+ All Categories
Home > Documents > Formation of Structural Defects in High Electron Mobility SLIDES.pdf · crit I D, R D, and I G...

Formation of Structural Defects in High Electron Mobility SLIDES.pdf · crit I D, R D, and I G...

Date post: 27-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
15
Formation of Structural Defects in AlGaN/GaN High Electron Mobility Transistors under Electrical Stress Transistors under Electrical Stress Prashanth Makaram 1 , Jungwoo Joh 2 , Carl V. Thompson 1 Jesús A. del Alamo 2 and Tomas Palacios 2 1 Material Processing Center 2 Micros ystems Technology Laboratories Massachusetts Institute of Technology, Cambridge, MA, USA ( ) Acknowledgements: ARL (DARPA WBGS program) ONR (DRIFTMURI) TriQuint Semiconductor
Transcript
Page 1: Formation of Structural Defects in High Electron Mobility SLIDES.pdf · crit I D, R D, and I G start to degrade beyond critical voltage (V crit) I Dmax: V DS =5 V, V GS =2 V I Goff

Formation of Structural Defects in AlGaN/GaN High Electron Mobility Transistors under Electrical StressTransistors under Electrical Stress

Prashanth Makaram1, Jungwoo Joh2, Carl V. Thompson1

Jesús A. del Alamo2 and Tomas Palacios21Material Processing Center 2Microsystems Technology Laboratoriesg y gy

Massachusetts Institute of Technology, Cambridge, MA, USA

( )Acknowledgements: ARL (DARPA WBGS program)ONR (DRIFT‐MURI)TriQuint Semiconductor

Page 2: Formation of Structural Defects in High Electron Mobility SLIDES.pdf · crit I D, R D, and I G start to degrade beyond critical voltage (V crit) I Dmax: V DS =5 V, V GS =2 V I Goff

IntroductionIntroduction

• GaN HEMT Reliability: big concernGaN HEMT Reliability: big concern– RF power degradation

I decrease R increase I increase V change– ID decrease, RD increase, IG increase, VT change…

• Goal: understand degradation mechanism0

RF stress -0.4-0.2

0

(dB

)

10 GHz,VD=28 VIDQ=150 mA/mmPin=23 dBmP =33 7 dBm

-0.8-0.6

∆Pou

t

2

Pout=33.7 dBm -10 5 10 15

Time (hr)

Page 3: Formation of Structural Defects in High Electron Mobility SLIDES.pdf · crit I D, R D, and I G start to degrade beyond critical voltage (V crit) I Dmax: V DS =5 V, V GS =2 V I Goff

High Voltage Degradation in GaN HEMTsHEMTs

V 1 E 00

1.E+01

1 15

1.2OFF-state, VGS=-10 V

GS D

AlGaN

VGSVDS

1.E-02

1.E-01

1.E+00

1.05

1.1

1.15

A/m

m)

0), R

/R(0

)

RS

RD

=‐10 V

2DEG

1 E 05

1.E-04

1.E-03

0 9

0.95

1

|I Gof

f| (A

I Dm

ax/I D

max

(0IDmax

IG ff

Joh, EDL 2008

GaN

1.E-06

1.E-05

0.85

0.9

10 20 30 40 50

I

V (V)

IGoff

Vcrit

ID, RD, and IG start to degrade beyond critical voltage (Vcrit)

IDmax: VDS=5 V, VGS=2 V   IGoff: VDS=0.1 V, VGS=‐5 V

VDGstress (V)

3

D D G crit(+ trapping behavior – current collapse)Common physical origin in ID and IG degradation

Page 4: Formation of Structural Defects in High Electron Mobility SLIDES.pdf · crit I D, R D, and I G start to degrade beyond critical voltage (V crit) I Dmax: V DS =5 V, V GS =2 V I Goff

Material Degradation around V itMaterial Degradation around VcritVDG=0 V VDG=16 V~Vcrit

50

30

40

50

egrada

tion

 (%) 

10

20

erman

ent I

DmaxDe

Joh ROCS 2010VDG=25 V VDG=37 V 0

0 2 4 6 8

Pe

Pit depth (nm)

Joh, ROCS 2010

Good correlation between pit depth and electrical degradation

4Initial dimple followed by deeper pitting and cracking.

degradation

Page 5: Formation of Structural Defects in High Electron Mobility SLIDES.pdf · crit I D, R D, and I G start to degrade beyond critical voltage (V crit) I Dmax: V DS =5 V, V GS =2 V I Goff

Plan View ApproachPlan View Approach

• Limitation of TEM: costly extremely localLimitation of TEM: costly, extremely local

hi k• This work:– Removal of SiN passivation and gate

• SiN passivation: HF etch (1:10 HF: H2O)

• Contact and gate metals: aqua regia (3:1 HCl: HNO3) at 80 ˚C for 20 minutes80  C for 20 minutes

• Surface cleaning: piranha solution (H2SO4: H2O) for 5 minutes at 115 ˚C

– Plan view imaging through SEM and AFM5

Page 6: Formation of Structural Defects in High Electron Mobility SLIDES.pdf · crit I D, R D, and I G start to degrade beyond critical voltage (V crit) I Dmax: V DS =5 V, V GS =2 V I Goff

SiN and Gate RemovalSiN and Gate RemovalSource

Gate

DrainG

6Unstressed (high T storage) Stressed (> Vcrit)

Page 7: Formation of Structural Defects in High Electron Mobility SLIDES.pdf · crit I D, R D, and I G start to degrade beyond critical voltage (V crit) I Dmax: V DS =5 V, V GS =2 V I Goff

ExperimentalExperimental

• OFF‐state step stressOFF state step stress– VGS=‐7 V

V stepped from 5 to 8 12 20 35 50 V (1V/min)– VDS stepped from 5 to 8, 12, 20, 35, 50 V (1V/min)

– Tbase=150C

D t il d d i h t i ti• Detailed device characterization:– DC device parameters: IDmax, RS, RD, VT…

– Trap characterization: current collapse

• Removal of passivation and gate metal

• SEM and AFM plan view imaging7

Page 8: Formation of Structural Defects in High Electron Mobility SLIDES.pdf · crit I D, R D, and I G start to degrade beyond critical voltage (V crit) I Dmax: V DS =5 V, V GS =2 V I Goff

Electrical DegradationElectrical Degradation

1.E+0112 OFF‐state step stress

1.E+00

8

10

m)dation

 (%)

e (%

)OFF state step stress

1.E‐02

1.E‐01

6

8

off| (m

A/m

m

nent Degrad

nt Collapse

IGoffCC

1.E‐032

4 |IGo

DmaxPerm

anCu

rre

IDmaxVcrit

1.E‐040

0 10 20 30 40 50 60

I D

V (V)

FreshCurrent collapse:

1s pulseV 0 V 10V VDGstress (V)

Typical critical behavior beyond 19 V

VDS=0, VGS=‐10V

8

Page 9: Formation of Structural Defects in High Electron Mobility SLIDES.pdf · crit I D, R D, and I G start to degrade beyond critical voltage (V crit) I Dmax: V DS =5 V, V GS =2 V I Goff

Structural DegradationStructural Degradation

200 nm200 nm200 nmUnstressed VDG=15 V VDG=19 V DG DG(Vcrit)

200 nm200 nmVDG=42 V VDG=57 V

Initial continuous groove formationDeeper pit formation along the groove 9

Page 10: Formation of Structural Defects in High Electron Mobility SLIDES.pdf · crit I D, R D, and I G start to degrade beyond critical voltage (V crit) I Dmax: V DS =5 V, V GS =2 V I Goff

Pit Cross Section AreaPit Cross Section Area

DrainSource

100

120

140

m2 )0

0.5

nm)

Gate

60

80

100

ge Pit Area (n

1 5

-1

-0.5

ge P

it D

epth

(

0

20

40

Avera

0 0 2 0 4 0 6-2.5

-2

-1.5

Ave

rag

VDGstress=57 V0 10 20 30 40 50 60

Stress Voltage VDGstress (V)

0 0.2 0.4 0.65

x (m)

Drain side pit area also shows critical behavior.10

Page 11: Formation of Structural Defects in High Electron Mobility SLIDES.pdf · crit I D, R D, and I G start to degrade beyond critical voltage (V crit) I Dmax: V DS =5 V, V GS =2 V I Goff

Correlation between Electrical and l d

12)12)

Structural Degradation

8

10

12

t Collapse (%

)

8

10

12

grad

ation (%

)

2

4

6

tress Cu

rren

t

2

4

6

nent I D

maxDeg

0

2

0 50 100 150Po

st‐St

f ( 2)

0

2

0 50 100 150

Perm

an

f ( 2) Average Defect Area (nm2)Average Defect Area (nm2)

Good correlation between electrical degradation and pit areaGood correlation between electrical degradation and pit area

11

Page 12: Formation of Structural Defects in High Electron Mobility SLIDES.pdf · crit I D, R D, and I G start to degrade beyond critical voltage (V crit) I Dmax: V DS =5 V, V GS =2 V I Goff

Time EvolutionTime EvolutionOFF‐state stress VDGstress=50 V (>Vcrit), Tbase=150 C

S id f tiSource side groove formationPits grow in density and merge with each other.

12

Page 13: Formation of Structural Defects in High Electron Mobility SLIDES.pdf · crit I D, R D, and I G start to degrade beyond critical voltage (V crit) I Dmax: V DS =5 V, V GS =2 V I Goff

Symmetric Stress (VDS=0)Symmetric Stress (VDS 0)

Stress conditions:Stress conditions:‐ VDS=0, VGS=‐50 V(stressed on both sides)40 minDrain ‐ 40 min.

‐ Room temperatureVGS

Gate GS D

AlGaN

2DEG

Source

GaN

2DEG

Grooves and pits on both sides of the gate13

Page 14: Formation of Structural Defects in High Electron Mobility SLIDES.pdf · crit I D, R D, and I G start to degrade beyond critical voltage (V crit) I Dmax: V DS =5 V, V GS =2 V I Goff

Degradation MechanismsDegradation Mechanisms

• Consistent observation in TEM and plan‐viewCo s ste t obse at o a d p a e– Grooves and pits are not by‐product of etching

• Groove formation– Field induced oxidation?– Electrochemical etching?

• Pit formation– Degradation is E‐field driven (Little current is needed)– Field/stress induced diffusion of material away from gate?

• In any event mass transport is involved• In any event, mass transport is involved.

14

Page 15: Formation of Structural Defects in High Electron Mobility SLIDES.pdf · crit I D, R D, and I G start to degrade beyond critical voltage (V crit) I Dmax: V DS =5 V, V GS =2 V I Goff

SummarySummary

• Developed a simple process for plan‐view e e oped a s p e p ocess o p a eassessment of structural degradation

• Evolution of structural damage:g– Below Vcrit: shallow continuous groove formation at gate edgeAb V l l i f i l h– Above Vcrit: local pit formation along the groove

– Number of pits increases with Vstress and timeNumber of pits increases with Vstress and time and pits merge

• Field induced mass transport is involved in GaN HEMT degradation

15


Recommended