+ All Categories
Home > Technology > Faltenbacher - Simulating the Universe

Faltenbacher - Simulating the Universe

Date post: 17-Jan-2015
Category:
Upload: cosmoaims-bassett
View: 1,200 times
Download: 0 times
Share this document with a friend
Description:
 
Popular Tags:
41
Simulating the Universe Andreas Faltenbacher Cape Town International Cosmology Summer School, 23. January 2012
Transcript
Page 1: Faltenbacher - Simulating the Universe

Simulating the Universe

Andreas Faltenbacher

Cape Town International Cosmology Summer School, 23. January 2012

Page 2: Faltenbacher - Simulating the Universe

Outline:

• Celestial peace

• Gravitation

• Initial conditions

• Background cosmology

• From dark to light

Page 3: Faltenbacher - Simulating the Universe

Celestial peace

Page 4: Faltenbacher - Simulating the Universe

Dunhuang Star Chart from Tang Dynasty (618 - 907)

Orion didn’t move much the last 1200 years

Page 5: Faltenbacher - Simulating the Universe

Dunhuang Star Chart from Tang Dynasty (618 - 907)

Orion didn’t move much the last 1200 years

Page 6: Faltenbacher - Simulating the Universe

We hardly see motion in astronomical observations

but if Big Bang Theory is correct

objects must have formed at some point

Simulations are the only tool to

directly investigate the evolution

of the Universe and it’s constituents

Page 7: Faltenbacher - Simulating the Universe

Gravitation

Page 8: Faltenbacher - Simulating the Universe

Erik Holmberg 1941: Replacing gravitation by light

Intensity (Power per unit Area): I = P2πr2

Page 9: Faltenbacher - Simulating the Universe

The 1/r2 law for ∼homogeneous distributions

Impact of individual spheres is ≈equal

Page 10: Faltenbacher - Simulating the Universe

The 1/r2 law for ∼homogeneous distributions

Impact of individual spheres is ≈equal

Page 11: Faltenbacher - Simulating the Universe

Simulations of gravitationally interacting N-body systems:

The long range nature of gravity requires a double sum over all

interacting objects ⇒ N2 problem

Page 12: Faltenbacher - Simulating the Universe

Can energy loss due to tides cause capture ?

hyperbolic orbits & tidal friction ⇒ capture

Page 13: Faltenbacher - Simulating the Universe

Initial conditions

how to get the fluctuation spectrum right

Page 14: Faltenbacher - Simulating the Universe

Aarseth 1963

How to simulate an irregular cluster ?

Page 15: Faltenbacher - Simulating the Universe

Peebles 1970: Top hat collapse

density profiles of clusters too steep

Page 16: Faltenbacher - Simulating the Universe

White 1976: expanding initial conditions

700 particles representing galaxies with different masses

Page 17: Faltenbacher - Simulating the Universe

White 1976: expanding initial conditions

O > M > H > ∗, too much mass segregation

Page 18: Faltenbacher - Simulating the Universe

Poisson (P (k) = const.) observed power spectrum

Page 19: Faltenbacher - Simulating the Universe

Aarseth, Gott & Turner 1979: Cosmic density field

In order to generate fluctuations with power spectrum,P (k) ∝ k−1, particles are placed along rods

Page 20: Faltenbacher - Simulating the Universe

Aarseth, Gott & Turner 1979: Cosmic density field

In order to generate fluctuations with power spectrum,P (k) ∝ k−1, particles are placed along rods

Page 21: Faltenbacher - Simulating the Universe

Aarseth, Gott & Turner 1979: Cosmic density field

In order to generate fluctuations with power spectrum,P (k) ∝ k−1, particles are placed along rods

Page 22: Faltenbacher - Simulating the Universe

Klypin & Shandarin 1983:

323 particle, 160 Mpc/h box, Zel’dovich approximation, FFT

Page 23: Faltenbacher - Simulating the Universe

Klypin & Shandarin 1983:

323 particle, 160 Mpc/h box, Zel’dovich approximation, FFT

Page 24: Faltenbacher - Simulating the Universe

Klypin & Shandarin 1983:

323 particle, 160 Mpc/h box, Zel’dovich approximation, FFT

Page 25: Faltenbacher - Simulating the Universe

Current approach:

• Compute initial power spectrum CMB-

FAST, CAMB, CMBeasy, ...

• Generate a random realization of the

density field in k-space

• Do Fourier transform to get real space

density fluctuations

• Apply Zel’dovich approximation to obtain

initial positions and velocities of simula-

tion particles

Page 26: Faltenbacher - Simulating the Universe

Initial power spectrum & transfer function

P (k) = 〈|δ(k)|2〉δ(r) =

∫δ(k) exp(−ikr)dk

δ(r) =ρ(r)− ρ

ρ

Bardeen, Bond, Kaiser & Szalay 1986

Page 27: Faltenbacher - Simulating the Universe

Zel’dovich approximation: r(q, t) = a(t)[q + b(t)s(q)]s(q) = ∇Φ0(q)

Edmund Bertschinger’s COSMICS package (http://web.mit.edu/edbert/)

Page 28: Faltenbacher - Simulating the Universe

Springel at al. 2005 :

as time went by ...

Page 29: Faltenbacher - Simulating the Universe

Background cosmology

Newtonian gravity on expanding background

Page 30: Faltenbacher - Simulating the Universe

The collosionless Boltzmann equation (Vlasov equation) for the

dark matter distribution function, f , in comoving coordinates x:

f = f(x, x, t)

∂f

∂t+ x

∂f

∂x− ∇φ

∂f

∂p= 0, p = a2x,

∇2φ = 4πGa2(ρ(x, t)− ρ) = 4πGa2Ωdmδρcr

Page 31: Faltenbacher - Simulating the Universe

The solution of the Vlasov equation can be written in terms ofequations for characteristics, which look like equations of parti-cle motion:

dp

da= −

∇φa,

dv

dt+ 2

a

av = −

∇φ′

a3

dx

da=

p

aa2,

dx

dt= v

∇2φ = 4πGΩ0δρcr,0/a, φ′ = aφ

a = H0

√1 + Ω0

(1

a− 1

)+ ΩΛ

(a2 − 1

)

Page 32: Faltenbacher - Simulating the Universe

Mare Nostrum Universe: 100 Mpc/h10243 particles, 500 Mpc/h, mDM = 8.24× 109h−1M

credit: Arman Khalatyan et al.

Page 33: Faltenbacher - Simulating the Universe

Mare Nostrum Universe: 20 Mpc/h10243 particles, 500 Mpc/h, mDM = 8.24× 109h−1M

credit: Arman Khalatyan et al.

Page 34: Faltenbacher - Simulating the Universe

Mare Nostrum Universe:10243 particles, 500 Mpc/h, mDM = 8.24× 109h−1M

credit: Arman Khalatyan et al.

Page 35: Faltenbacher - Simulating the Universe

From dark to light

adding baryons

Page 36: Faltenbacher - Simulating the Universe

Mare Nostrum Universe: Adiabatic Hydrodynamics10243 particles, 500 Mpc/h, mgas = 1.45× 109h−1M

credit: Arman Khalatyan et al.

Page 37: Faltenbacher - Simulating the Universe

Mare Nostrum Universe: Adiabatic Hydrodynamics10243 particles, 500 Mpc/h, mgas = 1.45× 109h−1M

credit: Arman Khalatyan et al.

Page 38: Faltenbacher - Simulating the Universe

Mare Nostrum Universe: Adiabatic Hydrodynamics10243 particles, 500 Mpc/h, mgas = 1.45× 109h−1M

credit: Arman Khalatyan et al.

Page 39: Faltenbacher - Simulating the Universe

Other recipes to take baryons into account:

• Full astro-hydrodynamics, including

cooling, feed back, etc.

• Semi-analytical approach

• Halo occupation distribution, abundance

matching

Page 40: Faltenbacher - Simulating the Universe

Guedes 2011: Succeeded to simulate a realistic disk

15 kpc 0.3 0.7

Page 41: Faltenbacher - Simulating the Universe

... how far are we from ...


Recommended