+ All Categories
Home > Documents > FENET Glasgow Oct2004 EDU Katz

FENET Glasgow Oct2004 EDU Katz

Date post: 06-Apr-2018
Category:
Upload: krystian-tomaka
View: 220 times
Download: 0 times
Share this document with a friend

of 29

Transcript
  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    1/29

    Beam Elements

    Are they precise ?

    Dr.-Ing. Casimir Katz

    FENet Technology Workshops,

    October 2004, Glasgow, Scotland.

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    2/29

    Cable Analysis

    Cable

    -H w(x) = p(x)

    Solution for uniform load is aquadratic parabola or a sinh

    H

    p

    HP1 P2Cable element

    Linear between the nodes

    Solution space: polygonal

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    3/29

    Cable Analysis

    Solution Space

    wh(x) = w1j1(x) + w2j2(x) + ... Solution is exact for:

    Single forces

    Other loadings:

    Minimum of energy => equilibrium

    Exact solution is obtained in the nodes!Why ?

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    4/29

    Greens Functions

    The influence function (Greens function) for

    the deformation of the cable at a point is thecable polygon created by a point load P=1 at

    the point of interest.

    If the FE-System is able to model this solution

    exactly, the solution will be exact for this

    value. In all other cases, i.e. if the Greens function

    is not within the possible solution space,

    one has an approximate solution only.

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    5/29

    What are Beam Elements ?

    A 3D Continua with a length >> width / height

    Simplification of the solution space(Bernoulli-Hypothesis, persistence of shape)

    Simplification for manual analysis

    (gravity centre, principal axis, shear etc.)

    Superstition:

    Beam elements are simple

    Beam elements are exact

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    6/29

    Problematic continuous beam

    Mechanic is not consistent

    Plan view

    Moments

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    7/29

    Sections

    Normal stress

    0 y z

    y zx x

    u u z y

    u u E E z y

    x x x x

    = +

    = = = +

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    8/29

    Sections Shear Stress

    V is only valid if the normal

    force and the section areconstant along the axis

    Z is only valid if the section

    is not multiple connected The shear stress is not

    necessarily constant along

    the width b For biaxial bending or non effective parts of

    the section, the equation becomes morecomplex (Swains formula)

    V Z

    I b =

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    9/29

    An other strategy:

    a deformation method

    2 2

    2 2

    :

    0

    xx y

    x

    x z

    x

    x y y x z z

    wG zy x

    w

    G yz x

    w wG w G

    y z x

    B o u n d a r y C o n d i t i o n s

    n n

    =

    = +

    = + =

    + =

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    10/29

    Unit Warping

    SOFiSTiK AG, 85764 Oberschleiheim, Bruckmannring 38, Tel:089/315-878-0UP (V11.05-21) 24.10.2002

    M 1 :X

    8.00 6.00 4.00 2.00 0.00 -2.00 -4.00 -6.00 -8.00

    Querschnitt Nr 12 VollquerschnittVerwlbung 1 CM = 50000.000 [cm2]

    -20525.-12353.

    12300.20471.

    19815.

    -9150.

    15582.

    24686.

    33324.

    41220.

    13931.

    -14264.

    -25462.

    -32880.

    -26721.-16045.

    16024.

    267

    00.

    32

    859.

    254

    41.

    14243.

    -13952.-41244. -33349.

    -24712.-15608. 9123.

    -19869.

    12390.

    -12446.

    -21149.

    -11843.

    9088.

    14050.

    -14131.

    -9162.

    11781.

    21093.

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    11/29

    Shear stress from Mt

    M 1 : 68X

    Z

    8.00 6.00 4.00 2.00 0.00 -2.00 -4.00 -6.00 -8.00 m

    Querschnitt Nr 12 Vollquerschnitt

    Schub aus MT=1000.00 1 CM = 0.05 [MPa]

    0.050.0

    6

    0.06

    0.06

    0.06

    0.05

    0.02

    0.05

    0.05

    0.05

    0.03

    0.01

    0.010.01

    0.010.01

    0.010.030.06

    0.060.06

    0.060.06

    0.060.06

    0.03

    0.010.01

    0.01

    0.01 0.01 0.010.03

    0.05

    0.05

    0.05

    0.02

    0.040.04

    0.040.04

    0.040.03

    0.02

    0.02

    0.03

    0.040.04

    0.040.04

    0.040.04

    0.04

    0.03

    0.02

    0.02

    0.03

    -0.04-0.03-0.020.020.030.04

    -0.02

    -0.03-0.03

    0.030.03

    0.02

    -0.05-0.04-0.030.030.040.05

    -0.06

    -0.05

    -0.04

    0.04

    0.05

    0.06

    -0.06

    -0.05

    -0.04

    0.04

    0.05

    0.06

    -0.06

    -0.05

    -0.04

    0.030.040.05

    -0.06

    -0.05

    -0.04

    0.030.040.05

    -0.06

    -0.05

    -0.04

    0.04

    0.05

    0.06

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    12/29

    M 1 : 68XYZ

    Y 8.00 6.00 4.00 2.00 0.00 -2.00 -4.00 -6.00 -8.00 m

    Z

    2.0

    0

    Querschnitt Nr 12 Vollquerschnitt

    Schub aus VZ=1000.00 1 CM = 0.10 [MPa]

    0.15

    0.10

    0.03

    -0.03

    -0.10

    -0.15

    -0.04

    -0.2

    0

    -0.23

    -0.22

    -0.17-0

    .09

    -0.07

    -0.05

    -0.03

    0.020.050.060.08

    -0.09-0.05-0.020.020.050.09

    -0.08-0.06-0.05-0.02

    0.03 0.05 0.07 0.09

    0.17

    0.22

    0.23

    0.20

    0.04

    0.07

    0.04

    -0.04

    -0.07

    -0.14

    -0.21

    -0.23

    -0.22

    -0.19-0.12

    -0.06

    0.060.12

    0.19

    0.22

    0.23

    0.21

    0.14

    0.210.220.22

    0.220.22

    0.21

    0.130.170.23

    0.23

    0.17

    0.13

    0.210.21

    0.200.200.21

    0.21

    -0.08-0.08-0.08

    0.13

    0.150.14

    -0.14

    -0.15

    -0.13

    0.200.210.21-0.08

    -0.07

    -0.08

    0.200.210.21

    0.13

    0.150.14

    Shear stress from Vz

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    13/29

    Shear deformation Theory of Timoshenko/Marguerre (not exakt!)

    Principal Axis of shear deformation

    zy

    z

    y y

    VG A

    w

    x

    =

    = +

    =

    z

    y

    zyz

    yzy

    z

    y

    V

    V

    GAGA

    GAGA*

    11

    11

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    14/29

    Shear in haunched beams

    h =100 cm

    p = 10 kN/m

    L = 10.0 m

    h = 50 cm

    h =100 cm

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    15/29

    FE-Analysis

    tau-xy

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    16/29

    FE-Analysis

    tau-xy in vertical section

    10.62

    57.90

    52.10

    53.96

    0

    0

    0

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    17/29

    Shear in haunches

    sig-x

    tau-xySchnitt senkrecht

    zur SchwerachseSchnitt senkrecht

    zur Referenzachse

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    18/29

    FE-Analysis

    tau-nq in perpendicular section

    -28.

    -53.

    -32.

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    19/29

    Shear in haunched beams Example for a shear reduction along the

    provisions of design codes Shear force V 40.0 kN

    Yielding a faulty shear stress 63.2 kN/m2

    Reduction of shear by M/d* tan 5.6 kN Reduced shear stress 54.9 kN/m 2

    FE-shear stress 53.0 kN/m 2

    Although the engineering approach has a

    completely different view, the maximum stress

    is quite good, distribution is faulty however.

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    20/29

    FE of a haunched beam

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    21/29

    Reference of forces ? Gravity axis with N + V

    Results suited for

    design Gravity axis with D + T

    Similar as for 2nd

    order Theory

    Superposition offorces

    General reference axis

    Superposition offorces if acomposite sectionchanges by in situconcrete ortendons.

    N Q

    D

    T

    D

    T

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    22/29

    Excentricities at the end points

    Interpolation u0 linear, v,w,x,y cubic

    Displacements within section

    Strains from derivative (position of gravity centre is not constant!)

    Principles of the FE-Beam

    u u z yu u j z y

    i i yi i zi i

    j yj j zj j

    0

    0= + = +

    ( ) ( )u u z z y y y s z s= + 0

    ( ) ( )

    x o y s z s

    y s z s

    u

    xu z z y y

    z y

    = = +

    +

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    23/29

    Example of a haunched beam

    h =100 cm

    p = 10 kN/m

    L = 10.0 m

    h = 50 cm

    h =100 cm

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    24/29

    Results for haunched beam

    w[mm] Ne[kN] Nm[kN] Mye[kNm] Mym[kNm]

    Inclined axis

    C-Beam (1 element) 0,397 -80,50 -78,00 -73.58 31,91

    C-Beam (8 elements) 0.208 -46,30 -43,80 -94,87 19,17

    FE-Beam (1 element) 0,172 -39,80 -37,30 -93,65 22,00

    Fe-Beam (8 elements) 0.206 -45,80 -43,30 -95,02 19,14

    Horiz. reference axis

    FE-Beam (1 element) 0.168 -37,90 -37,90 -93.01 22,52

    FE-Beam (8 elements) 0.204 -44,20 -44,20 -94.85 19,10

    - 3 7 . 8 8 - 3 7 . 8 8

    - 9 3 . 0 1

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    25/29

    The precision of the

    FE beam (bending)

    19.287615.430119.2876Cent. deflection

    41.14741.14741.147End Rotations

    281.25281.25281.25Max. Moment

    2 Elements1 ElementExact

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    26/29

    Bending precision

    The theoretical solution is a polynom of 4th order

    The shape functions are cubical splines The highest

    symmetric ansatz function is the quadratic parabula

    As the influence function for the nodal displacementsare cubic functions, the deformations and rotations in

    the nodes are exact. The moments and shear forces are also exact.

    The only values which are not are the displacements

    between the nodes (which are of less interest) For a buckling analysis there are the same principles,

    but know the buckling force (which has a high

    importance!) is not ok for a simple element.

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    27/29

    The precision of the

    FE beam (Buckling analysis)

    52879

    53249

    53550

    -

    Euler IV

    Numerical

    132134 Elements

    132193 Elements

    133122 Elements

    5284816065133121 Element

    Euler IV

    Exact

    Euler II

    Numerical

    Euler II

    Exact

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    28/29

    Warping Torsion and Shape

    deformation

    > 6. Degrees of freedom per node

    More forces and moments:secondary torsional moment Mt2 etc.

    Pure bending = 84.3 N/mm2

    Warping / 2nd Order Torsion = 136.1 N/mm2

    240 kN2.625 kN/m

    l = 16 m

  • 8/3/2019 FENET Glasgow Oct2004 EDU Katz

    29/29

    Conclusion

    Beam elements are not simple in theory

    Beam elements are easy to use

    There are a lot of modelling errors possible


Recommended