+ All Categories
Home > Documents > Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of...

Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of...

Date post: 16-Aug-2019
Category:
Upload: phungdieu
View: 216 times
Download: 0 times
Share this document with a friend
114
1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center (DLR) Institute for Robotics and Mechatronics
Transcript
Page 1: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

1

DLR 02/05/2012

Feedback control of humanoid robots: balancing and walkingDr.-Ing. Christian Ott

German Aerospace Center (DLR)

Institute for Robotics and Mechatronics

Page 2: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 2

Overview

Part 0: Short overview of (biped robots at) DLR

Part I: Modeling

Part II: Balancing

Part III: Walking Control

Page 3: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 3

German Aerospace Center (DLR)

National research laboratoryPart of the Helmholtz associationResearch fields:

o aerospace, o space technologies, o energy and traffic

~6300 researchers13 locations29 institutes

Institute of Robotics and Mechatronics: Former director: Prof. HirzingerDirector: Prof. Albu-Schäffer

Page 4: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 4

Institute of Robotics & Mechatronics

LBR-II 1999/2000

ROKVISS 2007-2010

LBR-I,199x

Space Robotics

Manipulation

ROTEX 1993

GETEX

ESS

Torque sensors at the power outputafter the bearings

Torque sensors afterthe gears, but beforethe last bearings

Modular design,load/weight ratio ~ 1:1

LBR-M, 2003

Commercial torque controlled arm (KUKA)

Page 5: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Compliant ManipulationJoint torque sensing & control for manipulation

Robustness: Passivity Based Control

Performance:Joint Torque Feedback

(noncollocated)

MotorDynamics

Rigid-BodyDynamics

TorqueControl

Environ-ment

ComplianceControl

extq

um

Page 6: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Compliant Manipulation

Robustness: Passivity Based Control

Performance:Joint Torque Feedback

(noncollocated)

MotorDynamics

Rigid-BodyDynamics

TorqueControl

Environ-ment

ComplianceControl

extq

um

Page 7: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center
Page 8: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 8

2009-2013

Anthropomorphic Hand-Arm System[Grebenstein, Albu-Schäffer et al, Humanoids 2010]

• Compliant actuation

• Antagonistic actuation for fingers

• Variable stiffness actuation in arm

• Robustness to shocks and impacts

Biped RobotJoint torque sensing & control for manipulation

Page 9: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 9

Bipedal Walking Robots at DLR

DLR-Biped(2010-2012)

TORO, preliminary version (2012)

TORO (2013)TOrque controlled humanoid RObot

• Drive technology of the DLR arm Allow for position controlled walking (ZMP) and joint torque control!

• Small foot design: 19 x 9,5 cm

• Sensors:- joint torque sensors- force/torque sensors in the feet- IMU in the trunk

Page 10: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 10

First experiments with DLR-Biped

First experiment at Automatica Fair in 06-2010: ZMP preview control [Kajita, 2003]Current approach: Walking control based on the Capture Point

[Englsberger, Ott, Roa, et al. IROS 2011]

Page 11: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 11

TORO

Page 12: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 12

Overview

Part I: Modeling• Multibody dynamics• ZMP• Simplified models for control• Capture Point• Centroidal Moment Pivot

Part II: Balancing

Part III: Walking Control

Page 13: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Models of Legged (Humanoid) Robots

Multi-Body-Models Conceptual Models

Fixed Base Models(predefined contact state)

Floating Base Models Walking Running

Dynamical Models (Mechanical)

Complexity

Specialization

Page 14: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Free-Floating vs. Fixed Base Models

Fixed base modelsIn each contact state the model is different:

• Single support (right, left)• Double support• Heel Off• Toe Touch Down• …

Transition between contact states

double supportover-contrained

single supportserial kin. chain

Free-floating model

Components:• Lagrangian dynamics• Constraints due to contact forces• Transition equations (impacts)

underactuated

Page 15: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 15

Free-Floating vs. Fixed Base Models

Fixed base modelsIn each contact state the model is different:

• Single support (right, left)• Double support• Heel Off• Toe Touch Down• …

Transition between contact states

double supportover-contrained

single supportserial kin. chain

Free-floating model

Components:• Lagrangian dynamics• Constraints due to contact forces• Transition equations (impacts)

underactuated

Planning & control must ensure that the considered contact state is valid! ground reaction force must fulfill constraints

Page 16: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Configuration Space

)3(SEHb Qq

n

111 SSST n

Configuration Space: )3(SEQ

Page 17: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Configuration Space

)3(SEHb Qq

n

111 SSST n

Configuration Space: )3(SEQ

Using local coordinates: n6

6bx

Page 18: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 18

Modeling

)3(6 seFext

extT FqJqgqqqCqqM )()(),()(

,q

Page 19: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 19

Modeling

extF

extT FqJqgqqqCqqM )()(),()(

extF

,q

6bx

6bF

Page 20: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 20

Modeling

extF

extT FqJqgqqqCqqM )()(),()(

extF

extT

Tbb

bb

bb

qx

xqx FqJqJF

qxgqx

qxqCqx

qMqMqMqM

)()(

),(),,()()()()(

,q

6bx

6bF

Page 21: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 21

Modeling

extF

extT FqJqgqqqCqqM )()(),()(

extF

extT

Tbtb

sbbbqb

bqb FqJ

qAdWqHg

qqqC

qqMqMqMqM

)()(

),(),,()()()()(

,q

)3()3(

sexSEHx

b

sbb

body twist

Global representation!

Page 22: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 22

Modeling

extF

rF lF

l

r

qq

q

6bx

Page 23: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 23

Modeling

extF

rF lF

lT

l

Tbl

rT

r

Tbr

bb

bb

qx

xqx FqJ

qJFqJ

qJqxg

qx

qxqCqx

qMqMqMqM

)(0

)(

0)()(

0),(),,(

)()()()(

l

r

qq

q

6bx

Page 24: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 24

Bipedal Robot Model

rF lF

lT

l

Tbl

rT

r

Tbr

bb

bb

qx

xqx FqJ

qJFqJ

qJqxg

qx

qxqCqx

qMqMqMqM

)(0

)(

0)()(

0),(),,(

)()()()(

l

r

qq

q

6bx

Properties for control:• Underactuated• Varying unilateral constraints

(single support, double support, edge contact)

• Constraints on the state & control

Page 25: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 25

l

Tl

Tbl

rT

r

Tbr

bb

bb

qx

xqx FqJ

qJFqJ

qJqxg

qx

qxqCqx

qMqMqMqM

)(0

)(

0)()(

0),(),,(

)()()()(

pf p p

c

Mg

lríiT

i

FqJ

Iu

MgqqCq

cqM

M

, )ˆ(00

0)ˆ,ˆ(ˆ0

ˆ)(ˆ00

p

q

),( c

bx

Bipedal Robot Model

Page 26: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 26

l

Tl

Tbl

rT

r

Tbr

bb

bb

qx

xqx FqJ

qJFqJ

qJqxg

qx

qxqCqx

qMqMqMqM

)(0

)(

0)()(

0),(),,(

)()()()(

pf p p

c

Mg

lríiT

i

FqJ

Iu

MgqqCq

cqM

M

, )ˆ(00

0)ˆ,ˆ(ˆ0

ˆ)(ˆ00

p

q

lri

ifMgcM,

),( c

bx

Conservation of momentum:

Bipedal Robot Model

Page 27: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 27

l

Tl

Tbl

rT

r

Tbr

bb

bb

qx

xqx FqJ

qJFqJ

qJqxg

qx

qxqCqx

qMqMqMqM

)(0

)(

0)()(

0),(),,(

)()()()(

pf p p

c

Mg

lríiT

i

FqJ

Iu

MgqqCq

cqM

M

, )ˆ(00

0)ˆ,ˆ(ˆ0

ˆ)(ˆ00

p

q

lri

ifMgcM,

),( c

bx

iMgcL Conservation of angular momentum:

Conservation of momentum:

Bipedal Robot Model

Page 28: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 28

l

Tl

Tbl

rT

r

Tbr

bb

bb

qx

xqx FqJ

qJFqJ

qJqxg

qx

qxqCqx

qMqMqMqM

)(0

)(

0)()(

0),(),,(

)()()()(

pf p p

c

Mg

lríiT

i

FqJ

Iu

MgqqCq

cqM

M

, )ˆ(00

0)ˆ,ˆ(ˆ0

ˆ)(ˆ00

p

q

lri

ifMgcM,

),( c

bx

iMgcL Conservation of angular momentum:

Conservation of momentum:

On a flat ground:

)( MgcMpMgcLp

Bipedal Robot Model

ppfp

Page 29: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 29

l

Tl

Tbl

rT

r

Tbr

bb

bb

qx

xqx FqJ

qJFqJ

qJqxg

qx

qxqCqx

qMqMqMqM

)(0

)(

0)()(

0),(),,(

)()()()(

pf p p

c

Mg

lríiT

i

FqJ

Iu

MgqqCq

cqM

M

, )ˆ(00

0)ˆ,ˆ(ˆ0

ˆ)(ˆ00

),( c

bx

On a flat ground:

)( MgcMpMgcLp

Bipedal Robot Model

Page 30: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Zero Moment Point

Page 31: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 31

Zero Moment Point[Vukobratovic and Stepanenko,1972]

)(x1x 2x

F

ZMP as a ground reference point: Distributed ground reaction force under the supporting foot can be replaced by a single force acting at the ZMP.

z

x

),( yx

y

ZMP = CoP (Center of Pressure)

p1x 2x

F0

pyx 0),( in convex hull of the support polygon.

Page 32: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 32

Some facts about the ZMP

Can ZMP leave the support polygon? NOCan ZMP location be used as a stability criterion NO

If ZMP reaches the border of the support polygon foot rotation possible.

ZMP is defined on flat contact (no uneven surface).ZMP gives no information about sliding.

)(x1x 2x

F

Page 33: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

First usage of the ZMP

• Motion of the legs is predefined.• Upper body controls the ZMP in the center of the supporting foot

ensure proper foot contact during walking

Page 34: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

How to obtain the ZMP?

Measurement e.g. by Force/Torque Sensor

Dynamics Computation

Page 35: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

How to obtain the ZMP?

Measurement e.g. by Force/Torque Sensor

Dynamics Computation

sss fppp )()(

z

sfs

z

zsyyzszxy

z

zsxxzszyx

ffpfpp

p

ffpfpp

p

)(

)(

sp

p

Page 36: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

How to obtain the ZMP?

Measurement e.g. by Force/Torque Sensor

Dynamics Computation

sss fppp )()(

z

zsyyzszxy

z

zsxxzszyx

ffpfpp

p

ffpfpp

p

)(

)(

pf p p

ppfp

z

sfs

sp

p

Page 37: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

How to obtain the ZMP?

Dynamics Computation

pf p p

ppfp

MgcLfMgP

c

0

0

py

px

)( MgPpMgcLp

z

xyzyy

z

yxzxx

PMgLPpMgc

p

PMgLPpMgc

p

Page 38: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

A simplified walking model based on the ZMP

Page 39: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Mass concentrated model

pf p p

ppfp

Page 40: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Mass concentrated model

pf p p

ppfp

c0

zp

cMcLcMP

Page 41: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Mass concentrated model

pf p p

ppfp

c

z

xyzyy

z

yxzxx

PMgLPpMgc

p

PMgLPpMgc

p

0

zp

cMcLcMP

z

yzyy

z

xzxx

cgcc

cp

cgcccp

ZMP of a mass concentrated model

Page 42: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Mass concentrated model

p

c

z

yzyy

z

xzxx

cgcc

cp

cgcccp

gcccp xz

xx

0 zz cc

xc

Cart-Table Model [Kajita]

xx cp

Page 43: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Mass concentrated model

p

c

gcccp xz

xx

xc

Cart-Table Model [Kajita]Linear Inverted Pendulum Model [Sugihara]

xxz

x pccgc

p

c

xx pc xx cp

Page 44: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Capture Point(Extrapolated Center of Mass)

((Divergent Component of Motion))

Page 45: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Capture PointDefinition of the “Capture Point” (Pratt 2006, Hof 2008):

Point to step in order to bring the robot to stand.

constp

0

0* xxp

ptxtxttx ))cosh(1()0()sinh()0()cosh()(

ptx )(

c

p *p

cc ,

Computation of the Capture Point:

zcg

ZMP

pxx 2

Can be computed exactly for simple models, e.g. linear inverted pendulum model:

Page 46: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Capture Point Dynamics

xx

Coordinate transformation: ),(),( xxx

)(2 pxx p

xx

COMcapturepoint

xp

System structure: Cascaded system

exp. stableopen loopunstable

Dual use of the capture point for robotics1. step planning2. control

Page 47: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Capture Point in Human Measurements

Linear Inverted Pendulum Human

xx

y yData from [*]

[*] Hof, The extrapolated center of mass concept suggests a simple control of balance in walking, Human Movement Science 27, pp.112-125, 2008.

Page 48: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Centroidal Moment Pivot

Page 49: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Centroidal Moment Pivot

• Observation in human data: For normal level-ground walking, the human body‘s angular momentum (and the angular excursions) about the COM remains small through the gait cycle.

• The centroidal moment pivot was introduced as a ground reference point to address the effects of angular momentum about the COM in connection with postural balance strategies.

Page 50: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Centroidal Moment Pivot

Forces in the LIP model

p

x

z

Mg

xM

F

Effect of an additional hip torque

CMP

zgM

xM

F

pxzgx

zFpCMP

Mz

pxz

zgx

Page 51: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Interpretation

• The distance between CMP and ZMP corresponds to the angular momentum about the COM.

• While the ZMP cannot leave the support polygon (by definition), the CMP can leave it.

• The distance between CMP and the support polygon has been proposed as an indicator which balance strategy should dominate (via ZMP or via angular momentum).

Page 52: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 52

Overview

Part I: Modeling

Part II: Balancing1. Basics2. ZMP based balancing (concentrated mass model)3. Torque based balancing (multi body dynamics)

Part III: Walking Control

Page 53: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 53

Humanoid Balance

Vestibular system

Vision

Somatosensory system

IMU

Vision

force sensors

joint sensing

“Balance” is a generic term describing the ability to control the body posturein order to prevent falling.

Page 54: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 54

Humanoid Balance

Small push:Ankle strategy

force controlZMP control

angular momentum control

Medium push:Hip strategy

Large Push: Step strategy

Human

Robot

Strategies for human push recovery:

Page 55: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 55

mass concentrated model

Strategies for gait stabilization: Effect of an additional hip torque

p

Mg

xM

F

Mz

pxzgx

1. Controlling ZMP (constraints!)

2. Angular momentum control

3. Step adaptation

Page 56: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 56

Overview

Part I: Modeling

Part II: Balancing1. Basics2. ZMP based balancing (concentrated mass model)3. Torque based balancing (multi-body model)

Part III: Walking Control

Page 57: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 57

Motivation for compliant control

completely stiff fully compliantcompliant control

Page 58: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 58

ZMP based balancing

Joint Position Control

Feedback Stabilization

dx dqrefx

refpInverse

Kinematicsdq

RobotDynamics

Forward Kinematics

ZMPComputation

p

x q

LR FF ,

position/velocity controlled robot

p

x

z

Mg

xM

F

MgFxM

zxp ext

extF

Page 59: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 59

ZMP based balancing

Joint Position Control

Feedback Stabilization

dx dqrefx

refpInverse

Kinematicsdq

RobotDynamics

Forward Kinematics

ZMPComputation

p

x q

LR FF ,

position/velocity controlled robot

)()( refPrefdXrefd ppKxxKxx

Control law for stabilization:

Stability condition [*]: 0 PX KK

Stability condition [*]: [Choi, Kim, Oh, and You, Posture/Walking Control for Humanoid Robot Based on Kinematic Resolution of CoM Jacobian With Embedded Motion, TRO, 2007].

Effective Stiffness:

zMg

KKK

P

X

1

p

x

z

Mg

xM

F

MgFxM

zxp ext

extF

Page 60: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

ZMP Based balancing

Balancing + Vertical Motion

Balancing + Vertical Motion+ Compliant Orientation

Page 61: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 61

Overview

Part I: Modeling

Part II: Balancing1. Basics2. ZMP based balancing (concentrated mass model)3. Torque based balancing (multi-body model)

Part III: Walking Control

Page 62: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 62

Balancing & Posture Control

Trunk orientation Control

)()( dDdPCOM ccKccKMgF

Mg

extF

COMF

HIPT

)3(SOR

)(),(dR

RHIP DKRVT

extT

c

IMU measurements

Compliant COM control [Hyon & Cheng, 2006]

Page 63: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 63

Balancing & Posture Control

Compliant COM control [Hyon & Cheng, 2006]

Trunk orientation Control

)()( dDdPCOM ccKccKMgF

Mg

extF

COMF

HIPT

)3(SOR

)(),(dR

RHIP DKRVT

extT

),( HIPCOMd TFW Desired wrench:

IMU measurements

Page 64: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 64

Balancing & Posture Control

Compliant COM control [Hyon & Cheng, 2006]

Trunk orientation Control

)()( dDdPCOM ccKccKMgF

)(),(dR

RHIP DKRVT

),( HIPCOMd TFW Desired wrench:

IMU measurements

dW

extFMg

Page 65: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 65

Grasping and Balancing

Force distribution: Similar problems!

Page 66: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 66

Force Distribution in Grasping

F

FGGFGFGWO

1

111Net wrench acting on the object:

TPiOi AdG

Grasp Map

if

)3(seFC

Well studied problem in grasping: Find contact wrenches such that a desired net wrench on the object is achieved.

FCFC

)3(se

friction cone

Page 67: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 67

Force distribution

HIPT

COMF

f

fGGWd

1

1

ii

ii Rp

RG

ˆ

3if

Relation between balancing wrench & contact forces

Constraints:• Unilateral contact: (implicit handling of ZMP constraints)• Friction cone constraints

0, zif

Cf

T

F

GG

Page 68: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 68

Force distribution

HIPT

COMF

f

fGGWd

1

1

ii

ii Rp

RG

ˆ

3if

Relation between balancing wrench & contact forces

Constraints:• Unilateral contact: (implicit handling of ZMP constraints)• Friction cone constraints

0, zif

Formulation as a constraint optimization problem

Cf

23

22

21minarg CCTHIPCFCOMC ffGTfGFf

T

F

GG

321

Page 69: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 69

Contact force control via joint torques

ifMgcM

3if

c

lríiT

i

FqJ

Iu

MgqqCq

cqM

M

, )ˆ(00

0)ˆ,ˆ(ˆ0

ˆ)(ˆ00

iT

i fqJ )ˆ(

Multibody robot model:COM as a base coordinate system structure with decoupled COM dynamics.

[Space Robotics], [Wieber 2005, Hyon et al. 2006]

Passivity based compliance control (well suited for balancing)

Page 70: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 70

ForceDistribution

Torque based balancing

Force Mapping

TorqueControl

RobotDynamics

Object ForceGeneration

IMU

cf

q

for orientation control and COM computation

Page 71: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 71

Uncertain Foot Contact

[Ott, Roa, Humanoids 2011, best paper award]

Page 72: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 72

Experiments on a Perturbation Platform

Leg perturbation setup

Movable elastic platform

Experimental evaluation of the robustness with respect to disturbances (frequency & amplitude) at the foot

Page 73: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Out of phase disturbance

synchronous disturbance2mm, up to 8 Hz

Page 74: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Comparisons

1) Impact experiments2) Whole body interaction3) Singularities

Page 75: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Comparison 1/31) Impact experiments

Position Based Control

Torque Based Control

Page 76: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Comparison 1/31) Impact experiments

Position Based Control

Torque Based Control

Observations:– Balancing after impact is comparable– Torque based controller does not control relative foot location

Page 77: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Comparison 2/33) Whole body interaction

Position Based Control

Torque Based Control

Page 78: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Comparison 2/33) Whole body interaction

Position Based Control

Torque Based Control

Observations:– Force sensor based controller depends on a reference frame– Torque based controller does not need information about the

point of contact

Page 79: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Comparison 3/34) Singular Configurations

Position Based Control

Torque Based Control

Page 80: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Comparison 3/34) Singular Configurations

Position Based Control

Torque Based Control

Observations:– Position based controller uses Inverse Kinematics, which

requires singularity handling– Torque based controller uses transposed Jacobian mapping, and

thus is not affected by singularities

Page 81: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Balancing: Summary

On flat floor both approaches allow for a compliant behavior

Torque based controller shows independence on precise ground contact (force mapping based on IMU information)

Admittance controller depends on a reference frame

Page 82: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 82

Overview

Part I: Modeling

Part II: Balancing

Part III: Walking Control1. Walking pattern generation2. Feedback control

Page 83: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Robot control based on conceptual models

Footstep Generation

Pattern Generation

cx

pZMP-COMStabilizer

dxPos. Controlled

Robot

e.g. LQR Preview Control [Kajita, 2003]

Model Predictive Control [Wieber, 2006]

realtime

F

Page 84: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Mass concentrated model

p

c

x

Cart-Table Model [Kajita]Linear Inverted Pendulum Model [Sugihara]

pxzgx

p

c

px

xgzxp

xp

Page 85: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Mass concentrated model

p

c

xgzxp

x

Cart-Table Model [Kajita]

xp

xxx

x

xu

py

uxx

100

000100010

xgzy

01

)(/01)(

)(2/6/

)(100

102/1

)1( 2

32

kxgcky

kuT

TT

kxTTT

kx

z

Continuous time control model

Discrete time model

Page 86: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

LQR Preview Control

How to use future information about the reference?

Page 87: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center
Page 88: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

LQR Preview Control

)()()()()1(

kCxkykBukAxkx

)()()()()()(0

kuRkukxQkxkeQkeJ Tx

T

ke

T

)1()()()1()()(

)()()(

kukukukxkxkx

kykyke ref

Time-discrete system:

Cost function:

• Uses differential control input integral action.

• Uses the output error compared to reference signal.

)(kyrefReference output: Assume known for N future time steps

Assume (A,B) is stabilizable & (C,A) is detectable, and [**] [**] Ensures that the system has no transmission zero at z=1.

p

n

kykx

)()(

RQe , positive definite.

npIAB

Crank

0Assumptions:

Page 89: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

LQR Preview Control

)()()()()1(

kCxkykBukAxkx

Time-discrete system:

)1(0

)()(

)(0)1(

)1(

kyI

kuB

CBkx

keA

CAIkx

keref

Modified system representation:)()()()(

kukukxkx

[**] Ensures that this system is stabilizable.

Page 90: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

LQR Preview Control

)()()()()1(

kCxkykBukAxkx

Time-discrete system:

)1(0

)()(

)(0)1(

)1(

kyI

kuB

CBkx

keA

CAIkx

keref

Modified system representation:)()()()(

kukukxkx

How to handle future reference input?

System augmentation(for next N reference input values)

)(,),1()( Nkykykx refrefd

)(

0000100000010

)1( kxkx d

A

d

d

Dynamics of the new state:

[**] Ensures that this system is stabilizable.

Page 91: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

LQR Preview Control

)(

0)()(

)(

0000

0

)1()1(

)1(

)()1(

kuBCB

kxkx

ke

AA

ICAI

kxkx

ke

kz

dd

kz

d

Modified system representation:

)()()()()()(0

kuRkukxQkxkeQkeJ Tx

T

ke

T

Cost function:

)()()(0000000

)(0

kuRkukzQQ

kzJ T

kx

eT

Standard LQR Design for augmented system!

Page 92: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Preview Control

)()(

)()()(

kxkx

keKKKkKzku

d

de

N

irefd

k

irefe ikyiKkxKiyiyKku

10)()()()()()(

Control law:

Page 93: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Example Application: Walking Pattern Generation

Simplified Model: Cart Table Model

xxx

x

xu

p … ZMP (Zero Moment Point)loosely speaking: Point on the sole where the reduced contact force is acting.

x … Position of the CoM

)(/01)(

)(2/6/

)(100

102/1

)1( 2

32

kxgzky

kuT

TT

kxTTT

kx

py

(Kajita 2003)

Page 94: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Example Application: Walking Pattern Generation

Footstep planning

Walking Pattern

Generator

CoM IK

Joint Position Control

dp x dq

Preview Control:T = 5 msN = 400

Q_x = zeros(3,3);Q_e = 1.0;R = 1e-6;

x

Page 95: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Example Application: Walking Pattern Generation

Footstep planning

Walking Pattern

Generator

CoM IK

Joint Position Control

dp x dq

Preview Control:T = 5 msN = 400

Q_x = zeros(3,3);Q_e = 1.0;R = 1e-6;

x

Page 96: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Properties of Preview Control

• Efficient implementation, controller design can be computed offline

• Allows to incorporate predictive information• ZMP contstraints are not considered explicitely• Trajectory based approach

Extensions– Model predictive control (handle zmp constraints explicitely,

optimization over a finite control horizon)– Trajectory generation feedback control– Dynamic filter

Page 97: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Feedback Stabilization

Footstep planning

Walking Pattern

Generator

Joint Position Control

Feedback Stabilization

dp dx dqrefx

refpInverse

Kinematics

swing foot trajectory

dqRobot

Dynamics

Forward Kinematics

ZMPComputation

p

x q

LR FF ,

position/velocity controlled robot

)()( refPrefdXrefd ppKxxKxx

Control law for stabilization:

Stability condition [*]: 0 PX KK

Stability condition [*]: [Choi, Kim, Oh, and You, Posture/Walking Control for Humanoid Robot Based on Kinematic Resolution of CoM Jacobian With Embedded Motion, TRO, 2007].

Page 98: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Dynamic filter

Footstep planning

Preview Control

dpdqrefx Inverse

KinematicsRobot

Dynamics

Correction of the error due to model simplificationRequires computation of the multi-body dynamics

p p

Preview Control

refx Inverse Kinematics

Page 99: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

DLR-Biped

ZMP basierte Gangregelung

Präsentiert auf der Industriemesse Automatica, Juni 2010

Page 100: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Overview

Part I: Modeling

Part II: Balancing

Part III: Walking Control1. Walking pattern generation2. Feedback control

Page 101: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Walking Control

State of the art walking control for fully actuated robots

– Pattern Generator for desired CoM and ZMP motion– ZMP based Stabilizer

Footstep Generation

Pattern Generation

cx

pZMP-COMStabilizer

dx InverseKinematics

Position Control

dq

e.g. Preview Control [Kajita, 2003]Model Predictive Control [Wieber]

realtime

Page 102: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 102

Walking Control used at DLR

c

p

[Englsberger, capture point control]

Walking StabilizationCore concept: Capture point controlGeneralization (3D)Stairs, etc …

Predictive Control (MPC)Reactive step adaptation

COMcapturepoint

xp

exp. stable

(Pratt 2006, Hof 2008) ),(

),(

x

xx

xx ,)(2 pxx

xx

pxx

00

open loopunstable

Page 103: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 103

Walking Control used at DLR

c

p

[Englsberger, capture point control]

Walking StabilizationCore concept: Capture point controlGeneralization (3D)Stairs, etc …

Predictive Control (MPC)Reactive step adaptation

COMcapturepoint

xp

exp. stable

(Pratt 2006, Hof 2008) ),(

),(

x

xx

CP control

xx ,)(2 pxx

xx

pxx

00

Page 104: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 104

COM

ZMP

Capture Point • COM velocity always points towards CP

• ZMP „pushes away“ the CP on a line

• COM follows CP

Capture Point Dynamik

Page 105: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 105

COM

ZMP

Capture Point

Capture Point Dynamik

Page 106: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 106

COM kinematics

Capture Point Control

xx ,

pCP control

[Englsberger, Ott, et. al., IROS 2011]

ZMPControl

RobotDynamics

CP

qTrajectoryGenerator d

ZMP projection

Page 107: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 107

COM kinematics

Capture Point Control

xx ,

pCP control

[Englsberger, Ott, et. al., IROS 2011]

ZMPControl

RobotDynamics

CP

qTrajectoryGenerator d

ZMP projection

MPC [SYROCO 2012]

Page 108: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 108

Position based ZMP Control

COM kinematics

xx ,

pCP control

ZMPControl

RobotDynamics

CP

qTrajectoryGenerator d

ZMP projection

MPC

)(2 pxx dp

Desired ZMP implies a desired force acting on the COM:

)(2dd pxMF

Position based force control [Roy&Whitcomb,2002]:

)( FFkx dfd )(2dfd ppMkx

Position based ZMP Control

Page 109: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 109

COM kinematics

Capture Point Control

xx ,

pCP control

[Englsberger, Ott, et. al., IROS 2011]

ZMPControl

RobotDynamics

CP

qTrajectoryGenerator d

ZMP projection

MPC [SYROCO 2012]

Page 110: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Applications1) Vision based walking

– stereo vision (Hirschmüller)– visual SLAM (Chilian, Steidel)– online footstep planning, collaboration with N. Perrin (IIT)

Page 111: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center
Page 112: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Applications2) Optimized swingfoot trajectories: collaboration with H.

Kaminaga (Univ. Tokyo)

• stride length: 70 cm• speed: 0.5 m/s• kinematically optimized swingfoot trajectory

• stride length: 70 cm• speed: 0.5 m/s• kinematically optimized torso motion

(no angular momentum conversation! slippery)

Page 113: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 113

Summary

Modeling

Full Body ModelsSimplified Models

Balancing

Torque based BalancingZMP based balancing

Walking

Pattern generationFeedback control

Part I: Part II: Part III:

Page 114: Feedback control of humanoid robots: balancing and walking · 1 DLR 02/05/2012 Feedback control of humanoid robots: balancing and walking Dr.-Ing. Christian Ott German Aerospace Center

Folie 114

Thank you very much for your attention!

[email protected]

Dr. MaximoRoa

JohannesEnglsberger

AlexanderWerner

GianlucaGarofalo

Dr. Christian Ott

BerndHenze


Recommended