Cu) and gold

(Au), by doing tunnels towards the underground mine. Diesel engine exhaust (DEE) is a mixture of

nitrogen oxide (NOx) gas, carbon monoxide (CO), and diesel particulate matter (DPM) resulted from

the use of diesel fuel for machines in a form of diesel-powered vehicles (heavy equipments) in mine

operation’s underground environment.

The purpose of this study is to analyze the exposure response of Diesel Engine Exhaust (DEE)

in underground mine at PTFI on the respiratory health of underground mine workers. The data of

diesel particulate matter (DPM) is measured by using NIOSH No. 5040 and applying geostatictical

method in mapping the concentration in underground mine area. Spirometric measurement is

conducted to diagnose Choronic Obstructive Pulmonary Disease (COPD) on 314 miners.

The result shows that the diesel engine exhaust (DEE) especially diesel particulate matter

(DPM) is high and exceed the stated permissible exposure limit (PEL), i.e. 160 µg/m3. The result of

spirometric measurement indicates that 26 workers (8.3%) have COPD (post bronchodilator

<0.70). Furthermore, the measurement result of severity of airflow limitation with medium

classification is found on 14 miners (54%); severe classification (GOLD 3) is found on 10

miners (38%), and very severe classification (GOLD 4) is found on 2 miners (8%).

Regarding the topic, problem and the objectives of this research, it can be concluded

that the exposure influence especially by DPM on the airflow severity with COPD is 0.03.

DEE concentration mapping can be applied in other mine area to measure its impacts for

workers’ health based on the estimation of its exposure in mine operation.

The recommendation that can be given is that the underground workers who have severity of

airflow limitation can rotate to open pit mine area or other assignments outside the mine area. For

protection of those workers, i.e. with respiratory protection program, is through the mandatory usage

of P100 particulate mask that has 99.9% effectiveness, in preventing respirable particulate to go into

the respiratory system. The improvement of clean and healthy life style knowledge can also be done

for workers who have COPD to prevent a more severe level.

Keywords: airflow limitation; COPD; DEE; geostatistics; underground workers.

Page 28: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

xviii

RINGKASAN

Di PT Freeport Indonesia, terdapat tambang bawah tanah untuk logam mineral seperti

tembaga (Cu) dan emas (Au), yang dilakukan dengan membuat terowongan menuju

penambangan mineral bawah tanah. Pengukuran konsentrasi polutan air di DOZ merupakan

langkah pertama dalam mengidentifikasi bahaya dan resiko kesehatan dan lingkungan para

pekerja tambang. Penggunaan bahan bakar diesel (DF) dan mesin diesel (DE) meningkat karena

kehandalan dan efisiensi pembakaran bahan bakar hidrokarbon. Namun, terdapat kekhawatiran

bahwa hasil pembakaran mesin diesel dalam bentuk diesel engine exhaust (DEE) yang berbahaya

bagi kesehatan pekerja tambang.

Mesin diesel (DE) memiliki perangkat industrial termasuk dalam pertambangan (off-

road). Kendaraan/alat berat bertenaga diesel (HE) yang beroperasi di lingkungan bawah tanah

(UG) (tambang dan terowongan) ditentukan dengan cara mengkalikan tenaga kendaraan dengan

tingkat ventilasi; yang dimandatkan oleh peraturan-peraturan atau ditentukan secara empiris dari

kuantitas yang telah diketahui. Pada proses penambangan bawah tanah, (HE) seperti loader dan

alat lainnya menggunakan mesin diesel (DE). Di samping loader, haul truck, development jumbo,

truck dan kendaraan atau alat tambang lainnya yang menggunakan DE juga berada di terowongan

bawah tanah.

Partikel-partikel dalam DEE adalah diesel particulate matter (DPM) yang terdiri atas

pusat inti karbon yang disebut elemental carbon (EC) dan senyawa organik serapan yang disebut

organic carbon (OC), dan sejumlah kecil sulfat, nitrat, logam dan unsur lainnya. DEE

diklasifikasikan sebagai carsinogenic bagi manusia (Grup 1). Keputusan ini berdasar pada studi

yang dilakukan oleh National Institute for Occupational Safety and Health (NIOSH) bersama US

National Cancer Institute (NCI) yang menunjukkan hubungan respon paparan antara paparan EC

terhirup dan tingkat kematian karena kanker paru-paru pada pekerja tambang bawah tanah.

Tingkat tertinggi EC dilaporkan untuk lokasi kerja bawah tanah dalam pertambangan.

Penilaian paparan merupakan proses mengukur atau memperkirakan magnitudo, frekuensi

dan durasi paparan manusia ke senyawa di lingkungannya. Evaluasi paparan manusia

menjelaskan sifat dan ukuran populasi yang terpapar kontaminan atau pencemar lingkungan

udara serta magnitudo dan durasi paparannya. Dosis, durasi dan waktu, sifat dan ukuran dari

Page 29: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

xix

pengukuran kritis paparan untuk karakterisasi resiko. DPM biasanya berlangsung kurang dari satu

mikron, yang menyebabkannya mudah terhirup dan tersimpan di dalam tubuh. Saat ini industri

pertambangan di Amerika Serikat berada dalam proses pembuatan peraturan yang lebih ketat

terkait dengan partikulat diesel di tambang bawah tanah. Batas paparan DPM yang diadopsi oleh

MSHA untuk tambang bawah tanah logam dan non-logam (non-batubara). PEL saat ini untuk

DPM sesuai MSHA (30 CFR 57.5060(b)) adalah 160 μg TC/m3, yang disebut sebagai kandungan

karbon total (TC).

Penelitian ini dilakukan di DOZ, yang merupakan area produksi terletak di bawah tanah.

Studi ini dilakukan di tambang bawah tanah DOZ pada titik koordinat 733250-734250 Easting;

951250-952250 Northing; UTM Zone 53 South. Lokasi penambangan berada di pegunungan

Jayawijaya, Distrik Mimika Timur, Propinsi Papua, Indonesia. Pengukuran yang diambil

meenggambarkan kondisi ambien dan analisis kimia komprehensif dilakukan. Data DPM sebagai

TC disebut sebagai jumlah EC dan OC. EC dan OC diukur dengan nomor metode 5040 NIOSH.

Studi ini menerapkan analisis spasial dengan universal kriging untuk memetakan

konsentrasi DPM di di DOZ. Data yang didapatkan dari perhitungan tersebut kemudian diproses

ke dalam sebiuah kerangka menggunakan model spasial. Model tersebut telah digunakan paling

sering untuk memberikan kondisi batasan ke pemodelan dinamis dari polutan udara. Dalam studi

kali ini, ArcGIS digunakan untuk menghasilkan peta. Pengukuran spirometrik dilakukan untuk

mendiagnosis COPD dan penilaian Batasan aliran udara didasarkan pada GOLD, yang dilakukan

pada 314 pekerja tambang yang bekerja di DOZ.

Area aliran udara tambang DOZ memerikan cukup aliran udara yang diperlukan

berdasarkan perhatian kecepatan minimum dalam jalur lalu lintas dan dilusi kontaminasi diesel.

Kebutuhan aliran udara total adalah 1.498 m3/detik. Aliran udara ke masing-masing tingkat

utama, undercut, extraction dan haulage berdasar pada penyediaan 0,079 m3/detik/kW pada

kendaraan atau alat diesel dan minimum kecepatan udara 0,76 m/detik di area dimana personil

dan non-diesel beroperasi. Aliran udara intake (masuk) dan exhaust (keluar) diperlukan untuk

menyediakan aliran udara yang cukup. Hal ini disebabkan oleh multiple parallel drifts pada

tingkat extraction (produksi) untuk mengendalikan tambang block caving. Terkait dengan jalur

utama, aliran udara diperlukan untuk dilusi kontaminasi dan kecepatan minimum. Sistem

ventilasi dirancang untuk memastikan semua personil yang bekerja di truck haulage drifts

Page 30: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

xx

mendapat udara segar. Penentuan jumlah aliran udara dipengaruhi oleh peralatan tambang dan

variasi luas dalam karekteristik emisi bahkan di antara kendaraan yang memiliki ukuran dan

tenaga yang mirip. Jumlah parameter mempengaruhi total aliran udara yang diperlukan untuk

jumlah DE.

Analisis interpolasi spasial menggunakan model dispersi dengan memproses data emisi

dan meteorologis secara numerik. Metode kriging merupakan metode umum yang digunakan dan

menggambarkan fenomena yang berlangsung terus-menerus secara spasial. Sebuah metode telah

membuat dasar pemetaan polusi lingkungan di beberapa tahun terakhir. Metode ini menjelaskan

model paparan kualitas udara di tambang DOZ untuk memprediksi konsentrasi DPM dimana para

pekerja tambang terpapar. Analisis polusi udara dan titik pemantauan dan pengukuran (truck

haulage drifts and tunnels) yang digunakan dalam studi ini adalah beragam polutan dari

pengoperasian HE di lingkungan bawah tanah.

Pengukuran data polutan udara yang digunakan dalam penilaian menggunakan metode

Geographic Information System (GIS)-based Kriging untuk menghasilkan informasi paling

akurat dan berguna tentang pola interpolasi spasial dari konsentrasi DPM di DOZ. Pemetaan

dibuat dalam ArcGIS, yang mengintegrasi data relevan pada truck hauling drifts, terowongan dan

tingkat ventilasi. Hasilnya menunjukkan bahwa DPM dapat diperkirakan, dipetakan dan

divisualisasikan dalam GIS-framework. Distribusi spasial polutan merupakan komponen integral

dari aspek evaluasi risiko yang terkait dengan kesehatan dan lingkungan. Teknik yang digunakan

untuk menggambarkan distribusi spasial memberikan makna dalam memperkirakan kemungkinan

nilai atribut, yang melebihi batasan yang diperlukan dalam lokasi tertentu.

Hasil pemetaan konsentrasi polutan udara dengan universal kriging mengindikasikan

konsentrasi yang tinggi, atau kondisi yang buruk pada area truck haulage. Hampir semua area

memiliki konsentrasi DPM yang beragam dari 343,26 hingga 618,23 µg/m3. Bahkan di beberapa

area, tingkatnya 618,24 hingga 1168,18 µg/m3. Walaupun kualitas udara di dalam DOZ

dipengaruhi oleh keseimbangan total udara intake dan exhaust, sebagai bagian dari sistem

ventilasi untuk mensuplai kebutuhan udara, kualitasnya masih tidak mampu mendilusi polutan

udara, khususnya DPM. Kebutuhan udara semua pekerja tambang adalah untuk 650 individu

dengan faktor operasional 100%, dimana total alitan udara per unit adalah 0,03 m3/detik.

Lagipula, kuantitas aliran udara untuk masing-masing tipe unit peralatan diesel yang tergantung

Page 31: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

xxi

pada faktor operasionalnya pada unit tenaga (dalam unit horsepower), yang berbeda dari tipe unit

dan dipengaruhi oleh faktor operasional dari masing-masing unit peralatan.

Nilai aliran udara minimum adalah 0,03 m3/s/pekerja dan 0,067 m3/s/kW untuk dilusi

DEE sesuai dengan Peraturan Pertambangan Indonesia. Sebenarnya, 0,08 m3/s/kW merupakan

nilai desain dan lebih tinggi daripada jumlah alat MSHA pada umumnya yang disediakan untuk

kepatuhan gas. Untuk jalan haulage truck, kecepatan maksimumnya adalah 6,1 m/detik. Ventilasi

untuk bengkel diesel berdasar pada dilusi gas exhaust untuk dua loader, yang memerlukan sekitar

40,0 m3/detik. Ventilasi bengkel non diesel telah diputuskan 23,5 m3/detik berdasarkan

pengalaman di tambang tersebut. Aliran udara melalui area lube shop telah diputuskan 28,2

m3/detik berdasar pada penggunaan alat yang diperkirakan. Faktor pengoperasian

menggambarkan presentase waktu alat yang akan bekerja dan harus diterapkan untuk

menentukan perkiraan kebutuhan aliran udara.

Paparan lingkungan oleh asap, gas, dan debu pada pekerja berkontribusi pada kerusakan

fungsi paru. Faktor resiko lingkungan paling menonjol untuk COPD adalah merokok, yang terkait

dengan tingkat kematian yang lebih tinggi, gejala gangguan pernapasan dan ketidaknormalan

fungsi paru, serta penurunan fungsi paru. Pengukuran spirometrik untuk diagnosa COPD

dilakukan kepada 314 pekerja tambang yang bekerja di DOZ.

Rata-rata para pekerja tambang telah bekerja di DOZ selama 15 tahun. Hal ini sesuai

dengan umur tambang DOZ yang mulai beroperasi tahun 1998. Lamanya bekerja sesuai dengan

jumlah waktu terpapar DEE. Paparan terhadap partikel merupakan faktor yang mempengaruhi

perkembangan penyakit, walaupun juga dipengaruhi usia dan jenis kelamin, meskipun dalam

studi ini, jenis kelamin tidak digunakan sebagai variabel independen karena semua pekerja

tambang di DOZ adalah laki-laki. Kemunculan COPD lebih tinggi pada perokok dan mantan

perokok dibandingkan dengan non perokok. Jumlah non perokok adalah 142 pekerja (45,2%) dari

total pekerja, lebih sedikit dibanding pekerja yang perokok, yaitu 172 (54,8%) dari total pekerja,

atau 9,8% lebih tinggi daripada pekerja non perokok. COPD dianggap dalam sejarah paparan

sebagai faktor resiko untuk penyakit. Hasil pengukuran spirometrik, munculnya post-

bronchodilator FEV1/FVC <0.70 mengkonfirmasi adanya batasan aliran udara yang tetap pada

314 pekerja, yaitu sebanyak 26 pekerja (8,3%). Jadi dapat dikatakan bahwa paparan oleh DEE

dapat menyebabkan COPD pada pekerja yang bekerja di DOZ.

Page 32: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

xxii

Untuk mengukur keparahan gangguan aliran udara ke pekerja tambang yang mengalami

COPD, uji lanjut pada pekerja dengan FEV1 (% terprediksi) yang diujikan pada pekerja dengan

FEV1/FVC <0.70, didapatkan hasil tingkat klasifikasi keparahan batasan aliran udara bagi

pekerja dengan COPD adalah sebagai berikut: klasifikasi sedang (GOLD 2) 14 pekerja atau 54%,

parah (GOLD 3) 10 pekerja atau 38%, dan sangat parah (GOLD 4) 2 pekerja atau 8%. Uji

ANOVA dilakukan dengan memasukkan metode untuk menentukan jumlah waktu kerja

(paparan) DPM terhadap keparahan batasan aliran udara dengan COPD serta apakah faktor lain

seperti usia, kebiasaan merokok juga dapat mempengaruhi keparahannya. Hasil yang didapatkan

dari uji-uji tersebut menunjukkan bahwa nilai R=0.173 dengan nilai F=2.395 pada nilai

signifikansi (α) = 0.05, sehingga dapat disimpulkan bahwa kategori GOLD dipengaruhi oleh 3%

dari lama paparan DPM, tinggi badan, kebiasaan merokok dan usia pekerja. Dari pengukuran

keparahan gangguan aliran udara pada pekerja yang mengalami COPD, jumlah durasi kerja

(paparan) DPM terhadap keparahan batasan aliran udara dengan COPD 3%, dimana faktor

lainnya seperti usia dan kebiasaan merokok juga mempengaruhi keeparahannya. Dari hasil-hasil

tersebut, disimpulkan bahwa pemetaan konsentrasi polutan dapat digunakan untuk mengevaluasi

hubungan paparan-respon. Paparan polutan DEE direkomendasikan untuk dilakukan sebagai

bagian studi untuk memprediksi apakah polutan memberikan dampak pada kondisi kesehatan

pekerja tambang dalam paparan jangka panjang.

Page 33: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

xxiii

SUMMARY

In PT Freeport Indonesia, there are underground mines for mineral metal such copper

(Cu) and gold (Au), done by making tunnels towards the mineral underground mining. Air

pollutant concentration measurement in DOZ is first step in identifying environmental-health

hazards and risk to the miners. The use of diesel fuel (DF) on Diesel Engine (DE) increases

because of the reliability an efficiency of hydrocarbon fuel oxidation. However, there is a worry

that the result of diesel engine oxidation is in the form of diesel engine exhaust (DEE) which is

dangerous for miner’s health.

Diesel engines (DE) have of industrial applications including in mining (off-road). Diesel-

powered heavy equipment (HE) operating in underground (UG) environments (mines and

tunnels) were determined by multiplying the vehicle power by a ventilation rate; that was either

mandated by regulation(s) or determined empirically from known quantities. In the process of

UG mining, (HE) such as loader as well as other equipments that uses diesel engine (DE). Beside

loader, haul truck, development jumbo, truck and other mine equipments that use DE are also in

the underground tunnels.

The particles in DEE are diesel particulate matter (DPM) consisting of the center of

carbon nucleus defined as elemental carbon (EC) and absorbed organic compounds defined as

organic carbon (OC), and a small number of sulphate, nitrate, metal, and other elements. DEE

classified as carcinogenic to human (Group 1), the decision was based on National Institute for

Occupational Safety and Health (NIOSH) and US National Cancer Institute (NCI) study showed

exposure-response relationships between respirable EC exposure and lung cancer mortality in UG

miners. The highest levels of EC were reported for enclosed UG work sites in mining.

Exposure assessment is the process of measuring or estimating the magnitude, frequency

and duration of human exposure to a compound in the environment. Human exposure evaluation

involved describing the nature and size of the population exposed to a air contaminants and

magnitude and duration of their exposure. The dose, its duration and timing, the nature and size

of the critical measures of exposure for risk characterization. DPM usually less than one micron,

which causes them to be more easily inhaled and retained in the body. Presently the United States

mining industry is in the process of phasing in stringent regulations relating to diesel particulates

in underground mines. Exposure limits for DPM adopted by MSHA for metal or non-metal

Page 34: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

xxiv

underground mines (non-coal). The present PEL for DPM as per MSHA (30 CFR 57.5060(b)) is

160 μg TC/m3, with the defined as total carbon (TC) content.

Research is carried out in DOZ, which is a production area of UG located The study was

held at the DOZ UG mine on the coordinate points of 733250-734250 Easting; 951250-952250

Northing; UTM Zone 53 South. The mining site is situated in Jayawijaya Mountain, East Mimika

District, Papua Province, Indonesia. Measurement were taken represent ambient conditions and a

comprehensive chemical analysis was performed. Data of DPM as TC was defined as the sum of

EC and OC. Both EC and OC were measured by NIOSH method number 5040.

This study applied spatial analysis by universal kriging for mapping DPM concentration

in the area trcuk haulage drift at DOZ. The data obtained from these calculations were then

processed into a frame using a spatial model. It has been most frequently used for providing

boundary conditions to dynamic modeling of the air pollution. In the current study, ArcGIS were

used for generating maps. A spirometric measurement were conduct to diagnose COPD and

assessment airflow limitation based on GOLD, is conduct to the 314 miners that work at the

DOZ.

DOZ mine airflow area provides sufficient for airways were required were based on

minimum velocity concern in main travelways and dilution of diesel contamination. Total airflow

demand is 1.498 m3/s. Airflow to each primary level, undercut, extraction and haulage was based

on providing 0.079 m3/s/kW over diesel equipment and a minimum air velocity of 0.76 m/s in

areas where personnel and non-diesel operate. Intake and exhaust airways were required to

provide sufficient airflow. It caused by the multiple parallel drifts on the extraction (production)

level to control block caving mines. Concerning to main trailways, airflow required for dilution

of DEE contamination and minimum velocity. For ventilation system designed to assure all

personnel working in truck haulage drifts in fresh air. Determination of airflow quantity that

influence by mining equipment and wide variations in characteristics of emissions even amongst

vehicle of similar size and power. The number of parameter affecting the total airflow required

for a amount of DE.

Spatial interpolation analysis is using air dispersion model by numerically processing

emission and meteorological data. Kriging method is a common method used and represents

spatially continuous phenomena. A method has formed the basis for environmental pollution

Page 35: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

xxv

mapping in recent years. This method describe DOZ mine air quality exposure model for

predicting DPM concentrations to which the miners’ is exposed. Air pollution analysis and points

of monitoring and measurement (truck haulage drifts and tunnels) used in this studies of various

pollutants from HE operating in UG environments.

Air polutant data measurements are use in assesses use of Geographic Information System

(GIS) based Kriging method to produce the most accurate and providing useful information about

the spatial interpolation patterns DPM concentration in DOZ. A mapping was built in ArcGIS,

integrating relevant data on truck haulage drifts, tunnels and ventilation rate. The result that show

DPM can be estimated, mapped and visualized within a GIS framework. The spatial distribution

of the pollutants is an integral component from risk evaluation aspect concerning health and

environment. Technique used for illustrating the spatial distribution provides a meaning for

estimating the probability of the attribute value, which exceeds required threshold in a particular

location.

Results of the air pollutant concentration mapping was DPM with universal kriging. In

general, it indicated a high concentration, therefore, denoting bad condition at the truck haulage

area, even though no difference in DPM concentration was found. Almost areas had the DPM

concentration ranging from 343.26 to 618.23 g/m3. Even at some areas the rates were 618.24 to

1168.18 g/m3. Although the air quality inside the DOZ was affected by balance of the total air

intake and exhaust, as the part of ventilation system to supply the needs for air, the quality is still

not capable of diluting air pollutants, in particular DPM. The air requirement of all mining

workers was 650 individuals with operational factor of 100 %, where the total airflow per unit

was 0.03 m3/s. Besides, the airflow quantity necessary for each unit type of the diesel equipment

depended its operational factor on the power unit (in horsepower unit), which was different from

unit type and affected by operational factor of each unit equipment.

Minimum airflow value of 0.03 m3/s/worker and 0.067 m3/s/kW for DEE dilution as per

Indonesian Mining Regulation. Actually, 0.08 m3/s/kW is a design value and is higher than the

typical MSHA equipment quantities provided for gaseous compliance. For truck haulage routes is

6.1 m/s as the maximum velocity. Ventilation for diesel shops based on the dilution of exhaust

gaseous for two large loaders, which requires approximately 40.0 m3/s. Ventilation of non-diesel

shops has been established at 23.5 m3/s based on experience at the mine. Airflow through the lube

Page 36: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

xxvi

shop areas has been determined to be 28.2 m3/s based on expected equipment usage. Operating

factors represent the percentage of time that the equipment will be running and have to applied to

determine approximate airflow requirements.

Environmental exposures to fumes, gases, air pollutants, and occupational dusts

contribute to impaired lung function. The most prevalent environmental risk factor for COPD is

cigarette smoking, which is associated with a higher mortality rate, a higher burden of respiratory

symptoms and lung function abnormalities, and greater decreases in lung function. Spirometric

measurement for COPD diagnosis is done to 314 miners that work at the DOZ.

The miners work in DOZ for 15 years ratably. This is in line with the mining age of DOZ

which began operating in 1998. The years of working are in line with the amount of time exposed

by DEE. Exposure to particles is a factor that affects disease progression, although it is also

affected by age and sex, although in this study, gender is not used as an independent variable

because all miners in DOZ are male. Prevalence of COPD was higher in smokers and ex-smokers

compared to non-smokers. The number of non-smokers are 142 miners (45.2%) of the total

miners, which is less when compared with the miners who smoke, 172 miners (54.8%) of the

total miners are 9.8% higher than miners as non-smokers. COPD is considered in a history of

exposure to risk factors for the disease. The results of spirometry measurement, the presence of a

post-bronchodilator FEV1/FVC <0.70 confirms the presence of persistent airflow limitation on

314 miners as many as 26 miners (8.3%). Thus it can be said that exposure to DEE can cause

COPD on the miners who worked in DOZ.

To measure the severity of airflow obstructive toward the miners who experience COPD,

a follow-up test on miners with FEV1 (% predicted) assessed on miners' with FEV1/FVC <0.70,

and it is obtained the result of severity of airflow limitation classification for miners with COPD

those are: for moderate (GOLD 2) is 14 miners or 54%, severe (GOLD 3) is 10 miners or 38%,

and very severe (GOLD 4) is 2 miners or 8%. ANOVA test is conducted by enter method to

determine the amount of working time (exposure) DPM against severity of airflow limitation

with COPD and whether other factors those are age, smoking habits can also affect the severity.

The results obtained from these tests shows that the value R=0.173 with value F=2.395 on the

value of significance (α) = 0.05, so it can be concluded that the GOLD category is influenced by

3% of the length of exposure to DPM, height, smoking habits, and age of miners. From the

Page 37: EXPOSURE RESPONSE OF DIESEL ENGINE EXHAUST (DEE) …eprints.undip.ac.id/66323/1/1.Cover_Pengesahan_Daftar_Abstrak_Resume.pdf · Arif Susanto, Edi K. Putro & Fauzi Jatmiko. Occupational

xxvii

severity measurement of airflow obstructive to miners experiencing COPD, the amount of

working duration (exposure) DPM against severity of airflow limitation with COPD by 3%, in

which the other factors are age and smoking habits also affects the severity. From these results,

concluded that the concentration mapping can be used to evaluate exposure-response

relationships. The estimated exposure of the DEE pollutant was recommended to perform as the

part of the study on predicting whether the pollutant gives any impact on health condition of the

mining workers in a longterm exposure.


Recommended