+ All Categories
Home > Documents > Fatigue behavior of highly porous titanium by...

Fatigue behavior of highly porous titanium by...

Date post: 10-Aug-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
17
Mitglied der Helmholtz-Gemeinschaft Fatigue behavior of highly porous titanium produced by powder metallurgy M. Bram 1 , S. Özbilen 2 , D. Liebert 1 , T. Beck 3 , O. Guillon 1 1 Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, 52425 Jülich, Germany 2 Gazi University, Faculty of Technology, Department of Metallurgical and Materials Engineering, Teknikokullar, Ankara, Turkey. 3 Lehrstuhl für Werkstoffkunde (WKK), Technische Universität Kaiserslautern, D67663 Kaiserslautern, Germany. DGM Werkstoffwoche Dresden, 14. 18.09.2015
Transcript
Page 1: Fatigue behavior of highly porous titanium by powderwerkstoffwoche.de/fileadmin/user_upload/20150916...‐Ti lattice O,C,N atoms solved as interstitial elements O eq c O 0.75 c C 2

Mitg

lied

der H

elm

holtz

-Gem

eins

chaf

t

Fatigue behavior of highly porous titanium produced by powder metallurgy

M. Bram1, S. Özbilen2, D. Liebert1, T. Beck3, O. Guillon1

1Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, 52425 Jülich, Germany2Gazi University, Faculty of Technology, Department of Metallurgical and Materials Engineering, Teknikokullar, Ankara, Turkey.3Lehrstuhl für Werkstoffkunde (WKK), Technische Universität Kaiserslautern, D‐67663 Kaiserslautern, Germany.

DGM WerkstoffwocheDresden, 14. ‐ 18.09.2015

Page 2: Fatigue behavior of highly porous titanium by powderwerkstoffwoche.de/fileadmin/user_upload/20150916...‐Ti lattice O,C,N atoms solved as interstitial elements O eq c O 0.75 c C 2

2 Martin Bram, Dresden, 16.09.2015

Outline

Applications of porous titanium Powder metallurgical processing of porous titanium Influence of interstitial contents on mechanical properties Fatigue testing with varying interstitial contents Results Conclusions

Page 3: Fatigue behavior of highly porous titanium by powderwerkstoffwoche.de/fileadmin/user_upload/20150916...‐Ti lattice O,C,N atoms solved as interstitial elements O eq c O 0.75 c C 2

3 Martin Bram, Dresden, 16.09.2015

Well known are biomedical applications of porous titanium…

Synthes Biomet Biomet Centerpulse

Spine implant Cone augmentsAcetabular shell Knee implant

Less known are …

Porous titanium(current collector)

Application in electrochemical devices and filters: Current collector for PEM‐electrolysis cells Porous substrates in lead‐acid batteries Filter/catalyst support under harsh conditions

PEM electrolysis cell

Page 4: Fatigue behavior of highly porous titanium by powderwerkstoffwoche.de/fileadmin/user_upload/20150916...‐Ti lattice O,C,N atoms solved as interstitial elements O eq c O 0.75 c C 2

4 Martin Bram, Dresden, 16.09.2015

Powder metallurgical production of porous titanium

P/M with temporary space holder: Pressing Ti powder/space holder mixtureMachining in the unsintered state Decomposition of space holder Sintering

Synthes

Spine implant

Other similarP/M technologies

are in use

Additive manufacturing: CAD model Virtual slices of CAD data Selective melting of a powder bed by electron beam or laser 

Secondary operations

Patient‐specific implants

Source: arcam

Wet chemical processing: Tape casting/Screen printing Debinding Sintering

Surface ofcurrent collectorPEM electro‐lysis cell

40 µm

Page 5: Fatigue behavior of highly porous titanium by powderwerkstoffwoche.de/fileadmin/user_upload/20150916...‐Ti lattice O,C,N atoms solved as interstitial elements O eq c O 0.75 c C 2

5 Martin Bram, Dresden, 16.09.2015

Sources for interstitial elements

Graphite‐crucible during gas atomizationof the powder  carbon

Gasatomization with argon residual oxygen, nitrogen

Residuals from organic binders carbon, oxygen

Sintering atmosphere (vacuum, argon) residual oxygen, nitrogen

Titanium‐lattice:  high solubility of O,C,N Increased strength, reducedductility due to interstitials:

hexagonal‐Ti lattice

O,C,N atomssolved asinterstitialelements

NCOeq cccO 275.0Oxygen‐equivalent (Conrad1966)

H. Conrad, Acta Met., 14 (1966) 1631 – 1633.

Uptake of interstitial elements (O,C,N)during processing of Ti powders

Page 6: Fatigue behavior of highly porous titanium by powderwerkstoffwoche.de/fileadmin/user_upload/20150916...‐Ti lattice O,C,N atoms solved as interstitial elements O eq c O 0.75 c C 2

6 Martin Bram, Dresden, 16.09.2015

Influence of interstitial contents on characteristic properties of titanium and titanium alloys

Ti Grade1Ti Grade2Ti Grade3Ti Grade4Ti‐6Al‐4V Gr.5Ti‐6Al‐4V Gr.23Ti‐6Al‐7Nb

Omax.[wt%]0.180.250.350.400.200.130.20

d0.2[MPa]170275380483828759800

max.[MPa]240345450550895828900

f (min)[%]24201815101010

Norm

ASTM B 348ASTM B 348 ASTM B 348 ASTM B 348ASTM B 348ASTM B 348ASTM F 1295

Cmax.[wt%]0.100.100.100.100.100.100.10

How can these relationships be transfered to porous titanium and its fatigue behavior ? 

Page 7: Fatigue behavior of highly porous titanium by powderwerkstoffwoche.de/fileadmin/user_upload/20150916...‐Ti lattice O,C,N atoms solved as interstitial elements O eq c O 0.75 c C 2

7 Martin Bram, Dresden, 16.09.2015

Manufacturing of porous titaniumwith well defined interstitial contents

Ti powder, gas atomized (GA)(TLS, Bitterfeld, Germany)

d50 = 33 µm0.166 wt.% O0.004 wt.% C

Ti powder, hydr./dehydr. (HDH) (GFE, Nuremberg, Germany)

d50 = 48.3 µm0.355 wt.% O0.016 wt.% C

Series C: GA powderWarm compaction with binder

Porosity: 62.0 %0.580 wt.% O0.076 wt.% C

Series A: GA + HDH powdersCold compaction65.0 % porosity0.336 wt.% O0.006 wt.% C

Series B: HDH powdersCold compaction63.9 % porosity0.443 wt.% O0.012 wt.% C

Ratio Ti/space holder = 30/70Cold/warm compaction

Sintering 1300°C, 3h, vacuum 8mmh  11 mm

Page 8: Fatigue behavior of highly porous titanium by powderwerkstoffwoche.de/fileadmin/user_upload/20150916...‐Ti lattice O,C,N atoms solved as interstitial elements O eq c O 0.75 c C 2

8 Martin Bram, Dresden, 16.09.2015

Strategy of fatigue testing

tmax

min

Tension

Compression

Cyclic compression/compression tests: Ambient temperature Sinusoidal loading Frequency 6 Hz Stress level: min = 0.15∙d0.2 (from static compression test) Abort criterion: 5% (20%) plastic deformation

or 4 million load cycles R = 10, 5, 2 2 samples for each parameter set

Static compression tests to define min: Ambient temperature Strain rate 10‐3 s‐1 Abort criterion: 30% plastic deformation 2 samples for each parameter set

Series A (0.336 wt.% O) min = ‐ 35.0 MPaSeries B (0.443 wt.% O) min = ‐ 46.0 MPaSeries C (0.580 wt.% O) min = ‐ 57.0 MPa

Page 9: Fatigue behavior of highly porous titanium by powderwerkstoffwoche.de/fileadmin/user_upload/20150916...‐Ti lattice O,C,N atoms solved as interstitial elements O eq c O 0.75 c C 2

9 Martin Bram, Dresden, 16.09.2015

Three stages of fatigue

Strain at max

Strain at min

Page 10: Fatigue behavior of highly porous titanium by powderwerkstoffwoche.de/fileadmin/user_upload/20150916...‐Ti lattice O,C,N atoms solved as interstitial elements O eq c O 0.75 c C 2

10 Martin Bram, Dresden, 16.09.2015

Fatigue results of series A ‐ C

Series A: 0.336 wt.% O Series B: 0.443 wt.% O Series C: 0.580 wt.% O

1.37∙105 cycles7.86∙104 cycles

5.34∙104 cycles6.03∙104 cycles

5.57∙104 cycles5.62∙104 cycles

cycles tofailure

Metallographical preparationto analyse the failure behavior:

Series A: Sample with 5% deformationSeries B: Sample with 5% deformationSeries C: Sample with 20% deformation 

20%

5%

Page 11: Fatigue behavior of highly porous titanium by powderwerkstoffwoche.de/fileadmin/user_upload/20150916...‐Ti lattice O,C,N atoms solved as interstitial elements O eq c O 0.75 c C 2

11 Martin Bram, Dresden, 16.09.2015 detailed investigation of position 2

Microstructure of samples from series A,B(Fatigue test stopped at 5% deformation)

Series A: 0.336 wt.% O Series B: 0.443 wt.% O

no obvious cracks were foundafter 1.6∙105 cycles ductile deformation

crack formation at positions 1,2,3after 8.0∙104 cycles

30°A B

Page 12: Fatigue behavior of highly porous titanium by powderwerkstoffwoche.de/fileadmin/user_upload/20150916...‐Ti lattice O,C,N atoms solved as interstitial elements O eq c O 0.75 c C 2

12 Martin Bram, Dresden, 16.09.2015

Microstructure, sample series B, position 2Cross section, overview

SEM detail, position 2

B

B

S = crack initiationat the surface

P =crack initiationat micropores

IF = intergranularfacture

TF =transgranularfacture

B

B

Page 13: Fatigue behavior of highly porous titanium by powderwerkstoffwoche.de/fileadmin/user_upload/20150916...‐Ti lattice O,C,N atoms solved as interstitial elements O eq c O 0.75 c C 2

13 Martin Bram, Dresden, 16.09.2015

Microstructure, sample series B, position 2

B B

Electron backscatter diffraction (EBSD) EBSD ‐ Local misorientation

Areas of high plastic deformation

Page 14: Fatigue behavior of highly porous titanium by powderwerkstoffwoche.de/fileadmin/user_upload/20150916...‐Ti lattice O,C,N atoms solved as interstitial elements O eq c O 0.75 c C 2

14 Martin Bram, Dresden, 16.09.2015

Microstructure of sample from series C(Fatigue test stopped at 20% deformation)

30°

Brittle behaviour, formation of crush band

30°

C

after 1.1∙105 cycles

Page 15: Fatigue behavior of highly porous titanium by powderwerkstoffwoche.de/fileadmin/user_upload/20150916...‐Ti lattice O,C,N atoms solved as interstitial elements O eq c O 0.75 c C 2

15 Martin Bram, Dresden, 16.09.2015

Series A: Variation of R and min

tmax

min

Tension

Compression

min = ‐ 35.0 MPa, R = 10

1.37∙105 cycles7.86∙104 cycles

cycles tofailure

Approach 1: Decrease of R to 5 and 2

Approach 2: Decrease of min

min = ‐ 35.0 MPa, R = 2min = ‐ 35.0 MPa, R = 5

8.55∙105 cycles1.97∙106 cycles

> 4∙106 (abort criterion)

0.9∙min  R = 10 0.8∙min  R = 10

> 4∙106 > 4∙106

Page 16: Fatigue behavior of highly porous titanium by powderwerkstoffwoche.de/fileadmin/user_upload/20150916...‐Ti lattice O,C,N atoms solved as interstitial elements O eq c O 0.75 c C 2

16 Martin Bram, Dresden, 16.09.2015

Summary and conclusion

P/M processing of porous titanium with variation of interstitial content

Series A: 0.336 wt.% O;  No crack formation found (after  105 cycles, 5% deformation) Decrease of R and min 4∙106 cycles w/o failure

Fatigue testing in compression/compression modemin = 0.15∙d0.2; variation of R = 10, 5, 2; variation of min

Series B: 0.443 wt.% O;  Formation of first cracks (after  5∙104 cycles, 5% deformation)

Series C: 0.580 wt.% O;  Brittle fracture, formation of crush bands (after  5∙104 cycles, 5%, 20% deformation)

Page 17: Fatigue behavior of highly porous titanium by powderwerkstoffwoche.de/fileadmin/user_upload/20150916...‐Ti lattice O,C,N atoms solved as interstitial elements O eq c O 0.75 c C 2

17 Martin Bram, Dresden, 16.09.2015

Thank you for your attention !

Thanks to all colleagues at IEK‐1


Recommended