+ All Categories
Home > Documents > Final Presentation Algae (1) (1)

Final Presentation Algae (1) (1)

Date post: 18-Oct-2015
Category:
Upload: brennan4
View: 26 times
Download: 0 times
Share this document with a friend
Description:
Final Presentation Algae
Popular Tags:

of 19

Transcript
  • 5/28/2018 Final Presentation Algae (1) (1)

    1/19

    ALGAE AS A BIOFUEL

    Jeffrey Brennan & Peter George

  • 5/28/2018 Final Presentation Algae (1) (1)

    2/19

    WHAT IS ALGAE

    Algal Biofuel is an alterative to fossil fuels

    Diesel produced from algae meets a 50% GHG reduction

    Oils are extracted and converted to fuel via transesterification

    Fresh water, Salt water, contaminated water

    Grow in wide rage of temperatures

    2010 U.S Department of Energy invested $24 million Requires 15,000 square miles, 1/7 the area of corn

    Renewable Fuel Standards require 36 billion gallons of Biofuel pro2022, 15 billion in non-advanced feed stocks

    Green Crude

    (Ghasem, 2012)

  • 5/28/2018 Final Presentation Algae (1) (1)

    3/19

    TECHNO

    Photobioreactors

    Open and Closed hybrid systems

  • 5/28/2018 Final Presentation Algae (1) (1)

    4/19

    PHOTOBIOREA

  • 5/28/2018 Final Presentation Algae (1) (1)

    5/19

    PHOTOBIOREA

    Microalgae Biorefinery

    Cultivates cyanobacterium with liquid and gas waste from oil refine

    Biotransforms CO2

    Main products are lipids, biofuel, and volatile organic compounds (

    Jacob-Lopez & Teixiera, 2013

  • 5/28/2018 Final Presentation Algae (1) (1)

    6/19

    PHOTOBIOREA

    Carbon Transformation

    max CO2 elimination

    capacity is 22.9 mg/L min

    Every unit of CO2 eliminated produces

    .75 units of O2

    5% of CO2 converted turns into biomass

    92% of CO2 converted turns into VOCs

  • 5/28/2018 Final Presentation Algae (1) (1)

    7/19

    PHOTOBIOREA

    Properties Microalgae Palma Soybeana Rapeseeda ASTM 6751 EN 14EC (%) 99.7 4.91 97.7 96.9 99.5 Min 96.5CN 51.3 3.38 61 49 55 Min 47 Min 51IV (gI2/100 g) 79.9 3.78 57 128 109 Max 120DU (%) 65.3 4.57 64.2 143.8 121.9 CFPP (C) 24.9 0.87 10 5 10

    Assessment of the biofuel

    Quality is determined by ester content cetane number,

    iodine value degree of instauration cold filter plugging point

    http://www.sciencedirect.com/science/article/pii/S2212982013000218http://www.sciencedirect.com/science/article/pii/S2212982013000218http://www.sciencedirect.com/science/article/pii/S2212982013000218http://www.sciencedirect.com/science/article/pii/S2212982013000218http://www.sciencedirect.com/science/article/pii/S2212982013000218http://www.sciencedirect.com/science/article/pii/S2212982013000218
  • 5/28/2018 Final Presentation Algae (1) (1)

    8/19

    PHOTOBIOREA

    Pros

    Reduce CO2

    Produce O2

    Renewable Energy Source

    VOCs can be sold for commercialpurposes

    Does not take up agricultural landlike other biofuels

    Improves the sustainability of oilprocesses

    Cons

    High cost of oil feed stock

    VOCs can be a health riscontained properly

  • 5/28/2018 Final Presentation Algae (1) (1)

    9/19

    PBR SEN

    -$10 -$5 $0 $5 $10

    Water supply (undergound : utility purchase)

    Inoculum system (not required : required)

    CO2 cost basis ($0 : $36 : $70/ton)Flocculant required (15 : 40 : 80 mg/L)

    Nutrient demand (source 1 : base : source 2)

    Nutrient recycle (100% : base : 0%)

    Operating factor (365 : 330 : 250 days/yr)

    Tube cost basis (-50% : $1.05/ft : +50%)

    Growth rate (2.5 : 1.25 : 0.63 kg/m3/day)

    Lipid content (50 : 25 : 12.5%)

    Change to TAG production cost ($/gal)

    PBR Sensitivities

  • 5/28/2018 Final Presentation Algae (1) (1)

    10/19

    OPEN P

    Open Ponds

    Oldest and simplest systems

    Mass cultivate microalgae

    Produce mostly obligate phototrophalgal species, and depend on light forgrowth

  • 5/28/2018 Final Presentation Algae (1) (1)

    11/19

    OPEN P

    Raceway design

    Paddlewheels

    Keep algae suspended

    Circulates algae to the surface

    Dispense nutrients in their wake

    Shallow

    In order to keep light penetration to amaximum (20 cm)

  • 5/28/2018 Final Presentation Algae (1) (1)

    12/19

    OPEN

    PROS

    Simple design

    Cost efficient

    Waste to energy conversion

    CONS

    Less efficient thenphotobioreactors

    Land use cost

    Water availability

    Dependent on climacconditions

  • 5/28/2018 Final Presentation Algae (1) (1)

    13/19

    SENSITIVITY: P

    -$6 -$4 -$2 $0 $2 $4 $6

    Evaporation rate (0.15 : 0.3 : 0.6 cm/day)

    Water recycle (100% : 95% : 80%)

    CO2 delivery (pure CO2 : flue gas)

    CO2 cost basis ($0 : $36 : $70/ton)

    Flocculant required (15 : 40 : 80 mg/L)Nutrient demand (source 1 : base : source 2)

    Inoculum system (not required : required)

    Water supply (undergound : utility purchase)

    Nutrient recycle (100% : base : 0%)

    Operating factor (365 : 330 : 250 days/yr)

    Growth rate (50 : 25 : 12.5 g/m2/day)

    Lipid content (50 : 25 : 12.5%)

    Change to TAG production cost ($/gal)

    Open Pond Sensitivities

    More bang for the bu

    targeting lipids vs grow(Realistically, cannot mboth simultaneously)

    [1] Benemann, J. et al., Systems and Economic Analysis of Microalgae Ponds for Conversion of CO2to Biomass.Final Report to the Department of Energ y, Pittsburgh Energy Technology Center (1996) DOE/PC/93204-T5

    [2] Hassannia, Jeff. Algae Biofuels Economic Viability: A Project-Based Perspective. Article posted online:

    http://www.biofuelreview.com/content/view/1897/1

    http://www.biofuelreview.com/content/view/1897/1http://www.biofuelreview.com/content/view/1897/1
  • 5/28/2018 Final Presentation Algae (1) (1)

    14/19

    COST AN

    http://www renewableenergyworld com/rea/news/arti

  • 5/28/2018 Final Presentation Algae (1) (1)

    15/19

    ALGAE BIOFUEL SU

    Hawaii BioenergyLihue, HI$5 million

    Sapphire EnergySan Diego, Calif.$5 million

    New Mexico State UniversityLas Cruces, NM$5 million

    California Polytechnic State UniversityDelhi, Calif.$1.5 million

    Streamline Feedstock Supply ChainColumbus, OH$6 million

    http://www.renewableenergyworld.com/rea/news/artimillion-in-algae-biofuels

  • 5/28/2018 Final Presentation Algae (1) (1)

    16/19

    SPACE &

    Soybean = 400 litres/hectare/year

    Palm oil = 6,000 litres/hectare/year

    Microalgae = 60,000 litres/hectare/year

    Soybeans = 2.5 barrels/hectare/year

    Palm oil = 36 barrels/hectare/year

    Microalgae = 360 barrels/hectare/year

  • 5/28/2018 Final Presentation Algae (1) (1)

    17/19

    WASTE WATER TREA

    Sunrise Ridge Algae, Inc.

    Wastewater Remediation is a problem

    Current wastewater treatment relies on chemicals and high ener

    Bioremediation uses microorganisms

    Economical and environmentally sustainable treatment

    15 kWh saved per gallon algae fuel produced

    Toxins affect algae growth: Lead, cadmium, copper, mercury

    Takes CO2 from anaerobic digester to bubble reactor

    Reduced nitrate and CO2 levels

    (Abdel-Raou & Al-Homaidan, 2012)

  • 5/28/2018 Final Presentation Algae (1) (1)

    18/19

    OIL REFINERY TO BIORE

    School of Chemical EngineeringCampinas, Brazil

    Objective: Develop an biotransformation system of CO2 from oil using a bubble column photobioreactor

    Carbon dioxide sequestration with microalgae

    CO2 emissions and water can be fed directly to photobioreacto

    Entire Process is a renewable cycle

    Cuts CO2 emissions by 50 to 70 percent

    10 billion T of CO2 = 5.5 billion T of algae biomass = 1.65 billion to

    (Jacob-Lopez & Teixiera, 2013)

  • 5/28/2018 Final Presentation Algae (1) (1)

    19/19

    SO

    Abdel-Raoul, N., & Al-Homaidan, A. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257-275. Retrievhttp://www.sciencedirect.com/science/article/pii/S1319562X12000332

    Demirbas, A. (2010). Use of algae as biofuel sources. Energy Conversion and Management,51(12), 27382749. Retrieved November 10, 2013,from http://www.sciencedirect.com.ezproxy.stockton.edu:2048/science/article/pii/S0196890410002207?np=y

    Ghasem, Y., Rasoul Amini, S., Naseri, A., Montazeri- Najafabady, N., Mobasher, M., & Dabbagh, F. (2012). Microalgae Biofuel Potentials (Reviewand Microbiology,48(2), 126-144, 150-168. Retrieved November 9, 2013

    Guan, Q., & Wei, C. (2013). Catalytic gasification of algae nannochloropsis sp. in sub/supercritical water.Prociedia Environmental Sciences, 18http://www.sciencedirect.com/science/article/pii/S1878029613002454

    Jacob-Lopez, E., & Teixiera Franco, T. (2013). From oil refinery to microalgal biorefinery.Journal of CO2 Utilization,2, 1-7. Retrieved fromhttp://www.sciencedirect.com/science/article/pii/S2212982013000218

    Kawachi, K., & Horioka, K. (2012). Business evaluation of a green microalgae botryococcus braunii oil production system. Prociedia EnvironmenRetrieved from http://www.sciencedirect.com/science/article/pii/S187802961200521X

    Najafi, G., Ghobadian, B., & Yusaf, T. (2011). Algae as a sustainable energy source for biofuel production in Iran: A Case Study. Renewable andReviews, 15(8), 38703876. Retrieved October 29, 2013, from http://www.sciencedirect.com.ezproxy.stockton.edu:2048/science/article/pii/S136

    Pate, R., Klise, G., & Wu, B. (2011). Resource demand implications for US algae biofuels production scale-up.Applied Energy, 88(10), 3377-3388.2013, fromhttp://www.sciencedirect.com.ezproxy.stockton.edu:2048/science/article/pii/S0306261911002455?np=y

    Sasha, T., Harris, L., & Wi ley, P. (2013). Potential impact of biofouling on the photobioreactors of the offshore membrane enclosures for growing system. Bioresource Technology, 144, 420-428. Retrieved from http://www.sciencedirect.com/science/article/pii/S0960852413010547

    Sawayama, S., Minowa, T., & Yokoyama, S. (1999). Possibility of renewable energy production and CO2 mitigation by thermochemical liquefacmicroalgae. Science Direct,17(1), 33-39. Retrieved November 9, 2013, from http://www.sciencedirect.com/science/article/pii/S0961953499000

    Sharma, R., Banerjee, A., & Chisti, Y. (2002). Botryococcus braunii: A Renewable Source of Hydrocarbons and Other Chemicals. Critical Review245279. Retrieved November 2, 2013

    http://www.sciencedirect.com.ezproxy.stockton.edu:2048/science/article/pii/S0196890410002207?np=yhttp://www.sciencedirect.com.ezproxy.stockton.edu:2048/science/article/pii/S0196890410002207?np=yhttp://www.sciencedirect.com.ezproxy.stockton.edu:2048/science/article/pii/S0196890410002207?np=yhttp://www.sciencedirect.com.ezproxy.stockton.edu:2048/science/article/pii/S0196890410002207?np=yhttp://www.sciencedirect.com.ezproxy.stockton.edu:2048/science/article/pii/S0196890410002207?np=yhttp://www.sciencedirect.com.ezproxy.stockton.edu:2048/science/article/pii/S0196890410002207?np=yhttp://www.sciencedirect.com.ezproxy.stockton.edu:2048/science/article/pii/S0196890410002207?np=yhttp://www.sciencedirect.com.ezproxy.stockton.edu:2048/science/article/pii/S0196890410002207?np=yhttp://www.sciencedirect.com/science/article/pii/S1878029613002454http://www.sciencedirect.com/science/article/pii/S1878029613002454http://www.sciencedirect.com/science/article/pii/S2212982013000218http://www.sciencedirect.com/science/article/pii/S2212982013000218http://www.sciencedirect.com/science/article/pii/S187802961200521Xhttp://www.sciencedirect.com/science/article/pii/S187802961200521Xhttp://www.sciencedirect.com.ezproxy.stockton.edu:2048/science/article/pii/S1364032111002450?np=yhttp://www.sciencedirect.com.ezproxy.stockton.edu:2048/science/article/pii/S1364032111002450?np=yhttp://www.sciencedirect.com.ezproxy.stockton.edu:2048/science/article/pii/S1364032111002450?np=yhttp://www.sciencedirect.com.ezproxy.stockton.edu:2048/science/article/pii/S0306261911002455?np=yhttp://www.sciencedirect.com.ezproxy.stockton.edu:2048/science/article/pii/S0306261911002455?np=yhttp://www.sciencedirect.com.ezproxy.stockton.edu:2048/science/article/pii/S0306261911002455?np=yhttp://www.sciencedirect.com.ezproxy.stockton.edu:2048/science/article/pii/S0306261911002455?np=yhttp://www.sciencedirect.com.ezproxy.stockton.edu:2048/science/article/pii/S1364032111002450?np=yhttp://www.sciencedirect.com.ezproxy.stockton.edu:2048/science/article/pii/S1364032111002450?np=yhttp://www.sciencedirect.com/science/article/pii/S187802961200521Xhttp://www.sciencedirect.com/science/article/pii/S187802961200521Xhttp://www.sciencedirect.com/science/article/pii/S2212982013000218http://www.sciencedirect.com/science/article/pii/S1878029613002454http://www.sciencedirect.com/science/article/pii/S1878029613002454http://www.sciencedirect.com.ezproxy.stockton.edu:2048/science/article/pii/S0196890410002207?np=y

Recommended