+ All Categories
Home > Documents > First-Principles Multiscale Modeling of Catalytic Processes · of Catalytic Processes. ......

First-Principles Multiscale Modeling of Catalytic Processes · of Catalytic Processes. ......

Date post: 04-Jun-2018
Category:
Upload: lamlien
View: 224 times
Download: 0 times
Share this document with a friend
32
Technische Universität München First-Principles Multiscale Modeling of Catalytic Processes Karsten Reuter Chemistry Department and Catalysis Research Center Technische Universität München
Transcript
  • Technische Universitt Mnchen

    First-Principles Multiscale Modelingof Catalytic Processes

    Karsten Reuter

    Chemistry Department and Catalysis Research CenterTechnische Universitt Mnchen

  • Computational screening for heterogeneous catalysis

    - Mean-field microkinetic models- Assumed reaction paths- Assumed rate-determining steps- Scaling relations

    J.K. Nrskov et al., Nature Chem. 1, 37 (2009)

    M. Andersen, A.J. Medford, J.K. Nrskov, and K. Reuter, Angew. Chem. Int. Ed. 55, 5210 (2016)

    2NO N2 + O2

  • Role of multiscale catalysis modeling

    Descriptor ComputationalScreeningBetterCatalyst

    MechanisticUnderstanding

  • Active sites: The effective to atomistic gap

    Generic active siteindependent of operation conditionsdominant over other sites(one site model)

    TMs: (111) terrace or step sites

    Atomistic active site modelevery atom countsgenerally insufficient experimental characterization

    Manifold of possibly active site typeson which one to focus?consider how many?

    K. Reuter, C.P. Plaisance, H. Oberhofer, and M. Andersen, J. Chem. Phys. 146, 040901 (2017)

  • Views of heterogeneous catalysis

    R. Schlgl, 20 nm Cu in10:1 H2 + O2 at 200 mbar and 523 K

    K. Reuter, Cat. Lett. 146, 541 (2016)

  • Tolerant processes for the Energiewende

    K.F. Kalz et al., Chem. Cat. Chem. 9, 17 (2017)

  • Multiscale catalysis modeling

    Ab initio atomistic thermodynamics and statistical mechanics of surface properties and functionsK. Reuter, C. Stampfl, and M. Scheffler, in: Handbook of Materials Modeling Vol. 1,

    (Ed.) S. Yip, Springer (Berlin, 2005)

  • Part I Insight into the active phase from in situ studiesof model catalysts

    - Detailed multiscale modeling from electrons to the reactor

    Part II Explicit treatment of morphological transitionsof the active surface

    - Multi-lattice kinetic Monte Carlo simulations

    Outline

  • In situ studies of model catalysts

    A. Stierle and A.M. Molenbroek (Eds.), MRS Bull. 32 (2007)

    P.B. Rasmussen et al., Rev. Sci. Instrum. 69, 3879 (1998)

    Reactor STM

    S. Yamamoto et al., J. Phys. CM 20, 184025 (2008)

    in situ XPS

  • 0.89 eV

    DFT-PES for CO(cus) + O(cus)

    Elementaryprocesses

    Red: adsorbed O Blue: adsorbed CO

    Mesoscopic statisticalinterplay

    First-principles based multiscale modeling

    Site

    occ

    upat

    ion

    (%)x

    xx x

    xx x x xxx

    x

    x

    xxx

    xx x

    2po2 = 10

    -10 atm

    pCO (10-9 atm)

    exp.

    theory

    0.0 1.0 2.0 3.0

    Intrinsic materialfunction

    Macroscopicobservable

  • Electronic regime: Energetics of elementary processes

    COcus + Ocus CO2

    - Active site model

    - Level of theory

    0.9 eV

    M. Sabbe, M.F. Reyniers, and K. Reuter, Catal. Sci. Technol. 2, 2010 (2012)

  • A

    B

    MolecularDynamics

    TS

    Mesoscopic regime: Tackling rare-event time scales

    kAB

    kBA

    kineticMonte Carlo

    N

    t

    B

    A

    +=j

    jijj

    ijii tPktPkdt

    tdP )()()(

    EAB EBA

    =

    =

    TkEZ

    ZhTkk

    ji

    i

    jiji

    B

    )(TSB

    exp

    Transition State Theory

    First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: Concepts, status and frontiersK. Reuter, in Modeling Heterogeneous Catalytic Reactions: From the Molecular Process to the Technical System,

    (Ed.) O. Deutschmann, Wiley-VCH, Weinheim (2011)

  • M.J. Hoffmann, S. Matera and K. Reuter,Comp. Phys. Commun. 185, 2138 (2014)

    A lattice kinetic Monte Carlo framework

  • Heat and mass transfer effects

    T, pCO, pO2

    T

    pCO2

    p

    pO2pCO

    S. Matera and K. Reuter, Catal. Lett. 133, 156 (2009)

  • Macroscopic regime: Accounting for the flow field

    Computational Fluid Dynamicswith

    chemical source termsfrom 1p-kMC

    ( ) 2

    B

    ucad

    TmkpATSk

    = S. Matera and K. Reuter, Phys. Rev. B 82, 085446 (2010)

  • Predictive surface reaction chemistry in real reactor models

    S. Matera, M. Maestri, A. Cuoci, and K. Reuter,ACS Catal. 4, 4081 (2014)

    together withM. Maestri and A. Cuoci

    (Politecnico Milan)

  • Oxidation catalysis and the pressure gap: Metal, oxide, both, ?!

    Nanometer and sub-nanometer thin oxide films at surfaces of late transition metals,K. Reuter, in Nanocatalysis, U. Heiz, U. Landman (Eds.), Springer, Berlin (2006).

    ISBN 978-3-540-32645-8.

  • 300K

    pO (atm)2

    PdO bulk

    clean Pd(100)

    c(22 2)R45CO/Pd(100)

    O (eV)

    surface oxide+ CO bridge

    surface oxide+ O bridge

    p CO

    (at

    m)

    600K

    surface oxide+ 2 CO bridge

    C

    O (e

    V)

    p(2x2)-O/Pd(100)

    surface oxide(5 5)R27

    10-15 10-10 10-5 1 105 1010

    10-30 10-20 10-10 1

    105

    1

    10-5

    10-1010-30

    10-20

    10-10

    1

    0.0

    -0.5

    -1.0

    -1.5

    -2.0

    -1.5 -1.0 -0.5 0.0

    (1x1)CO/Pd(100)

    -2.5

    J. Rogal, K. Reuter, and M. Scheffler, Phys. Rev. Lett. 98, 046101 (2007); Phys. Rev. B 75, 205433 (2007)

    Role of surface oxides in CO oxidation catalysis: Pd(100)

  • Active phases of Pd(100) in near-ambient CO oxidation catalysis:First-principles kinetic Monte Carlo models

    - DFT GGA-PBE- O2 adsorption/desorption (dissociative/associative)- CO adsorption/desorption (unimolecular)- O and CO diffusion- CO + O reaction (Pd(100): LH, : LH+ER)- nearest-neighbor lateral interactions

    J. Rogal, K. Reuter, and M. Scheffler, Phys. Rev. Lett. 98, 046101 (2007)J. Rogal, K. Reuter, and M. Scheffler, Phys. Rev. B 77, 155410 (2008)

    M.J. Hoffmann and K. Reuter, Topics Catal. 57, 159 (2014)

  • In situ X-ray photoelectron spectroscopy: At the edge of the gap

    together withE. Lundgren, J. Gustafson et al.

    (Lund University)

    1p-kMC

    exp.

    S. Blomberg, M.J. Hoffmann et al.,Phys. Rev. Lett. 110, 117601 (2013)

    CO : O2 = 1 : 1

  • Laser-Induced Fluorescence (LIF)

    Stimulation ofknown excitation

    (here: CO2 vibration)

    2D concentration profileabove catalyst

    Y. Zetterberg et al., Rev. Sci. Instrum. 83, 053104 (2012)

    12

    6

    0

    y-di

    rect

    ion

    [mm

    ]

    400

    300

    200

    100

    0 CO

    2L

    IF si

    gnal

    [a.u

    .]

    -4 -2 0 2 4x-direction [mm]

    E. Lundgren, J. Gustafson et al. (Lund University)

  • -4 -2 0 2 4x-direction [mm]

    1p-kMC/CFD in action: Build-up of the boundary layer

    in situ LIF measurements vs. 1p-kMC/CFD simulation ofnear-ambient CO oxidation at Pd(100)

    CO : O2 = 1 : 4, ptot = 0.18 atm,T = 600 K, 72 mln/min, 50% Ar

    400

    300

    200

    100

    0 CO

    2L

    IF si

    gnal

    [a.u

    .]CO2

    CO

  • Identification of the active phase through reaction product imaging

    ptot = 0.18 atm72 mln/min, 50% Ar

    CO : O2 = 1 : 4

    Exp.

    PdO(5x5)R27

    Pd(100)

    Functional uncertainty vs. active Pd(100) as a minority phase?!

    S. Matera, S. Blomberg et al., ACS Catal. 5, 4514 (2015)

  • Part I Insight into the active phase from in situ studiesof model catalysts

    - Detailed multiscale modeling from electrons to the reactor

    Part II Explicit treatment of morphological transitionsof the active surface

    - Multi-lattice kinetic Monte Carlo simulations

    Outline

  • Lattice mapping vs. surface morphological transitions

    PdO(5x5)R27Pd(100)

    Different, but commensurate lattices

  • Multi-lattice kinetic Monte Carlo approach

    Perform kMC simulations on commensurate superlatticeBlock inactive sites through occupation of null species

    Toggle between phases by removal/addition of null species

    M.J. Hoffmann, M. Scheffler, and K. Reuter, ACS Catal. 5, 1199 (2015)

  • Reduction of the Pd(100) surface oxide by CO

    Reduction kinetics in pure CO environment (pCO = 5 10-11 atm)

    monitored through high-resolution XPS

    303 K

    Strongly varying time scalesover 90K temperature range

    Mean-field kinetic analysis suggestsreduction process is

    phase boundary controlled

    343 K

    393 K

    V.R. Fernandez et al., Surf. Sci. 621, 31 (2014)

  • Atomistic pathway for initial oxide decomposition

    Divacancyformation

    Oxygendiffusion

    Pd(100)nucleus

  • Oxide reduction kinetics from first principles

    343 K

    Full reproduction ofexperimental trends:

    - Temperature ordering- Time scales

    M.J. Hoffmann, M. Scheffler, and K. Reuter, ACS Catal. 5, 1199 (2015)

  • Role of CO oxidation across metal/oxide boundary

    Stronger CO binding at Pd(100)enhances cross-reactions at

    higher temperatures

  • - Present set of computational tools well developed to tacklestatic catalytic problems ( computational screening)

    - Addressing near-ambient in situ studies requires multiscalemodeling from electrons to the reactor

    - Present microkinetic approaches fall short in scrutinizingpotentially crucial dynamicaltransformations of the activesurface. Self-fulfilling prophecy?!

    Weve come a long way to reach half way

    K. Reuter, Catal. Lett. 146, 541 (2016)

  • Technische Universitt Mnchen

    www.th4.ch.tum.de

    Past members:J. Rogal ( RU Bochum)M. Rieger ( BASF) M. Maestri ( U Milan)S. Matera ( FU Berlin)J. Meyer ( U Leiden)M.J. Hoffmann ( Stanford)

    Collaborations:M. Scheffler (FHI Berlin)J. Gustafson, E. Lundgren (U Lund)A.J. Medford, J.K. Nrskov (Stanford)

    Foliennummer 1Foliennummer 2Foliennummer 3Foliennummer 4Foliennummer 5Foliennummer 6Foliennummer 7Foliennummer 8Foliennummer 9Foliennummer 10Foliennummer 11Foliennummer 12Foliennummer 13Foliennummer 14Foliennummer 15Foliennummer 16Foliennummer 17Foliennummer 18Foliennummer 19Foliennummer 20Foliennummer 21Foliennummer 22Foliennummer 23Foliennummer 24Foliennummer 25Foliennummer 26Foliennummer 27Foliennummer 28Foliennummer 29Foliennummer 30Foliennummer 32Foliennummer 34


Recommended