+ All Categories
Home > Documents > File_1_12_Numerical Modelling of River Dynamics Wi

File_1_12_Numerical Modelling of River Dynamics Wi

Date post: 03-Apr-2018
Category:
Upload: josue-lewandowski
View: 213 times
Download: 0 times
Share this document with a friend

of 31

Transcript
  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    1/31

    withwith IberIber

    GiD based tool for the anal sis of water and sediment

    flows in river and estuaries

    Ernest Blad, Luis Cea, Georgina Corestein, Enrique Escolano

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    2/31

    THE MODEL

    apa es

    Simulation of free surface flow in rivers and estuaries Assessment of flood areas. Calculation of main flow zones.

    Hydraulic calculation of open channel networks.

    Sediment transport: erosion and sedimentation

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    3/31

    ANTECEDENTS

    T r i l l n CARPA

    GiD

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    4/31

    STRUCTURE

    HYDRODYNAMICS

    Velocity

    Depth

    SEDIMENT TRANSPORT

    Suspended Load

    TURBULENCE

    Turbulent viscosity

    Bed Load Turbulent Energy and disipation

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    5/31

    HYDRODYNAMICS

    2D Shallow water equations

    yxqqh

    0t x

    2 2

    x y b,xbx x x xt t

    q q zq q U Uhg gh h h

    t x h 2 y h x x x y y

    2 2

    y x y y b,y y ybt t

    q q q q U Uzhg gh h h

    t x h y h 2 y x x y y

    Solution: FINITE VOLUME METHOD

    Numerical scheme: High resolution Godunov Method based on Roe

    Mesh: non-structured triangles and quadrilaterals

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    6/31

    THE INTERFACE

    Fully integrated in GiD and customized toobtain a unified environment.

    Uses GiD standards.

    Include general data, boundary conditionsand materials.

    pec c oo s

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    7/31

    SEDIMENT TRANSPORT

    Exner equation of sediment conservation

    sb,ysb,xbqqZ

    1 p D - E

    t x y

    E D

    transport

    bZ

    V1.7: uniform sediment

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    8/31

    BEDLOAD:

    Formulae

    Van Rijn

    Meyer-Peter & Mller

    (Wong & Parker

    version)

    APPLICABILITYSand and gravels

    APPLICABILITY

    Gravels until 30 mm

    Equation:Equation:

    .*

    sb 0.3*

    1.5*

    T 0.3 q 0.053 D

    T

    3/2

    * * *sb bs cq = 3.97 -

    bs c

    *

    c

    -

    T

    sb 0.3

    *

    . .D

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    9/31

    BEDLOAD: slo e correction

    Bottom effective tension = Tension due to flow + weight component

    flow

    weighteffective tension

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    10/31

    BEDLOAD: Interface

    Inlet:

    ear capac ty according to formulation

    by mean a table

    Clear water

    none solid discharge

    u e :

    sediment continuity

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    11/31

    BEDLOAD: Validation

    Test case with exact solution proposed by De Vriend (1987)

    Conical Sand dune

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    12/31

    BEDLOAD: Validation

    Grass formula An le of s read

    Using mg= 3, results =21.7867893

    25 38

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    13/31

    Embankment failure b Overto in

    Experimental model: dam built withwell graduated sand and volcanic

    ashes

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    14/31

    Embankment failure b Overto in

    Numerical Model: geometry and meshcreated with Iber.

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    15/31

    Embankment failure b Overto in

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    16/31

    Embankment failure b Overto in

    Comparison with a real event

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    17/31

    SUSPENDED SEDIMENT: E uations

    Turbulent transport of suspended sediment

    y txhU C hU ChC C

    h E D

    c,t

    deposition

    Granular material: *

    s a aE D W c c

    Cohesive soil :b

    ce

    E = M 1

    bs a

    cd

    D W c 1

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    18/31

    SUSPENDED SEDIMENT: Interface

    Inlet:

    Open boundary

    concentration

    Source Discharge and concentration

    No solid discharge

    Outlet:

    Sediment continuty

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    19/31

    REVERSIBLE HYDROPOWER

    PLANT OF MONTNEGRE

    Lower reservoir: 160Hm3

    Ribarroja reservoir

    pper reservo r: m

    Pumping discharge:380m3/sTurbine discharge: 400m3/s

    Objective: Effect of new powerplant on river-reservoir morphodynamics

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    20/31

    STUDY AREA

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    21/31

    SIMULATIONS

    1 164 m/s Pumping (no inlets or out lets, ini tial elevat ion 69,5)

    2 328 m/s Pumping (no inlets or out lets, ini tial elevat ion 69,5)

    3 328 m/s Pumping, then 400 m/s turbinate (no inlets or outlets, initial elevation 69,5)

    4 400 m/s Turbinate (no inlets or out lets, ini tial elevat ion 68.4)

    5 328 m/s Pumping and simulataneous inlet of 328 m/s in Mequinenza (init ial elevation 69,5)

    7 164 m/s Pumping, then 200 m/s turbinate (no inlets or outlets, ini tial elevation 69,5)

    8 200 m/s Turbinate (no inlets or out lets, ini tial elevat ion 68.4)

    10 400 m/s turbinate, and simulatneaus outlet of 400 m/s in Ribaroja (no inlets or outlets, init ial elevation 69,5)

    11 328 m/s Pumping, then 400 m/s turbinate , 7 cycles (no inlets or outlets, init ial elevation 69,5)

    12 164 m/s Pumping, then 200 m/s turbinate , 7 cycles (no inlets or outlets, init ial elevation 69,5)

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    22/31

    328 m/s Pumping, then 400 m/s turbinate (no inlets or outlets, initial elevation 69,5)

    Depth Elevation Erosion - deposition

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    23/31

    328 m/s Pumping, then 400 m/s turbinate (no inlets or outlets, initial elevation 69.5)

    Depth Elevation Erosion Deposition

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    24/31

    328 m/s Pumping, then 400 m/s turbinate (no inlets or outlets, initial elevation 69.5)

    Depth Elevation Erosion Deposition

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    25/31

    328 m/s Pumping, then 400 m/s turbinate (no inlets or outlets, initial elevation 69.5)

    Elevation Erosion Deposition

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    26/31

    7 cycles - Erosion

    7 cycles - Sedimentation

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    27/31

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    28/31

    7 cycles

    7 cycles Volume of sediment into the upper reservoir

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    29/31

    7 cycles Volume of sediment into the upper reservoir

    CONCLUSIONS

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    30/31

    CONCLUSIONS

    The interface of Iber, based on GiD, is user friendly, flexible

    Iber s morphodynamic module has been enhanced and

    ver e or e oa an suspen e ranspor

    engineering problems

    e n er ace s user r en y an s o s ex y an

    capabilities.

  • 7/28/2019 File_1_12_Numerical Modelling of River Dynamics Wi

    31/31

    Contact us in www.iberaula.es


Recommended