+ All Categories
Home > Documents > Finite Element Formulation of Bar and Beam Elements_PPT.pdf

Finite Element Formulation of Bar and Beam Elements_PPT.pdf

Date post: 17-Sep-2015
Category:
Upload: tharinduishan8651
View: 23 times
Download: 1 times
Share this document with a friend
33
3/11/2014 1 H24SFE Finite Element Formulation of Bar and Beam Elements Finite Element formulation stiffness matrices of bar element and a beam element. The direct formulation is presented and then compared with that following the Finite Element method. Examples to demonstrate the use of the Finite Element Method for trusses and frames. Contents
Transcript
  • 3/11/2014

    1

    H24SFEFinite Element Formulation of Bar and Beam Elements

    Finite Element formulationstiffness matrices of bar element and a beam element.

    The direct formulation is presented and then compared with that following the Finite Element method.

    Examples to demonstrate the use of the Finite Element Method for trusses and frames.

    Contents

  • 3/11/2014

    2

    Capital letters are used to represent the local coordinates while small letters are used for the global coordinates

    The direct formulation results from solving the differential equation of a bar element

    Bar Element

    EAXF

    EdXdu XXX

    X)(

    ===

    EAXF

    dXdu XX )(

    =

    210 and sBC'

    XLXXXXXuuuu ==

    ==

    Bar Element

    constant a is where,

    )( substitute and )( Integrate

    1

    1

    CCXEAF

    u

    FXFEA

    XFdXdu

    XX

    XXXX

    +

    =

    ==

    sBC'for Substitute

    *

    )0(*

    11

    2

    2

    11

    1

    10

    XX

    X

    XLXX

    XX

    X

    XXX

    uLEAF

    u

    uu

    uCCEAF

    u

    uu

    +

    =

    =

    =+

    =

    =

    =

    =

    )( 211 XXX uuLEAF =

  • 3/11/2014

    3

    Bar Element

    )(

    )(in substitute

    :mequilibriu From

    212

    211

    12

    XXX

    XXX

    XX

    uuLEAF

    uuL

    EAF

    FF

    =

    =

    =

    =

    2

    1

    2

    1

    1111

    X

    X

    X

    X

    u

    u

    LEA

    FF

    element.bar a ofmatrix stiffness local theis 1111

    LEA

    Using the Finite Element formulation

    Bar Element

    freedom of degrees ofnumber the toequal unknowns ofnumber with polynomial a using written becan endleft its from distance aat nt displaceme the

    and freedom of degrees Two

    21

    21

    XAAu

    Xuu

    X

    XX

    +=

    210 and :sBC' theusing

    freedom of degrees two theof in terms written becan unknowns twoThe

    XLXXXXXuuuu ==

    ==

    TXXX

    XX

    XXXX

    uuuLX

    LXH

    uHu

    XL

    uuuu

    ][ and ]1[

    where,

    or

    )(

    21

    121

    ==

    =

    +=

    v

    v

  • 3/11/2014

    4

    Bar Element

    ]11[1]11[ where,

    :follows as calculated becan strain The

    =

    =

    ===

    LLLB

    uBudXdH

    dXdu

    XXX

    Xvv

    TXXX

    XX

    uuuLX

    LXH

    uHu

    ][ and ]1[ 21==

    =

    v

    v

    =

    =

    =

    =

    1111]11[

    11

    )(

    02

    0

    LEAdX

    LEAK

    EC

    AdXCBBK

    LL

    LTL

    Transform the local stiffness matrices from local to global coordinates The relationship between the local displacements and the global

    displacements are given by

    Matrix T transform the global displacements to local displacements.

    Bar Element

    sincosand

    sincos

    222

    111

    yxX

    yxX

    uuu

    uuu

    +=

    +=

    [ ]

    =

    =

    2

    2

    1

    1

    2

    1

    2

    2

    1

    1

    2

    1or

    sincos0000sincos

    formmatrix In

    y

    x

    y

    x

    X

    X

    y

    x

    y

    x

    X

    X

    u

    u

    u

    u

    Tu

    u

    u

    u

    u

    u

    u

    u

  • 3/11/2014

    5

    The relationship between the global forces and the local forces are given by

    Bar Element

    sin,cos

    ,sin,cos

    22

    22

    11

    11

    Xy

    Xx

    Xy

    Xx

    FFFF

    FFFF

    =

    =

    =

    =

    =

    =

    2

    1

    2

    2

    1

    1

    2

    1

    2

    2

    1

    1

    or

    sin0cos0

    0sin0cos

    :formmatrix In

    X

    XT

    y

    x

    y

    x

    X

    X

    y

    x

    y

    x

    FF

    T

    FFFF

    FF

    FFFF

    Now the relationship between the global forces and the global displacements can be written as:

    Bar Element

    [ ]

    =

    2

    1

    2

    2

    1

    1

    X

    XT

    y

    x

    y

    x

    FF

    T

    FFFF

    [ ]

    =

    2

    2

    1

    1

    2

    1

    y

    x

    y

    x

    X

    X

    u

    u

    u

    u

    Tu

    u

    =

    2

    2

    1

    1

    2

    2

    1

    1

    sincos0000sincos

    1111

    sin0cos0

    0sin0cos

    y

    x

    y

    x

    y

    x

    y

    x

    u

    u

    u

    u

    LEA

    FFFF

    [ ]

    =

    2

    1

    2

    1

    X

    XL

    X

    X

    u

    uK

    FF

    [ ] [ ] [ ] [ ][ ]GLTG uTKTF =

  • 3/11/2014

    6

    Bar Element

    =

    2

    2

    1

    1

    2

    2

    1

    1

    sincos0000sincos

    1111

    sin0cos0

    0sin0cos

    y

    x

    y

    x

    y

    x

    y

    x

    u

    u

    u

    u

    LEA

    FFFF

    =

    2

    2

    1

    1

    22

    22

    22

    22

    2

    2

    1

    1

    y

    x

    y

    x

    y

    x

    y

    x

    u

    u

    u

    u

    scsscs

    csccsc

    scsscs

    csccsc

    LEA

    FFFF

    cos and sin where, == cs

    Example 1

    Bar Element

    N2m3

    x

    y

    m4

    N2x

    y

  • 3/11/2014

    7

    We first need to calculate the member stiffness matrices in global coordinates

    Bar Element - Example

    N2x

    y

    [ ]

    =

    22

    22

    22

    22

    scsscs

    csccsc

    scsscs

    csccsc

    LEAK G

    For Element 1 (nodes 1-2) =0

    Bar Element Example (contd)

    N2x

    y

    x

    y

    X

    Y

    4321

    00000333.00333.000000333.00333.04 3 2 1

    1

    = EAK G

  • 3/11/2014

    8

    For Element 2 (nodes 2-3) =2.2143

    Bar Element Example (contd)

    N2x

    y

    6543

    128.0096.0128.0096.0096.0072.0096.0072.0128.0096.0128.0096.0

    096.0072.0096.0072.06 5 4 3

    2

    = EAK G

    x

    y

    X

    Y

    The global stiffness matrix of the whole structure:

    Bar Element Example (contd)

    6543

    128.0096.0128.0096.0096.0072.0096.0072.0128.0096.0128.0096.0

    096.0072.0096.0072.06 5 4 3

    2

    = EAK G

    654321

    128.0096.0128.0096.000096.0072.0096.0072.000128.0096.0128.0096.000

    096.0072.00960.0405.00333.0000000000333.00333.06 5 4 3 2 1

    = EAK G

    4321

    00000333.00333.000000333.00333.04 3 2 1

    1

    = EAK G

  • 3/11/2014

    9

    The global force-displacement relationship reads:

    Bar Element Example (contd)

    =

    3

    3

    2

    2

    1

    1

    3

    3

    2

    2

    1

    1

    128.0096.0128.0096.000096.0072.0096.0072.000128.0096.0128.0096.000

    096.0072.00960.0405.00333.0000000000333.00333.0

    y

    x

    y

    x

    y

    x

    y

    x

    y

    x

    y

    x

    u

    u

    u

    u

    u

    u

    EA

    FFFFFF

    2 and 0and

    0 :sBC'

    22

    3311

    ==

    ====

    yx

    yxyx

    FF

    uuu u

    Bar Element Example (contd)

    2 and 0and

    0 :sBC'

    22

    3311

    ==

    ====

    yx

    yxyx

    FF

    uuu u

    N2x

    y

  • 3/11/2014

    10

    Bar Element Example (contd)

    =

    3

    3

    2

    2

    1

    1

    3

    3

    2

    2

    1

    1

    128.0096.0128.0096.000096.0072.0096.0072.000128.0096.0128.0096.000

    096.0072.00960.0405.00333.0000000000333.00333.0

    y

    x

    y

    x

    y

    x

    y

    x

    y

    x

    y

    x

    u

    u

    u

    u

    u

    u

    EA

    FFFFFF

    0 :sBC' 3311 ==== yxyx uuu u

    Bar Element Example (contd)

    =

    3

    3

    2

    2

    1

    1

    3

    3

    2

    2

    1

    1

    128.0096.0128.0096.000096.0072.0096.0072.000128.0096.0128.0096.000

    096.0072.00960.0405.00333.0000000000333.00333.0

    y

    x

    y

    x

    y

    x

    y

    x

    y

    x

    y

    x

    u

    u

    u

    u

    u

    u

    EA

    FFFFFF

    2 and 0128.0096.00960.0405.0

    22

    2

    2

    2

    2

    ==

    =

    yx

    y

    x

    y

    x

    FF

    u

    uEA

    FF

    0 :sBC' 3311 ==== yxyx uuu u

    =

    =

    195.41

    20

    128.0096.00960.0405.01

    1

    2

    2

    EAEAuu

    y

    x

  • 3/11/2014

    11

    Beam element subjected to end forces and moments The direct formulation results from solving the differential equation of a

    beam element (also known as Euler-Bernoulli beam equation)

    Beam Element

    XFMXMdX

    udEI YY 1122

    )( +==

    22

    10

    10

    and

    and

    sBC'

    ==

    ==

    =

    =

    =

    =

    LX

    YYLXY

    X

    YYXY

    dXdu

    uu

    dXdu

    uu

    Beam Element

    22

    10

    10

    and

    and

    sBC'

    ==

    ==

    =

    =

    =

    =

    LX

    YYLXY

    X

    YYXY

    dXdu

    uu

    dXdu

    uu

    11

    3

    1

    2

    1

    10

    21

    3

    1

    2

    1

    1

    2

    11

    1110

    1

    2

    11

    62

    62

    :Integrate

    2

    C

    2

    :Integrate

    YYY

    YXY

    YY

    YY

    X

    Y

    YY

    EIuXEIXFXMEIu

    uu

    CXEIXFXMEIu

    EIXFXMdXduEI

    EIdXdu

    CXFXMdXduEI

    ++=

    =

    ++=

    +=

    ==

    ++=

    =

    =

    XFMXMdX

    udEI YY 1122

    )( +==

  • 3/11/2014

    12

    Beam Element

    22

    10

    10

    and

    and

    sBC'

    ===

    ===

    =

    =

    =

    =

    LX

    YYLXY

    X

    YYXY

    dXdu

    uu

    dXdu

    uu

    11

    3

    1

    2

    12

    2

    2

    112

    2

    62

    2

    :at sBC' with Subsitute

    YYY

    YLXY

    Y

    LX

    Y

    EIuLEILFLMEIu

    uu

    EILFLMEI

    dXdu

    LX

    ++=

    =

    +=

    =

    =

    =

    =

    Beam Element

    22122121

    221223131

    11

    3

    1

    2

    12

    2

    112

    2466

    661212

    :Rearrange62

    2

    LEI

    LEI

    uLEI

    uLEIM

    LEI

    LEI

    uLEI

    uLEIF

    EIuLEILFLMEIu

    EILFLMEI

    YY

    YYY

    YYY

    Y

    +++=

    =

    ++=

    +=

  • 3/11/2014

    13

    The vertical equilibrium of the beam in the Y directions and taking moments around node 2 result in the following two equations:

    Beam Element

    LFMM

    FF

    Y

    YY

    112

    12

    and=

    =

    The end forces (including moments) can be written in terms of the end degrees of freedom:

    Beam Element

    =

    2

    2

    1

    1

    matrixstiffnesslocalThe

    22

    2323

    22

    2323

    2

    2

    1

    1

    4626

    612612

    2646

    612612

    Y

    Y

    Y

    Y

    u

    u

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    MFMF

    444444 3444444 21

  • 3/11/2014

    14

    Using the Finite Element formulation

    Beam Element

    34

    2321

    2211

    freedom of degrees ofnumber the toequal unknowns ofnumber with polynomial a using written becan endleft its from distance aat nt displaceme the

    and , , freedom of degreesFour

    xAxAxAAu

    Xuu

    Y

    YY

    +++=

    =

    4

    3

    2

    1

    2

    32

    2

    2

    1

    1

    32101

    00100001

    :conditionsboundary four thengSubstituti

    AAAA

    LLLLLu

    u

    Y

    Y

    2432 32

    from calculated becan X distance aat slope) (therotation of angle The

    xAxAAdXduY

    ==

    Beam Element

    =

    =

    =

    2

    2

    1

    1

    2323

    22

    4

    3

    2

    1

    4

    3

    2

    1

    2

    32

    2

    2

    1

    1

    1212

    132300100001

    32101

    00100001

    Y

    Y

    Y

    Y

    u

    u

    LLLL

    LLLLAAAA

    A

    AAAA

    LLLLLu

    u

    r

    EICdxdEIMuB

    dxd

    CB

    CBdXBKL

    T

    ===

    =

    and

    :equations following thefrom calculated are and matrices thewhere,

    from calculated is beam a ofmatrix stiffness The0

    r

  • 3/11/2014

    15

    Beam Element

    [ ]AxxAAdxd

    xAxAAr

    620062

    32 teDeffrentia

    43

    2432

    ==

    =

    [ ]

    =

    =

    =

    2

    2

    1

    1

    2323

    22

    2

    2

    1

    1

    2323

    22

    4

    3

    2

    1

    1212

    132300100001

    6200

    1212

    132300100001

    But

    Y

    Y

    Y

    Y

    u

    u

    LLLL

    LLLLx

    dxd

    u

    u

    LLLL

    LLLLAAAA

    Ar

    Beam Element

    [ ]

    +

    +

    +

    =

    =

    2

    2

    1

    1

    232232

    2

    2

    1

    1

    2323

    22

    6212664126

    1212

    132300100001

    6200

    Y

    Y

    Y

    Y

    u

    u

    Lx

    LLx

    LLx

    LLx

    Ldxd

    u

    u

    LLLL

    LLLLx

    dxd

    +

    +

    +

    = 2322326212664126

    Lx

    LLx

    LLx

    LLx

    LB

  • 3/11/2014

    16

    Beam Element

    +

    +

    +

    =

    ==

    232232

    0

    6212664126

    and

    Lx

    LLx

    LLx

    LLx

    LB

    EICCBdXBKL

    T

    +

    +

    +

    +

    +

    +

    =L

    L dXLX

    LLX

    LLX

    LLX

    LEI

    LX

    L

    LX

    L

    LX

    L

    LX

    L

    K0

    232232

    2

    32

    2

    32

    6212664126

    62

    126

    64

    126

    Beam Element

    +

    +

    +

    +

    +

    +

    =

    LL dX

    LX

    LLX

    LLX

    LLX

    LEI

    LX

    L

    LX

    L

    LX

    L

    LX

    L

    K0

    232232

    2

    32

    2

    32

    6212664126

    62

    126

    64

    126

    =

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    K L

    4626

    612612

    2646

    612612

    22

    2323

    22

    2323

  • 3/11/2014

    17

    The stiffness matrix of a beam element subjected to both bending, shear and axial forces is assembled from the stiffness matrices:

    Beam Element

    =

    =

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    K

    LEAK

    L

    L

    4626

    612612

    2646

    612612and

    1111

    22

    2323

    22

    2323

    The global force-displacement relationship reads:

    Beam Element

    =

    2

    2

    2

    1

    1

    1

    22

    2323

    22

    2323

    2

    2

    2

    1

    1

    1

    460260

    61206120

    0000

    260460

    61206120

    0000

    Y

    X

    Y

    X

    Y

    X

    Y

    X

    u

    u

    u

    u

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEA

    LEA

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEI

    LEA

    LEA

    MFFMFF

  • 3/11/2014

    18

    Beam Element

    22

    222

    222

    11

    111

    111

    sincossincos

    sincossincos

    :rotations and ntsdisplaceme endfor used, are ipsrelationsh following thes,coordinate global toscoordinate local from transformTo

    =

    =

    +=

    =

    =

    +=

    xyY

    yxX

    xyY

    yxX

    uuu

    uuu

    uuu

    uuu

    Beam Element

    TKTK

    FTF

    cs

    sc

    cs

    sc

    T

    uTu

    LTG

    LTG

    GL

    =

    =

    =

    =

    :bygiven ismatrix stiffness global eFinally th

    :bygiven are forces local and global ebetween th iprelationsh The1000000000000000010000000000

    vr

    rr

  • 3/11/2014

    19

    Example 2

    The 2D frame shown has two elements with the same axial stiffness (EA) and bending stiffness (EI), calculate the displacements of all nodes.

    Examples

    N 20

    m2

    m3

    Local stiffness matrix for a beam Element

    Examples (contd)

    =

    LLLL

    LLLL

    LIA

    LIA

    LLLL

    LLLL

    LIA

    LIA

    EIK L

    460260

    61206120

    001001

    260460

    61206120

    001001

    22

    2323

    22

    2323

  • 3/11/2014

    20

    For Element 1 (nodes 1-2)

    Examples (contd)

    654321

    25.1015.105.15.105.15.10

    002500250.15.1025.105.15.105.15.10

    002500256 5 4 3 2 1

    1

    = EIK Gx

    y

    X

    Y

    pi =

    TKTK LTG =

    For Element 2 (nodes 2-3)

    Examples (contd)

    987654

    33.1067.067.0067.0067.160067.16067.0044.067.0044.067.0067.033.1067.0067.160067.16067.0044.067.0044.0

    9 8 7 6 5 4

    2

    = EIK G

    23pi =

    TKTK LTG =

    y

    X

    Y

  • 3/11/2014

    21

    The global force-displacement relationship reads:

    Examples (contd)

    ++

    ++

    +

    =

    3

    3

    3

    2

    2

    2

    1

    1

    1

    3

    3

    3

    2

    2

    2

    1

    1

    1

    33.1067.067.0067.0000067.160067.16000067.0044.067.0044.000067.0067.033.1205.167.0015.10067.16005.167.165.105.15.1067.0044.067.00044.0250025

    0000.15.1025.100005.15.105.15.1000000250025

    y

    x

    y

    x

    y

    x

    y

    x

    y

    x

    y

    x

    u

    u

    u

    u

    u

    u

    EI

    MFFMFFMFF

    0 ,0 ,0 0 ,20 ,0

    and0 :sBC'

    222

    111

    333

    ===

    ===

    ===

    MFF

    MFF

    u u

    yx

    yx

    yx

    N 20

    m2

    m3

    Examples (contd)

    ++

    ++

    +

    =

    3

    3

    3

    2

    2

    2

    1

    1

    1

    3

    3

    3

    2

    2

    2

    1

    1

    1

    33.1067.067.0067.0000067.160067.16000067.0044.067.0044.000067.0067.033.1205.167.0015.10067.16005.167.165.105.15.1067.0044.067.00044.0250025

    0000.15.1025.100005.15.105.15.1000000250025

    y

    x

    y

    x

    y

    x

    y

    x

    y

    x

    y

    x

    u

    u

    u

    u

    u

    u

    EI

    MFFMFFMFF

    0 :sBC' 333 === yx u u

  • 3/11/2014

    22

    Applying the same procedure followed in example 1, the global displacements and forces of the frame are given by

    Examples (contd)

    [ ]TGEI

    u 0001202.11801605.2941801 =

    [ ]TGF 402000000200 =

    Examples (contd)

    e with valuload ddistributeuniformly a from resulting forces end thecalculate element, beam aFor

    ==L

    TL

    TL dxHdxHF00

    Example 3

    ===L

    T

    LT

    LTL dx

    x

    x

    x

    LLLL

    LLLLdxHdxHF

    03

    2

    2323

    2200

    1

    1212

    132300100001

    =

    12

    2

    12

    2

    2

    2

    L

    L

    L

    L

    F L

  • 3/11/2014

    23

    Examples (contd)

    [ ]

    [ ]

    1212

    132300100001

    1

    1212

    132300100001

    but 1

    2

    2

    1

    1

    2323

    2232

    2

    2

    1

    1

    2323

    22

    4

    3

    2

    1

    4

    3

    2

    1

    32

    34

    2321

    =

    =

    =

    +++=

    Y

    Y

    Y

    Y

    Y

    Y

    Y

    u

    u

    LLLL

    LLLLxxxu

    u

    u

    LLLL

    LLLLAAAA

    AAAA

    xxxu

    xAxAxAAu

    Examples (contd)

    [ ]

    =

    =

    3

    2

    2323

    22

    2

    2

    1

    1

    2323

    2232

    1

    1212

    132300100001

    1212

    132300100001

    1

    x

    x

    x

    LLLL

    LLLLH

    u

    u

    LLLL

    LLLLxxxu

    T

    T

    Y

    Y

    Y

  • 3/11/2014

    24

    Example 4

    Examples (contd)

    Starting from the stiffness matrix subjected to both bending-shear and axial forces(shown below), calculate the stiffness matrix of an element with zero moment on theleft hand side and then calculate the stiffness matrix when the right hand sidemoment is equal to zero.

    Examples (contd)Separate out the influence of the rotational DoF at node 1:

    If M1 = 0, then: Then the remaining 5 equations are:

  • 3/11/2014

    25

    Examples (contd)Express in terms of the other degrees of freedom and sub back in to the system ofequations

    1

    Stiffness matrix for anelement with zero moment onthe left hand side

    Examples (contd)Repeating this process with zero moment on the right hand side yields,

    Confirm this result yourself.

  • 3/11/2014

    26

    Examples (contd)

    Example 6

    a) Using the Finite Element formulation of a beam element, show that the equivalent force vector of the load shown in the figure is given by

    TL

    LLxx

    LLxx

    LLxx

    LLxLxWF ])(,)32(,)(,))(2([ 21

    21

    31

    21

    2

    211

    3

    211 +

    =

    Examples (contd)

    b) Using the results in (a) calculate the vertical displacement and rotation of nodes 1, 2, and 3 of the continuous beam shown

    The beam has uniform cross-section with bending stiffness EI kN/m2.m4

  • 3/11/2014

    27

    Hints to solve this example

    Examples (contd)

    =

    +=

    LT

    L

    Ts

    TvL

    dxxfxHF

    dssfHdvHF

    0

    )()(

    }][{}][{ vv

    Examples (contd)

    How do we describe a single point load as a continuous function?

    We utilise the helpful properties of the Delta Dirac function,

    )()( 1xxWxF = The function (x - a) equals zero for all values EXCEPT when x = a, so if we say..,

    we now have a continuous function that is zero at all locations except at x = x1,where the function equals W.

  • 3/11/2014

    28

    Examples (contd)

    We will also need to know what the integral of the above function looks like, anymath text will tell us that

    So the integral between the limits -infinity and +infinity, is simply the value of thefunction at a, or x1 in our case. (The use of infinity is mathematically correcthowever practically speaking were only integrating between 0 and L)

    )()()( afdxaxxf =

    Examples (contd)

    =L

    TL dxxfxHF

    0

    )()(

    )()( 1xxWxf =

    ( )( )dxxxWx

    x

    x

    LLLL

    LLLLF

    L

    T

    L 10

    3

    2

    2323

    22

    1

    1212

    132300100001

    =

    ( )( )( )( )

    dx

    xxWxxxWxxxxW

    xxW

    LLLL

    LLLLF

    L

    T

    L

    =

    0

    13

    12

    1

    1

    2323

    22

    1212

    132300100001

  • 3/11/2014

    29

    Examples (contd)

    Applying what we know about the Delta Dirac function:

    =

    31

    21

    1

    2323

    22

    1212

    132300100001

    WxWxWxW

    LLLL

    LLLLF

    T

    L

    After multiplying out and simplifying, we have:

    Note the transpose

    TL

    LLxx

    LLxx

    LxLx

    LxLLxWF ])(,)32(,)(,))(2([ 21

    21

    31

    21

    2

    211

    3

    211 +

    =

    Examples (contd)

    Part (b): Using the previous result, calculate displacements and rotations at all nodes

    Constructing the element stiffness matrices for both elements

    =

    2.0000 1.5000 1.0000 1.5000- 1.5000 1.5000 1.5000 1.5000- 1.0000 1.5000 2.0000 1.5000- 1.5000- 1.5000- 1.5000- 1.5000

    1 EIKG

    =

    1.0000 0.3750 0.5000 0.3750- 0.3750 0.1875 0.3750 0.1875- 0.5000 0.3750 1.0000 0.3750- 0.3750- 0.1875- 0.3750- 0.1875

    2 EIKG

  • 3/11/2014

    30

    Examples (contd)Construct the global stiffness matrix

    =

    1.0000 0.3750 0.5000 0.3750- 0 0 0.3750 0.1875 0.3750 0.1875- 0 0 0.5000 0.3750 3.0000 1.1250 1.0000 1.5000- 0.3750- 0.1875- 1.1250 1.6875 1.5000 1.5000-

    0 0 1.0000 1.5000 2.0000 1.5000- 0 0 1.5000- 1.5000- 1.5000- 1.5000

    EIK G

    Examples (contd)

    We need to account for the linear spring at node 2

    The spring influences the vertical deflection at node 2, so we can easily see whereit needs to fit into our global stiffness matrix

    =

    3

    3

    2

    2

    1

    1

    3

    3

    2

    2

    1

    1

    1.0000 0.3750 0.5000 0.3750- 0 0 0.3750 0.1875 0.3750 0.1875- 0 0 0.5000 0.3750 3.0000 1.1250 1.0000 1.5000- 0.3750- 0.1875- 1.1250 1.6875 1.5000 1.5000-

    0 0 1.0000 1.5000 2.0000 1.5000- 0 0 1.5000- 1.5000- 1.5000- 1.5000

    y

    y

    y

    y

    y

    y

    u

    u

    u

    EI

    MFMFMF

    + Kspring = 0.25 EI

  • 3/11/2014

    31

    Examples (contd)

    =

    3

    3

    2

    2

    1

    1

    3

    3

    2

    2

    1

    1

    1.0000 0.3750 0.5000 0.3750- 0 0 0.3750 0.1875 0.3750 0.1875- 0 0 0.5000 0.3750 3.0000 1.1250 1.0000 1.5000- 0.3750- 0.1875- 1.1250 1.9375 1.5000 1.5000-

    0 0 1.0000 1.5000 2.0000 1.5000- 0 0 1.5000- 1.5000- 1.5000- 1.5000

    y

    y

    y

    y

    y

    y

    u

    u

    u

    EI

    MFMFMF

    Examples (contd)Now simply set up the force vector

    The equivalent force vector for a UDL is

    And weve also determined that the equivalent force vector for the point load

    where = -2 kN/m and L = 2 m

    =

    +

    =

    =

    88

    88

    )(

    )32(

    )(

    ))(2(

    21

    21

    31

    21

    2

    211

    3

    211

    3

    3

    2

    2

    LLxx

    LLxx

    LxLx

    LxLLx

    W

    MFMF

    Fy

    y

    =

    =

    =

    0.6667- 2.0000- 0.6667 2.0000-

    12

    2

    12

    2

    2

    2

    2

    2

    1

    1

    L

    L

    L

    L

    MFMF

    Fy

    y

    where W = 16 kN and L = 4 m and x1 = 2 m

  • 3/11/2014

    32

    Examples (contd)

    Therefore the global force vector is:

    =

    +

    =

    =

    88

    333.710667.0

    2

    88

    88

    00

    00667.02

    667.02

    3

    3

    2

    2

    1

    1

    MFMFMF

    F

    y

    y

    y

    G

    =

    3

    3

    2

    2

    1

    1

    1.0000 0.3750 0.5000 0.3750- 0 0 0.3750 0.1875 0.3750 0.1875- 0 0 0.5000 0.3750 3.0000 1.1250 1.0000 1.5000- 0.3750- 0.1875- 1.1250 1.9375 1.5000 1.5000-

    0 0 1.0000 1.5000 2.0000 1.5000- 0 0 1.5000- 1.5000- 1.5000- 1.5000

    000.8000.8

    333.7000.10

    667.0000.2

    y

    y

    y

    u

    u

    u

    EI

    Examples (contd)

    =

    3

    3

    2

    2

    1

    1

    1.0000 0.3750 0.5000 0.3750- 0 0 0.3750 0.1875 0.3750 0.1875- 0 0 0.5000 0.3750 3.0000 1.1250 1.0000 1.5000- 0.3750- 0.1875- 1.1250 1.9375 1.5000 1.5000-

    0 0 1.0000 1.5000 2.0000 1.5000- 0 0 1.5000- 1.5000- 1.5000- 1.5000

    000.8000.8

    333.7000.10

    667.0000.2

    y

    y

    y

    u

    u

    u

    EI

    Account for known displacements at supports:

    =

    2

    2

    1

    000.31250.1000.1125.19375.1500.1000.1500.1000.2

    333.7000.10

    667.0

    yuEI

  • 3/11/2014

    33

    Examples (contd)

    Solve for unknown displacements:

    =

    0909.52727.15

    2424.91

    2

    2

    1

    EIu y

    =

    =

    00

    0909.52727.15

    2424.90

    1

    3

    3

    2

    2

    1

    1

    EIu

    u

    u

    u

    y

    y

    y

    G


Recommended