+ All Categories
Home > Documents > for the Collaboration

for the Collaboration

Date post: 05-Jan-2016
Category:
Upload: aliya
View: 21 times
Download: 0 times
Share this document with a friend
Description:
Results from the PHOBOS experiment at RHIC. Adam Trzupek The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences Kraków, Poland. for the Collaboration. - PowerPoint PPT Presentation
Popular Tags:
24
for the Collaboration Adam Trzupek The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences Kraków, Poland The 2007 Europhysics Conference on High Energy Physics Manchester, England, 19-25 July 2007 Results from the PHOBOS experiment at RHIC
Transcript
Page 1: for the                           Collaboration

for the Collaboration

Adam TrzupekThe Henryk Niewodniczański Institute of Nuclear Physics

Polish Academy of Sciences

Kraków, Poland

The 2007 Europhysics Conference on High Energy Physics

Manchester, England, 19-25 July 2007  

Results from the PHOBOS experiment

at RHIC

Page 2: for the                           Collaboration

2Adam Trzupek – INP PAN, KrakówHEP’07 Manchester

PHOBOS Collaboration

Burak Alver, Birger Back, Mark Baker, Maarten Ballintijn, Donald Barton,

Russell Betts,

Richard Bindel, Wit Busza (Spokesperson), Vasundhara Chetluru, Edmundo

García, Tomasz Gburek, Joshua Hamblen, Conor Henderson, David Hofman,

Richard Hollis, Roman Hołyński, Burt Holzman, Aneta Iordanova, Chia Ming

Kuo, Wei Li, Willis Lin, Constantin Loizides, Steven Manly, Alice Mignerey,

Gerrit van Nieuwenhuizen,

Rachid Nouicer, Andrzej Olszewski, Robert Pak, Corey Reed, Christof Roland,

Gunther Roland, Joe Sagerer, Peter Steinberg, George Stephans, Andrei

Sukhanov, Marguerite Belt Tonjes, Adam Trzupek, Sergei Vaurynovich, Robin

Verdier,

Gábor Veres, Peter Walters, Edward Wenger, Frank Wolfs, Barbara Wosiek,

Krzysztof Woźniak, Bolek Wysłouch

ARGONNE NATIONAL LABORATORY BROOKHAVEN NATIONAL LABORATORY INSTITUTE OF NUCLEAR PHYSICS PAN MASSACHUSETTS INSTITUTE OF TECHNOLOGYNATIONAL CENTRAL UNIVERSITY UNIVERSITY OF ILLINOIS AT CHICAGOUNIVERSITY OF MARYLAND UNIVERSITY OF ROCHESTER

Page 3: for the                           Collaboration

3Adam Trzupek – INP PAN, KrakówHEP’07 Manchester

Outline

• PHOBOS detector– Data: p+p, d+Au, Cu+Cu, Au+Au at 20 – 200 GeV

• Charged particle multiplicities – Factorization of energy and centrality dependence in Au+Au

and Cu+Cu collisions

• Azimuthal anisotropy of produced particles in Au+Au and Cu+Cu collisions– Participant eccentricity scaling

• pT - Spectra of identified particles

– Very low pT data – a handle on radial flow

• Summary

NNs

Page 4: for the                           Collaboration

4Adam Trzupek – INP PAN, KrakówHEP’07 Manchester

PHOBOS Detector

• Multiplicity Detector (Octagon, Rings) -5.4 < < 5.4 , 0 < < 2

1m

Octagon

Ring Counters

Ring Counters

Page 5: for the                           Collaboration

5Adam Trzupek – INP PAN, KrakówHEP’07 Manchester

1m

ZDC

Spectrometer

TOF

ZDCTriggering

Triggering

PHOBOS Detector

• Multilayer Spectrometer, TOF

midrapidity, 0.03 GeV/c< pT< 5 GeV/c

Page 6: for the                           Collaboration

6Adam Trzupek – INP PAN, KrakówHEP’07 Manchester

Charged hadron dNch/d distribution (PHOBOS)

PRL 91 (2003) 052303, PRC 74 (2006) 021901, PRC 72 (2005) 031901

d+Au

centrality

19.6 GeV 62.4 GeV 130 GeV 200 GeV

preliminary

preliminary

Au+Au

Cu+Cu

Energy dependence: Height increases Width increases (in space)

Centrality dependence: Height increases

Species dependence: Same systematic trends

NNs

Page 7: for the                           Collaboration

7Adam Trzupek – INP PAN, KrakówHEP’07 Manchester

Au+Au and Cu+Cu at the same Npart ( = 200 GeV)

For the same Npart (system size) dNch/d shape is very similar for Au+Au and Cu+Cu collisions

Cu+Cu centralPreliminary

3-6%, Npart = 100

Au+Au midcentral35-40%, Npart = 99

Cu+Cu midcentralPreliminary

15-25%, Npart = 61

Au+Au peripheral45-55%, Npart = 56

NNs

Npart - number of participating nucleons

PHOBOS: NPA 774 (2006) 113

Page 8: for the                           Collaboration

8Adam Trzupek – INP PAN, KrakówHEP’07 Manchester

Charged particle yields in Au+Au and Cu+Cu at midrapidity

PRC 74 (2006) 021901, NPA 774 (2006) 113

PHOBOS preliminary

• No centrality dependence for Npart > 40

• Energy and centrality dependences of

charged hadron yields factorize

Particle density per participant pair Ratio of charged hadron yield at 200 GeV

to yields at lower energies (200/X)

Increase in particle production per

participant with Npart

s

Page 9: for the                           Collaboration

9Adam Trzupek – INP PAN, KrakówHEP’07 Manchester

PRL 94, 082304 (2005), PRL 96 (2006) 212301

Ratio of charged hadron yields at 200 and 62.4 GeV

Charged Particle pT Spectra

<pT> = 0.25 GeV/c <pT> = 1.25 GeV/c <pT> = 2.5 GeV/c <pT> = 3.38 GeV/c <pT> = 3.88 GeV/c

Au+Au

Cu+Cu

p+p

midrapidity

No centrality dependence for pT = 0.2 – 4 GeV/c

Factorization of energy and centrality dependence is valid at different transverse momenta.

Page 10: for the                           Collaboration

10Adam Trzupek – INP PAN, KrakówHEP’07 Manchester

Energy independence of charged particle yields from moderate to high rapidities

NPA 774 (2006) 113

Extended longitudinal scaling

Page 11: for the                           Collaboration

11Adam Trzupek – INP PAN, KrakówHEP’07 Manchester

Azimutal anisotropy of produced particles

• Pressure gradients lead to azimuthal anisotropy• Elliptic flow is the second harmonic in the Fourier

expansion of azimuthal particle distribution

Reaction plane

x

z

y

M. Kaneta

dN/d(0) = N0 (1 + 2v1cos (0) + 2v2 cos (2(0)) + ... )

Page 12: for the                           Collaboration

12Adam Trzupek – INP PAN, KrakówHEP’07 Manchester

v2 in Au+Au and Cu+Cu ( dependence)

Centrality: 0-40%

PRL 98 (2007) 242302, PRC 72 (2005) 051901,PRL 94 (2005) 122303

• broad range• several energies

• for Cu+Cu v2 is large and grows with energy• shape (in ) for Au+Au and Cu+Cu similar

0-40%, charged particles

Au+Au

Cu+Cu

Page 13: for the                           Collaboration

13Adam Trzupek – INP PAN, KrakówHEP’07 Manchester

v2 in Au+Au and Cu+Cu (centrality dependence)

Charged particles, || < 1

• decreases with centrality• for central collisions v2 is non-zero (larger in Cu+Cu)

PRL 98 (2007) 242302, PRC 72 (2005) 051901

Page 14: for the                           Collaboration

14Adam Trzupek – INP PAN, KrakówHEP’07 Manchester

Standard and Participant eccentricity

b

Au+Au 0

Initial overlap geometry

Visible in final measured particle azimuthal angular distributions

22

2222 4

xy

xyxy

part

)( 24 xy

Standard eccentricity:

22

22

xy

xystd

minor axis along b, (bx)

Participant eccentricity:

for the same b, interaction points vary from event-to-event

minor axis not along b, (bx)

Page 15: for the                           Collaboration

15Adam Trzupek – INP PAN, KrakówHEP’07 Manchester

200 GeV

Does using make a difference? YES part

• increases for smaller systems• For central Cu+Cu: >>

part

stdpart

PRL 98 (2007) 242302

Page 16: for the                           Collaboration

16Adam Trzupek – INP PAN, KrakówHEP’07 Manchester

Eccentricity scaled v2 in Au+Au and Cu+Cu

v2 scaled by participant eccentricity

Cu+Cu

Au+Au

unifies average v2 in Au+Au and Cu+Cu part

v2 scaled by standard eccentricity

Cu+Cu

Au+Au

200 GeV

PRL 98 (2007) 242302

Page 17: for the                           Collaboration

17Adam Trzupek – INP PAN, KrakówHEP’07 Manchester

Eccentricity scaled v2 in Au+Au and Cu+Cu

v2 scaled by participant eccentricity

Cu+Cu

Au+Au

unifies average v2 in Au+Au and Cu+Cu part

v2 scaled by standard eccentricity

Cu+Cu

Au+Au

200 GeV

PRL 98 (2007) 242302

Page 18: for the                           Collaboration

18Adam Trzupek – INP PAN, KrakówHEP’07 Manchester

pT dependence of v2/

Au+Au and Cu+Cu at matched Npart

part

unifies v2(pT) in Au+Au and Cu+Cu part

nucl-ex/0701051

midrapidity

Page 19: for the                           Collaboration

19Adam Trzupek – INP PAN, KrakówHEP’07 Manchester

The collision geometry controls the dynamical evolution of heavy ion collisions

Au+Au and Cu+Cu at matched Npart

partPseudorapidity dependence of v2 /

unifies v2() in Au+Au and Cu+Cu part

More information on the dynamical evolution can be obtained

from identified particle pT spectra

Page 20: for the                           Collaboration

20Adam Trzupek – INP PAN, KrakówHEP’07 Manchester

pT (GeV/c)0.03 0.3 3.0

Stoppingparticles dE/dx TOF

Particle ID from low to high pT

PHOBOS Particle Identification

Eloss (MeV)1 2 3 4 50

p (GeV/c)

30

40

50

60

70

1/v

(ps/

cm)

PRC 70 (2004) 051901, PRC 75 (2007) 024910 

p+p

K +K + -

++-

p (GeV/c)

K

K

pp

Page 21: for the                           Collaboration

21Adam Trzupek – INP PAN, KrakówHEP’07 Manchester

Identified particle

pT -spectra,

Au+Au at 62.4 GeV

• Smooth evolution with centrality • Proton spectra are harder than the meson spectra

Time-of-Flight measurementextends pT reach to 3 GeV/cfor protons

y0

PRC 75 (2007) 024910 

Page 22: for the                           Collaboration

22Adam Trzupek – INP PAN, KrakówHEP’07 Manchester

Particle production at very low pT

• Unique low-pT coverage of PHOBOS

y0

PHOBOS Au+Au 62.4 GeV

T = 1016 MeVsurface = 0.720.02

T = 1026 MeVsurface = 0.760.02

T = 1036 MeVsurface = 0.780.02

• No enhanced production at very low pT

• pT- spectra consistent with transverse expansion of the system

PRC 75 (2007) 024910 

Page 23: for the                           Collaboration

23Adam Trzupek – INP PAN, KrakówHEP’07 Manchester

mT -scaling in d+Au vs. central Au+Au

Lack of mT scaling in central heavy ion collisions

J.Phys.G 30 S1143-S1147 (2004 ) PRC 70 (2004) 051901(R)

mT - Scaling the same slope of mT –spectra

PRC 70 (2004) 051901, PRC 75 (2007) 024910 

Page 24: for the                           Collaboration

24Adam Trzupek – INP PAN, KrakówHEP’07 Manchester

Summary• dNch/d for Au+Au and Cu+Cu

– Similar at the same Npart

– Factorization of centrality and energy dependence

– Extended longitudinal scaling

• Elliptic Flow– v2 for A+A is large and continues to grow with energy

– Participant eccentricity is relevant for the azimuthal anisotropy

– Scaling of v2/ part for Cu+Cu and Au+Au

• pT -Spectra of Identified Particles– No enhanced production at very low pT in central Au+Au collisions

– Lack of mT scaling in central Au+Au collision consistent with transverse expansion of the system

The collision geometry controls the dynamical evolution of heavy ion collisions


Recommended