+ All Categories
Home > Documents > Foundations of Electromagnetic Theory - … 611 spring 18/classnotes... · Foundations of...

Foundations of Electromagnetic Theory - … 611 spring 18/classnotes... · Foundations of...

Date post: 18-Aug-2018
Category:
Upload: tranhanh
View: 235 times
Download: 0 times
Share this document with a friend
106
1 Prof. Sergio B. Mendes Spring 2018 Prologue of “Modern Problems in Classical Electrodynamics” by Charles Brau Foundations of Electromagnetic Theory
Transcript

1Prof. Sergio B. MendesSpring 2018

Prologue of “Modern Problems in Classical Electrodynamics” by Charles Brau

Foundations of Electromagnetic Theory

2

• Topics to be covered in this chapter (prologue): electrostatics, magnetostatics, electrodynamics, electromagnetic waves, conservation laws, and Maxwell’s stress tensor.

• Almost all forces perceived in Nature (except for gravity) are electromagnetic forces.

• For most of the topics listed above, this is intended to be a review, not an introduction.

Prof. Sergio B. MendesSpring 2018

Foundations of Electromagnetic Theory

Electrostatic Theory

3

charges are not moving, they are fixed in space

charge density: 𝜌𝜌 𝒓𝒓, 𝑡𝑡 = 𝜌𝜌 𝒓𝒓

Prof. Sergio B. MendesSpring 2018

4

Milestones in Electrostatics• 600 B.C.: Thales of Miletus, amber rubbed with fur attracts other

object, electron = amber in greek

• 1600 D.C.: Gilbert, “amberness” phenomena is also displayed by other materials

• 1733: du Fay, repulsion is also possible (in addition to attraction), two flavors of electric charge

• 1834: Faraday, electric charge comes in discrete amounts (is quantized in modern terminology)

• 1909: Millikan, 𝑒𝑒 ≅ −1.62 × 10−19 𝐶𝐶

• 1746: Watson, 1747: Franklin, electricity as a fluid that moves from one body to another, conservation of electric charge

• 1785: Coulomb, force between small electrically-charged objects

Prof. Sergio B. MendesSpring 2018

5

𝑭𝑭𝒒𝒒 𝒓𝒓 =𝑞𝑞 𝑞𝑞𝑞

4 𝜋𝜋 𝜖𝜖0𝒓𝒓 − 𝒓𝒓′

𝒓𝒓 − 𝒓𝒓𝑞 3

Coulomb Law

𝑞𝑞𝑞𝑞𝑞

𝒓𝒓𝒓𝒓𝑞

𝒓𝒓 − 𝒓𝒓𝑞𝑭𝑭

𝒪𝒪

(force on 𝑞𝑞 located at 𝒓𝒓due to 𝑞𝑞𝑞 located at 𝒓𝒓𝑞)

𝑭𝑭𝒒𝒒 𝒓𝒓

∝ 𝑞𝑞 𝑞𝑞𝑞

𝜖𝜖0 ≅ 8.854187817 × 10−12𝐶𝐶2

𝑁𝑁 𝑚𝑚2

(permittivity of free space)

Prof. Sergio B. MendesSpring 2018

∝𝟏𝟏

𝒓𝒓 − 𝒓𝒓𝑞 2

6

𝑭𝑭𝒒𝒒 𝒓𝒓 =𝑞𝑞

4 𝜋𝜋 𝜖𝜖0�𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎

𝑞𝑞𝑖𝑖𝒓𝒓 − 𝒓𝒓𝑖𝑖𝒓𝒓 − 𝒓𝒓𝑖𝑖 3

𝑭𝑭𝒒𝒒 𝒓𝒓 =𝑞𝑞

4 𝜋𝜋 𝜖𝜖0�−∞

+∞

𝜌𝜌 𝒓𝒓𝑞𝒓𝒓 − 𝒓𝒓′

𝒓𝒓 − 𝒓𝒓′ 3𝑑𝑑𝑑𝑑𝑞

𝑑𝑑𝑞𝑞 𝒓𝒓𝑞 = 𝜌𝜌 𝒓𝒓𝑞 𝑑𝑑𝑑𝑑𝑞

• Continuous distribution of charges 𝜌𝜌 𝒓𝒓𝑞 :

• Discrete charges 𝑞𝑞𝑖𝑖 located at 𝒓𝒓𝑖𝑖:

Net Force from Multiple ChargesPrinciple of Superposition: forces are added (vectorially)

Prof. Sergio B. MendesSpring 2018

7

The force 𝑭𝑭𝒒𝒒 𝒓𝒓 on 𝑞𝑞 is linearly proportional to 𝑞𝑞.

The proportionality constant is called the electric field 𝑬𝑬 𝒓𝒓 :

𝑬𝑬 𝒓𝒓 ≡𝑭𝑭𝒒𝒒 𝒓𝒓𝒒𝒒

Prof. Sergio B. MendesSpring 2018

An Important Consequence

8

𝑬𝑬 𝒓𝒓 =1

4 𝜋𝜋 𝜖𝜖0�𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎

𝑞𝑞𝑖𝑖𝒓𝒓 − 𝒓𝒓𝑖𝑖𝒓𝒓 − 𝒓𝒓𝑖𝑖 3

𝑬𝑬 𝒓𝒓 =1

4 𝜋𝜋 𝜖𝜖0�−∞

+∞

𝜌𝜌 𝒓𝒓𝑞𝒓𝒓 − 𝒓𝒓′

𝒓𝒓 − 𝒓𝒓′ 3𝑑𝑑𝑑𝑑𝑞

• Multiple discrete charges 𝑞𝑞𝑖𝑖 located at 𝒓𝒓𝑖𝑖:

• Continuous distribution of charges 𝜌𝜌 𝒓𝒓𝑞 :

• Single charge 𝑞𝑞𝑞 located at 𝒓𝒓𝑞:

𝑬𝑬 𝒓𝒓 =𝑞𝑞𝑞

4 𝜋𝜋 𝜖𝜖0𝒓𝒓 − 𝒓𝒓′

𝒓𝒓 − 𝒓𝒓𝑞 3

Electric Field

Prof. Sergio B. MendesSpring 2018

𝒓𝒓

𝒪𝒪

𝒓𝒓

𝒪𝒪

𝒪𝒪

𝒓𝒓𝑞 𝑞𝑞𝑞 𝒓𝒓

9

Flux of the Electric Field on a Arbitrary Surface

Φ𝑬𝑬 ≡�𝑆𝑆𝑬𝑬 𝒓𝒓 . 𝒅𝒅𝒅𝒅

𝑬𝑬 𝒓𝒓

𝒅𝒅𝒅𝒅𝑆𝑆

𝑬𝑬 𝒓𝒓 . 𝒅𝒅𝒅𝒅 = 𝑬𝑬 𝒓𝒓 cos 𝜃𝜃 𝒓𝒓 𝑑𝑑𝑆𝑆

𝜃𝜃 𝒓𝒓

𝒪𝒪

𝒓𝒓

vector vectordot

product

𝒅𝒅𝒅𝒅 ≡ �𝒏𝒏 𝒓𝒓 𝑑𝑑𝑆𝑆

𝑑𝑑𝑆𝑆

vector unit normal vector

differential area

Prof. Sergio B. MendesSpring 2018

10

Divergence Theorem

�𝑆𝑆𝑸𝑸 𝒓𝒓 . 𝒅𝒅𝒅𝒅 = �

𝑉𝑉𝛻𝛻.𝑸𝑸 𝒓𝒓 𝑑𝑑𝑑𝑑

for any continuously differentiable vector field 𝑸𝑸 𝒓𝒓 and any closed surface S:

closed surface S surrounds volume V

also known as Gauss's theorem or

Ostrogradsky's theorem

Prof. Sergio B. MendesSpring 2018

S𝑸𝑸 𝒓𝒓V

S

V

11

Electric Flux on a closed surface:

Φ𝑬𝑬, 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒅𝒅 = �𝑆𝑆𝑬𝑬 𝒓𝒓 . 𝒅𝒅𝒅𝒅

Φ𝑬𝑬,𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒅𝒅 = �𝑆𝑆𝑬𝑬 𝒓𝒓 .𝒅𝒅𝒅𝒅 = �

𝑉𝑉𝛻𝛻.𝑬𝑬 𝒓𝒓 𝑑𝑑𝑑𝑑

Divergence Theorem

Prof. Sergio B. MendesSpring 2018

12

Single charge 𝑞𝑞𝑞 located at 𝒓𝒓𝑞:

𝑬𝑬 𝒓𝒓 =𝑞𝑞𝑞

4 𝜋𝜋 𝜖𝜖0𝒓𝒓 − 𝒓𝒓′

𝒓𝒓 − 𝒓𝒓𝑞 3

𝛻𝛻−1𝒓𝒓 − 𝒓𝒓𝑞

=𝒓𝒓 − 𝒓𝒓′

𝒓𝒓 − 𝒓𝒓𝑞 3

�𝑆𝑆𝑬𝑬 𝒓𝒓 .𝒅𝒅𝒅𝒅 = �

𝑉𝑉𝛻𝛻.𝑬𝑬 𝒓𝒓 𝑑𝑑𝑑𝑑 = �

𝑉𝑉

𝑞𝑞𝑞4 𝜋𝜋 𝜖𝜖0

𝛻𝛻. 𝛻𝛻−1𝒓𝒓 − 𝒓𝒓𝑞

𝑑𝑑𝑑𝑑

HW:

HW:

=𝑞𝑞𝑞

4 𝜋𝜋 𝜖𝜖0𝛻𝛻

−1𝒓𝒓 − 𝒓𝒓𝑞

𝛻𝛻. 𝛻𝛻𝜓𝜓 𝒓𝒓 = 𝛻𝛻2 𝜓𝜓 𝒓𝒓

= �𝑉𝑉

𝑞𝑞𝑞4 𝜋𝜋 𝜖𝜖0

𝛻𝛻2−1𝒓𝒓 − 𝒓𝒓𝑞

𝑑𝑑𝑑𝑑

Prof. Sergio B. MendesSpring 2018

13

𝛻𝛻2−1𝒓𝒓 − 𝒓𝒓𝑞

= 4 𝜋𝜋 𝛿𝛿3 𝒓𝒓 − 𝒓𝒓𝑞HW:

𝑞𝑞′

𝜖𝜖0

0

if q’ is inside V

if q’ is outside V

= �𝑉𝑉

𝑞𝑞′

4 𝜋𝜋 𝜖𝜖04 𝜋𝜋 𝛿𝛿3 𝒓𝒓 − 𝒓𝒓𝑞 𝑑𝑑𝑑𝑑

�𝑆𝑆𝑬𝑬 𝒓𝒓 .𝒅𝒅𝒅𝒅 = �

𝑉𝑉

𝑞𝑞𝑞4 𝜋𝜋 𝜖𝜖0

𝛻𝛻2−1𝒓𝒓 − 𝒓𝒓𝑞

𝑑𝑑𝑑𝑑 =

Prof. Sergio B. MendesSpring 2018

{=

14

Multiple discrete charges 𝑞𝑞𝑖𝑖 located at 𝒓𝒓𝑖𝑖:

𝑬𝑬 𝒓𝒓 =1

4 𝜋𝜋 𝜖𝜖0�𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎

𝑞𝑞𝑖𝑖𝒓𝒓 − 𝒓𝒓𝑖𝑖𝒓𝒓 − 𝒓𝒓𝑖𝑖 3

=1

4 𝜋𝜋 𝜖𝜖0�𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎

𝑞𝑞𝑖𝑖 𝛻𝛻−1

𝒓𝒓 − 𝒓𝒓𝑖𝑖

= �𝑉𝑉

14 𝜋𝜋 𝜖𝜖0

�𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎

𝑞𝑞𝑖𝑖 𝛻𝛻2−1

𝒓𝒓 − 𝒓𝒓𝑖𝑖𝑑𝑑𝑑𝑑

= �𝑉𝑉

14 𝜋𝜋 𝜖𝜖0

�𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎

𝑞𝑞𝑖𝑖 4 𝜋𝜋 𝛿𝛿3 𝒓𝒓 − 𝒓𝒓𝑖𝑖 𝑑𝑑𝑑𝑑

= �𝑖𝑖= 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑞𝑞𝑖𝑖𝜖𝜖0

= �𝑖𝑖=𝑎𝑎𝑎𝑎𝑎𝑎

𝑞𝑞𝑖𝑖𝜖𝜖0

�𝑉𝑉𝛿𝛿3 𝒓𝒓 − 𝒓𝒓𝑖𝑖 𝑑𝑑𝑑𝑑

�𝑆𝑆𝑬𝑬 𝒓𝒓 .𝒅𝒅𝒅𝒅 = �

𝑉𝑉𝛻𝛻.𝑬𝑬 𝒓𝒓 𝑑𝑑𝑑𝑑

Prof. Sergio B. MendesSpring 2018

15

�𝑆𝑆𝑬𝑬 𝒓𝒓 .𝒅𝒅𝒅𝒅 = �

𝑖𝑖= 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑞𝑞𝑖𝑖𝜖𝜖0

=𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜖𝜖0

independent of charge location inside S

independent of shape of surface S

Prof. Sergio B. MendesSpring 2018

16

𝑬𝑬 𝒓𝒓 =1

4 𝜋𝜋 𝜖𝜖0�−∞

+∞

𝜌𝜌 𝒓𝒓𝑞𝒓𝒓 − 𝒓𝒓′

𝒓𝒓 − 𝒓𝒓′ 3𝑑𝑑𝑑𝑑𝑞

Continuous distribution of charges 𝜌𝜌 𝒓𝒓𝑞 :

=1

4 𝜋𝜋 𝜖𝜖0�−∞

+∞

𝜌𝜌 𝒓𝒓𝑞 𝛻𝛻−1𝒓𝒓 − 𝒓𝒓𝑞

𝑑𝑑𝑑𝑑𝑞

𝛻𝛻.𝑬𝑬 𝒓𝒓

=1

4 𝜋𝜋 𝜖𝜖0�−∞

+∞

𝜌𝜌 𝒓𝒓𝑞 𝛻𝛻2−1𝒓𝒓 − 𝒓𝒓𝑞

𝑑𝑑𝑑𝑑𝑞

=1

4 𝜋𝜋 𝜖𝜖0�−∞

+∞

𝜌𝜌 𝒓𝒓𝑞 4 𝜋𝜋 𝛿𝛿3 𝒓𝒓 − 𝒓𝒓𝑞 𝑑𝑑𝑑𝑑𝑞 =𝜌𝜌 𝒓𝒓𝜖𝜖0

= 𝛻𝛻.1

4 𝜋𝜋 𝜖𝜖0�−∞

+∞

𝜌𝜌 𝒓𝒓𝑞 𝛻𝛻−1𝒓𝒓 − 𝒓𝒓𝑞

𝑑𝑑𝑑𝑑𝑞

Prof. Sergio B. MendesSpring 2018

17

�𝑆𝑆𝑬𝑬 𝒓𝒓 .𝒅𝒅𝒅𝒅 = �

𝑉𝑉𝛻𝛻.𝑬𝑬 𝒓𝒓 𝑑𝑑𝑑𝑑 = �

𝑉𝑉

𝜌𝜌 𝒓𝒓𝜖𝜖0

𝑑𝑑𝑑𝑑

𝛻𝛻.𝑬𝑬 𝒓𝒓 =𝜌𝜌 𝒓𝒓𝜖𝜖0

Gauss’s Law (differential form)

=𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜖𝜖0

�𝑆𝑆𝑬𝑬 𝒓𝒓 .𝒅𝒅𝒅𝒅 =

𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜖𝜖0

Gauss’s Law (integral form)

Prof. Sergio B. MendesSpring 2018

18

𝑬𝑬 𝒓𝒓 =1

4 𝜋𝜋 𝜖𝜖0�𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎

𝑞𝑞𝑖𝑖𝒓𝒓 − 𝒓𝒓𝑖𝑖𝒓𝒓 − 𝒓𝒓𝑖𝑖 3

Back to the electric field:

= −𝛻𝛻Φ 𝒓𝒓

Φ 𝒓𝒓 ≡1

4 𝜋𝜋 𝜖𝜖0�𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎

𝑞𝑞𝑖𝑖𝒓𝒓 − 𝒓𝒓𝑖𝑖

Electric Field 𝑬𝑬 𝒓𝒓is a vector field

Electric Potential Φ 𝒓𝒓is a scalar function

(discrete charges)

=1

4 𝜋𝜋 𝜖𝜖0�𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎

𝑞𝑞𝑖𝑖 𝛻𝛻−1

𝒓𝒓 − 𝒓𝒓𝑖𝑖

Prof. Sergio B. MendesSpring 2018

19

Back to the electric field:(continuous charge distribution)

= −𝛻𝛻Φ 𝒓𝒓

Φ 𝒓𝒓 ≡1

4 𝜋𝜋 𝜖𝜖0�−∞

+∞𝜌𝜌 𝒓𝒓𝑞𝒓𝒓 − 𝒓𝒓′

𝑑𝑑𝑑𝑑𝑞

=1

4 𝜋𝜋 𝜖𝜖0�−∞

+∞

𝜌𝜌 𝒓𝒓𝑞 𝛻𝛻−1

𝒓𝒓 − 𝒓𝒓′𝑑𝑑𝑑𝑑𝑞

𝑬𝑬 𝒓𝒓 =1

4 𝜋𝜋 𝜖𝜖0�−∞

+∞

𝜌𝜌 𝒓𝒓𝑞𝒓𝒓 − 𝒓𝒓′

𝒓𝒓 − 𝒓𝒓′ 3𝑑𝑑𝑑𝑑𝑞

Prof. Sergio B. MendesSpring 2018

20

𝑬𝑬 𝒓𝒓 = −𝛻𝛻Φ 𝒓𝒓

Φ𝑞 𝒓𝒓 = Φ 𝒓𝒓 + Λ

𝛻𝛻.𝑬𝑬 𝒓𝒓 =𝜌𝜌 𝒓𝒓𝜖𝜖0

A couple of observations:

(1) Adding a constant Λ to the electric potential Φ 𝒓𝒓 has no impact on the field:

(2) We can solve the electric potential first and then use it to determine the electric field:

𝛻𝛻. −𝛻𝛻Φ 𝒓𝒓 =𝜌𝜌 𝒓𝒓𝜖𝜖0

−𝛻𝛻2Φ 𝒓𝒓 =𝜌𝜌 𝒓𝒓𝜖𝜖0

Poisson’s equation

Prof. Sergio B. MendesSpring 2018

21

𝛻𝛻 × 𝛻𝛻𝑓𝑓 𝒓𝒓 = 0HW:

𝑬𝑬 𝒓𝒓 = −𝛻𝛻Φ 𝒓𝒓

𝛻𝛻 × 𝑬𝑬 𝒓𝒓 = 𝛻𝛻 × −𝛻𝛻Φ 𝒓𝒓 = −𝛻𝛻 × 𝛻𝛻Φ 𝒓𝒓 = 0

𝛻𝛻 × 𝑬𝑬 𝒓𝒓 = 0

Prof. Sergio B. MendesSpring 2018

22

Stokes’ Theorem

�𝐶𝐶𝑸𝑸 𝒓𝒓 . 𝒅𝒅𝒓𝒓

closed loop C surrounds surface S

Prof. Sergio B. MendesSpring 2018

for any continuously differentiable vector field 𝑸𝑸 𝒓𝒓 and any closed loop C:

CS

𝛻𝛻 × 𝑸𝑸 𝒓𝒓

𝑸𝑸 𝒓𝒓

𝐶𝐶 𝐶𝐶

𝑆𝑆𝑆𝑆𝑞

= �𝑆𝑆𝛻𝛻 × 𝑸𝑸 𝒓𝒓 . 𝒅𝒅𝒅𝒅

23

�𝑎𝑎, 𝐶𝐶1

𝑏𝑏𝑬𝑬 𝒓𝒓 . 𝒅𝒅𝒓𝒓 = �

𝐶𝐶𝑬𝑬 𝒓𝒓 . 𝒅𝒅𝒓𝒓+�

𝑏𝑏, 𝐶𝐶2

𝑎𝑎𝑬𝑬 𝒓𝒓 . 𝒅𝒅𝒓𝒓

= �𝑆𝑆𝛻𝛻 × 𝑬𝑬 𝒓𝒓 . 𝒅𝒅𝒅𝒅

= �𝑆𝑆

0 . 𝒅𝒅𝒅𝒅

= 0

�𝑎𝑎, 𝐶𝐶1

𝑏𝑏𝑬𝑬 𝒓𝒓 . 𝒅𝒅𝒓𝒓 = −�

𝑏𝑏, 𝐶𝐶2

𝑎𝑎𝑬𝑬 𝒓𝒓 . 𝒅𝒅𝒓𝒓

= �𝑎𝑎, 𝐶𝐶2

𝑏𝑏𝑬𝑬 𝒓𝒓 . 𝒅𝒅𝒓𝒓 = constant, regardless of the path

𝒂𝒂

𝒃𝒃

𝐶𝐶1 𝐶𝐶2

Prof. Sergio B. MendesSpring 2018

𝑬𝑬 𝒓𝒓

𝒅𝒅𝒓𝒓

24

Φ 𝒓𝒓 ≡ −�−∞

𝒓𝒓𝑬𝑬 𝒓𝒓 . 𝒅𝒅𝒓𝒓

�𝒂𝒂

𝒃𝒃𝑬𝑬 𝒓𝒓 . 𝒅𝒅𝒓𝒓 = �

𝒂𝒂

−∞𝑬𝑬 𝒓𝒓 . 𝒅𝒅𝒓𝒓 + �

−∞

𝒃𝒃𝑬𝑬 𝒓𝒓 . 𝒅𝒅𝒓𝒓

= Φ 𝒂𝒂 −Φ 𝒃𝒃

regardless of the path 𝐶𝐶𝒂𝒂

𝒃𝒃

𝐶𝐶

𝑬𝑬 𝒓𝒓 = −𝛻𝛻Φ 𝒓𝒓

Prof. Sergio B. MendesSpring 2018

25

Workdone by the electrostatic force 𝑭𝑭𝒒𝒒 𝒓𝒓 when the charge q moves from a to b

𝑊𝑊 = �𝒂𝒂

𝒃𝒃𝑭𝑭𝒒𝒒 𝒓𝒓 . 𝒅𝒅𝒓𝒓

𝑭𝑭𝒒𝒒 𝒓𝒓 = 𝑞𝑞 𝑬𝑬 𝒓𝒓

𝑊𝑊 = �𝒂𝒂

𝒃𝒃𝑞𝑞 𝑬𝑬 𝒓𝒓 . 𝒅𝒅𝒓𝒓 = 𝑞𝑞 Φ 𝒂𝒂 − Φ 𝒃𝒃

𝒂𝒂

𝒃𝒃

𝐶𝐶

regardless of the path

Prof. Sergio B. MendesSpring 2018

26

External Workdone by an external force to perfectly balance the electrostatic force

𝑊𝑊𝑖𝑖𝑒𝑒𝑒𝑒 = 𝑞𝑞 Φ 𝒃𝒃 − Φ 𝒂𝒂𝒂𝒂

𝒃𝒃

𝑊𝑊𝑖𝑖𝑒𝑒𝑒𝑒 = 𝑞𝑞 Φ 𝒓𝒓 − Φ −∞

−∞

𝒓𝒓

= 𝑞𝑞 Φ 𝒓𝒓

𝑭𝑭𝒄𝒄𝒆𝒆𝒆𝒆 𝒓𝒓 = − 𝑭𝑭𝒒𝒒 𝒓𝒓

stored energy !!Prof. Sergio B. MendesSpring 2018

𝐶𝐶

𝐶𝐶

𝒂𝒂 → ∞0

27

𝑊𝑊1 & 2 = 𝑞𝑞1 Φ2 𝒓𝒓1

= 𝑞𝑞2 Φ1 𝒓𝒓2

=12𝑞𝑞1 Φ2 𝒓𝒓1 +

12𝑞𝑞2 Φ1 𝒓𝒓2

𝑞𝑞1 𝑞𝑞2

𝒪𝒪

𝒓𝒓1 𝒓𝒓2

External work done to assemble charges = Stored Energy

two point charges

Prof. Sergio B. MendesSpring 2018

𝑞𝑞2

28

𝑞𝑞1 𝑞𝑞2

𝒪𝒪

𝒓𝒓1 𝒓𝒓2

Additional work for bringing a third charge

𝑞𝑞3∆𝑊𝑊 = 𝑞𝑞3 Φ1 𝒓𝒓3 + 𝑞𝑞3 Φ2 𝒓𝒓3

= 𝑞𝑞1 Φ3 𝒓𝒓1 + 𝑞𝑞2 Φ3 𝒓𝒓2

=12𝑞𝑞3 Φ1 𝒓𝒓3 +

12𝑞𝑞1 Φ3 𝒓𝒓1 +

12𝑞𝑞3 Φ2 𝒓𝒓3 +

12𝑞𝑞2 Φ3 𝒓𝒓2

Prof. Sergio B. MendesSpring 2018

𝒓𝒓3

𝑞𝑞1 𝑞𝑞2

29

𝑊𝑊1 & 2 & 3 =12𝑞𝑞1 Φ2 𝒓𝒓1 +

12𝑞𝑞2 Φ1 𝒓𝒓2

+12𝑞𝑞3 Φ1 𝒓𝒓3 +

12𝑞𝑞1 Φ3 𝒓𝒓1

+12𝑞𝑞3 Φ2 𝒓𝒓3 +

12𝑞𝑞2 Φ3 𝒓𝒓2 =

=12𝑞𝑞1 Φ2 𝒓𝒓1 + Φ3 𝒓𝒓1

+12𝑞𝑞2 Φ3 𝒓𝒓2 + Φ1 𝒓𝒓2

+12𝑞𝑞3 Φ2 𝒓𝒓3 + Φ3 𝒓𝒓3

Work needed to assemble three charges(stored energy)

Prof. Sergio B. MendesSpring 2018

30

𝑑𝑑𝑊𝑊 =12𝑑𝑑𝑞𝑞 𝒓𝒓 Φ 𝒓𝒓

𝑑𝑑𝑞𝑞 𝒓𝒓 = 𝜌𝜌 𝒓𝒓 𝑑𝑑𝑑𝑑

𝜌𝜌 𝒓𝒓 = −𝜖𝜖0 𝛻𝛻2Φ 𝒓𝒓

𝑑𝑑𝑊𝑊 = −12𝜖𝜖0 Φ 𝒓𝒓 𝛻𝛻2Φ 𝒓𝒓 𝑑𝑑𝑑𝑑

Energy stored in a continuous distribution of charges

−Φ 𝒓𝒓 𝛻𝛻2Φ 𝒓𝒓 = − 𝛻𝛻. Φ 𝒓𝒓 𝛻𝛻Φ 𝒓𝒓 + 𝛻𝛻Φ 𝒓𝒓 . 𝛻𝛻Φ 𝒓𝒓HW:

Prof. Sergio B. MendesSpring 2018

31

=12𝜖𝜖0 − 𝛻𝛻. Φ 𝒓𝒓 𝛻𝛻Φ 𝒓𝒓 + 𝛻𝛻Φ 𝒓𝒓 . 𝛻𝛻Φ 𝒓𝒓 𝑑𝑑𝑑𝑑

𝑊𝑊 =12𝜖𝜖0�

−∞

+∞

− 𝛻𝛻. Φ 𝒓𝒓 𝛻𝛻Φ 𝒓𝒓 + 𝛻𝛻Φ 𝒓𝒓 . 𝛻𝛻Φ 𝒓𝒓 𝑑𝑑𝑑𝑑

=12𝜖𝜖0 − �

−∞

+∞

Φ 𝒓𝒓 𝛻𝛻Φ 𝒓𝒓 . 𝒅𝒅𝒅𝒅 + �−∞

+∞

𝛻𝛻Φ 𝒓𝒓 . 𝛻𝛻Φ 𝒓𝒓 𝑑𝑑𝑑𝑑

=12𝜖𝜖0�

−∞

+∞

𝛻𝛻Φ 𝒓𝒓 2 𝑑𝑑𝑑𝑑

Prof. Sergio B. MendesSpring 2018

𝑑𝑑𝑊𝑊 = −12𝜖𝜖0 Φ 𝒓𝒓 𝛻𝛻2Φ 𝒓𝒓 𝑑𝑑𝑑𝑑

0

=12𝜖𝜖0�

−∞

+∞

𝑬𝑬 𝒓𝒓 2 𝑑𝑑𝑑𝑑

32

𝑢𝑢𝐸𝐸 𝒓𝒓 ≡𝑑𝑑𝑊𝑊𝑑𝑑𝑑𝑑

=12𝜖𝜖0 𝑬𝑬 𝒓𝒓 2

(Electric) Energy Density

Prof. Sergio B. MendesSpring 2018

Magnetostatic Theory

33

steady (constant) current

current density: 𝑱𝑱 𝒓𝒓, 𝑡𝑡 = 𝑱𝑱 𝒓𝒓

𝑱𝑱 ≡𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆

�𝒏𝒏

Prof. Sergio B. MendesSpring 2018

34

Milestones in Magnetostatics• 2637 B.C.: reports of magnets by Chinese civilization

• 3rd century A.D.: Chinese ships used compass

• 1600: Gilbert, (De Magnete) described Earth as a magnet

• 800 A.D.: Greek reports on lodestones (magnetite Fe2O3)

• 1820: Oersted, an electric current deflects a compass

• 1830’s: Ampere, nearby currents create a force on each other

Prof. Sergio B. MendesSpring 2018

35

Conservation of Electric Charge

�s𝑱𝑱 𝒓𝒓, 𝑡𝑡 . 𝒅𝒅𝒅𝒅 = −

𝑑𝑑𝑄𝑄𝑉𝑉𝑑𝑑𝑡𝑡

= −𝑑𝑑𝑑𝑑𝑡𝑡�

𝑉𝑉𝜌𝜌 𝒓𝒓, 𝑡𝑡 𝑑𝑑𝑑𝑑

�𝑉𝑉𝛁𝛁. 𝑱𝑱 𝒓𝒓, 𝑡𝑡 𝑑𝑑𝑑𝑑 = −�

𝑉𝑉

𝜕𝜕𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

𝑑𝑑𝑑𝑑

𝛁𝛁. 𝑱𝑱 𝒓𝒓, 𝑡𝑡 = −𝜕𝜕𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

𝜌𝜌 𝒓𝒓, 𝑡𝑡 = 𝜌𝜌 𝒓𝒓 𝜕𝜕𝜌𝜌 𝒓𝒓𝜕𝜕𝑡𝑡

= 0 𝛁𝛁. 𝑱𝑱 𝒓𝒓, 𝑡𝑡 = 𝛁𝛁. 𝑱𝑱 𝒓𝒓 = 0if then and

always valid due to conservation of charge

Prof. Sergio B. MendesSpring 2018

36

𝛁𝛁. 𝑱𝑱 𝒓𝒓 = 0

Satisfies × Violates

Prof. Sergio B. MendesSpring 2018

�s𝑱𝑱 𝒓𝒓 . 𝒅𝒅𝒅𝒅 = 0

37

Magnetic Force• on a moving electric charge due to a magnetic field 𝑩𝑩

𝑑𝑑𝑭𝑭 = 𝑑𝑑𝑞𝑞 𝒗𝒗 × 𝑩𝑩 = I dr × 𝑩𝑩 = dV 𝑱𝑱 × 𝑩𝑩

𝑭𝑭 = 𝑞𝑞 𝒗𝒗 × 𝑩𝑩

• For a non-zero magnetic force, charges must be moving and in a path not collinear with the magnetic field

• Static magnetic force is always orthogonal to the direction of charge motion

• Work: 𝑑𝑑𝑊𝑊 = 𝑭𝑭 . 𝒅𝒅𝒓𝒓 = 𝑞𝑞 𝒗𝒗 × 𝑩𝑩 . 𝒗𝒗 𝑑𝑑𝑡𝑡 = 0

• [B] = Tesla in S.I. units

Lorentz force

Prof. Sergio B. MendesSpring 2018

• on an electric current due to a magnetic field 𝑩𝑩

38

Magnetic Fieldis created by electric charges in motion (electric current)

𝑩𝑩 𝒓𝒓 =𝜇𝜇𝑜𝑜4 𝜋𝜋

�𝐶𝐶

I 𝒓𝒓′ d 𝒓𝒓′ ×𝒓𝒓 − 𝒓𝒓′

𝒓𝒓 − 𝒓𝒓𝑞 3

=𝜇𝜇𝑜𝑜4 𝜋𝜋

�−∞

+∞

𝑱𝑱 𝒓𝒓′ dV𝑞 ×𝒓𝒓 − 𝒓𝒓′

𝒓𝒓 − 𝒓𝒓𝑞 3

Biot-Savart law

𝜇𝜇𝑜𝑜 = 4 π × 10−7𝑁𝑁𝐴𝐴2

(permeability of free space)

Prof. Sergio B. MendesSpring 2018

39

𝛻𝛻.𝑩𝑩 𝒓𝒓 = 𝛻𝛻.𝜇𝜇𝑜𝑜4 𝜋𝜋

�−∞

+∞

dV𝑞 𝑱𝑱 𝒓𝒓′ ×𝒓𝒓 − 𝒓𝒓′

𝒓𝒓 − 𝒓𝒓𝑞 3

𝛻𝛻. 𝒂𝒂 × 𝒃𝒃 = 𝒃𝒃 .𝛻𝛻 × 𝒂𝒂 − 𝒂𝒂 . 𝛻𝛻 × 𝒃𝒃HW:

=𝜇𝜇𝑜𝑜4 𝜋𝜋

�−∞

+∞

dV𝑞𝒓𝒓 − 𝒓𝒓′

𝒓𝒓 − 𝒓𝒓𝑞 3.𝛻𝛻 × 𝑱𝑱 𝒓𝒓′ − 𝑱𝑱 𝒓𝒓′ .𝛻𝛻 ×

𝒓𝒓 − 𝒓𝒓′

𝒓𝒓 − 𝒓𝒓𝑞 3

= −𝜇𝜇𝑜𝑜4 𝜋𝜋

�−∞

+∞

dV𝑞 𝑱𝑱 𝒓𝒓′ .𝛻𝛻 × 𝛻𝛻−1𝒓𝒓 − 𝒓𝒓𝑞

𝛻𝛻 × 𝛻𝛻𝑓𝑓 𝒓𝒓 = 𝟎𝟎 𝛻𝛻.𝑩𝑩 𝒓𝒓 = 𝟎𝟎because: = 0,

Prof. Sergio B. MendesSpring 2018

0

40

𝛻𝛻 × 𝑩𝑩 𝒓𝒓 = 𝛻𝛻 ×𝜇𝜇𝑜𝑜4 𝜋𝜋

�−∞

+∞

dV𝑞 J 𝒓𝒓′ ×𝒓𝒓 − 𝒓𝒓′

𝒓𝒓 − 𝒓𝒓𝑞 3 = 𝜇𝜇𝑜𝑜 J 𝒓𝒓HW:

𝛻𝛻 × 𝑩𝑩 𝒓𝒓 = 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓

Ampère’s law(differential form)

�𝑆𝑆𝛻𝛻 × 𝑩𝑩 𝒓𝒓 .𝒅𝒅𝒅𝒅 = 𝜇𝜇𝑜𝑜�

𝑆𝑆𝑱𝑱 𝒓𝒓 .𝒅𝒅𝒅𝒅

�𝐶𝐶𝑩𝑩 𝒓𝒓 .𝒅𝒅𝒓𝒓 = 𝜇𝜇𝑜𝑜 𝑑𝑑

Ampère’s law(integral form)

Prof. Sergio B. MendesSpring 2018

41

Vector Potential: 𝑨𝑨 𝒓𝒓

𝛻𝛻.𝑩𝑩 𝒓𝒓 = 0

𝑩𝑩 𝒓𝒓 ≡ 𝛻𝛻 × 𝑨𝑨 𝒓𝒓

HW: 𝛻𝛻. 𝛻𝛻 × 𝒂𝒂 = 0

𝛻𝛻.𝑩𝑩 𝒓𝒓 = 𝛻𝛻. 𝛻𝛻 × 𝑨𝑨 𝒓𝒓 = 0

Prof. Sergio B. MendesSpring 2018

42

𝛻𝛻 × 𝛻𝛻 × 𝑨𝑨 𝒓𝒓 = 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓

𝛻𝛻 × 𝛻𝛻 × 𝒂𝒂 = 𝛻𝛻 𝛻𝛻.𝒂𝒂 − 𝛻𝛻𝟐𝟐𝒂𝒂HW:

Prof. Sergio B. MendesSpring 2018

𝛻𝛻 × 𝑩𝑩 𝒓𝒓 = 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓

𝜵𝜵 × 𝜵𝜵 × 𝑨𝑨 𝒓𝒓 = 𝜵𝜵 𝜵𝜵.𝑨𝑨 𝒓𝒓 − 𝛻𝛻𝟐𝟐𝑨𝑨 𝒓𝒓 = 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓

𝑩𝑩 𝒓𝒓 = 𝜵𝜵 × 𝑨𝑨 𝒓𝒓

43Prof. Sergio B. MendesSpring 2018

𝑨𝑨𝑞 𝒓𝒓 = 𝑨𝑨 𝒓𝒓 + 𝜵𝜵𝛬𝛬 𝒓𝒓

𝑩𝑩 𝒓𝒓 = 𝜵𝜵 × 𝑨𝑨′ 𝒓𝒓 = 𝜵𝜵 × 𝑨𝑨 𝒓𝒓

𝛁𝛁 × 𝛁𝛁𝛬𝛬 𝒓𝒓 = 0

because

and

Certain freedom to choose the Vector Potential:

44Prof. Sergio B. MendesSpring 2018

𝑨𝑨𝑞 𝒓𝒓 = 𝑨𝑨 𝒓𝒓 + 𝜵𝜵𝛬𝛬 𝒓𝒓

𝛁𝛁.𝑨𝑨𝑞 𝒓𝒓 = 𝛁𝛁.𝑨𝑨 𝒓𝒓 + 𝛁𝛁.𝛻𝛻𝛬𝛬 𝒓𝒓

= 𝛁𝛁.𝑨𝑨 𝒓𝒓 + 𝛻𝛻2𝛬𝛬 𝒓𝒓

Now, we will find 𝛬𝛬 𝒓𝒓 such that 𝛻𝛻2𝛬𝛬 𝒓𝒓 = −𝛁𝛁.𝑨𝑨 𝒓𝒓 , then:

𝛁𝛁.𝑨𝑨𝑞 𝒓𝒓 = 0

𝜵𝜵 × 𝜵𝜵 × 𝑨𝑨𝑞 𝒓𝒓 = 𝜵𝜵 𝜵𝜵.𝑨𝑨𝑞 𝒓𝒓 − 𝛻𝛻𝟐𝟐𝑨𝑨𝑞 𝒓𝒓 = 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓

−𝛻𝛻𝟐𝟐𝑨𝑨𝑞 𝒓𝒓 = 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓

Coulomb gauge

How can we benefit from this freedom?

0

45Prof. Sergio B. MendesSpring 2018

Big picture in

Electrostatics and Magnetostatics:

46Prof. Sergio B. MendesSpring 2018

𝑩𝑩 𝒓𝒓 = 𝜵𝜵 × 𝑨𝑨 𝒓𝒓

−𝛻𝛻𝟐𝟐𝑨𝑨 𝒓𝒓 = 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓−𝛻𝛻2Φ 𝒓𝒓 =𝜌𝜌 𝒓𝒓𝜖𝜖0

𝑬𝑬 𝒓𝒓 = −𝛻𝛻Φ 𝒓𝒓

Φ 𝒓𝒓 ≡1

4 𝜋𝜋 𝜖𝜖0�−∞

+∞𝜌𝜌 𝒓𝒓𝑞𝒓𝒓 − 𝒓𝒓′

𝑑𝑑𝑑𝑑𝑞 𝑨𝑨 𝒓𝒓 ≡𝜇𝜇𝑜𝑜

4 𝜋𝜋�−∞

+∞𝑱𝑱 𝒓𝒓𝑞𝒓𝒓 − 𝒓𝒓′

𝑑𝑑𝑑𝑑𝑞

Electrostatics Magnetostatics

𝜌𝜌 𝒓𝒓𝑱𝑱 𝒓𝒓

𝛁𝛁. 𝑱𝑱 𝒓𝒓, 𝑡𝑡 = 0−𝜕𝜕𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

= 𝛁𝛁. 𝑱𝑱 𝒓𝒓, 𝑡𝑡𝜕𝜕𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡 = 0

charge conservation

𝑰𝑰

Electrodynamic Theory

47

𝜌𝜌 𝒓𝒓, 𝑡𝑡

Prof. Sergio B. MendesSpring 2018

𝑱𝑱 𝒓𝒓, 𝑡𝑡−𝜕𝜕𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

= 𝛁𝛁. 𝑱𝑱 𝒓𝒓, 𝑡𝑡

time-dependent theory for electric and magnetic fields

}

48Prof. Sergio B. MendesSpring 2018

What remains valid ?

49Prof. Sergio B. MendesSpring 2018

Φ𝑬𝑬, 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒅𝒅 𝑡𝑡 = �𝑆𝑆𝑬𝑬 𝒓𝒓, 𝑡𝑡 .𝒅𝒅𝒅𝒅 = �

𝑉𝑉𝛻𝛻.𝑬𝑬 𝒓𝒓, 𝑡𝑡 𝑑𝑑𝑑𝑑 = �

𝑉𝑉

𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜖𝜖0

𝑑𝑑𝑑𝑑

𝛻𝛻.𝑬𝑬 𝒓𝒓, 𝑡𝑡 =𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜖𝜖0

50Prof. Sergio B. MendesSpring 2018

Φ𝑩𝑩, 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒅𝒅 𝑡𝑡 = �𝑆𝑆𝑩𝑩 𝒓𝒓, 𝑡𝑡 .𝒅𝒅𝒅𝒅 = �

𝑉𝑉𝛻𝛻.𝑩𝑩 𝒓𝒓, 𝑡𝑡 𝑑𝑑𝑑𝑑 = 0

𝛻𝛻.𝑩𝑩 𝒓𝒓, 𝑡𝑡 = 0

51Prof. Sergio B. MendesSpring 2018

What is new ?

52Prof. Sergio B. MendesSpring 2018

Φ𝑩𝑩 𝑡𝑡 = �𝑆𝑆𝑩𝑩 𝒓𝒓, 𝑡𝑡 . 𝒅𝒅𝒅𝒅

−𝑑𝑑𝑑𝑑𝑡𝑡Φ𝑩𝑩 𝑡𝑡 = �

𝐶𝐶𝑬𝑬 𝒓𝒓, 𝑡𝑡 . 𝒅𝒅𝒓𝒓

Faraday’s Law

−𝑑𝑑𝑑𝑑𝑡𝑡�𝑆𝑆𝑩𝑩 𝒓𝒓, 𝑡𝑡 . 𝒅𝒅𝒅𝒅 = �

𝑆𝑆𝛁𝛁 × 𝑬𝑬 𝒓𝒓, 𝑡𝑡 . 𝒅𝒅𝒅𝒅

𝛻𝛻 × 𝑬𝑬 𝒓𝒓, 𝑡𝑡 = −𝜕𝜕𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

53Prof. Sergio B. MendesSpring 2018

What needs to be modified ?

54Prof. Sergio B. MendesSpring 2018

𝛁𝛁. 𝑱𝑱 𝒓𝒓, 𝑡𝑡 +𝜕𝜕𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

= 0

𝛻𝛻.𝑬𝑬 𝒓𝒓, 𝑡𝑡 =𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜖𝜖0

𝜕𝜕𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

= 𝜖𝜖0𝜕𝜕 𝛁𝛁.𝑬𝑬 𝒓𝒓, 𝑡𝑡

𝜕𝜕𝑡𝑡

𝛁𝛁. 𝑱𝑱 𝒓𝒓, 𝑡𝑡 + 𝜖𝜖0𝜕𝜕 𝛁𝛁.𝑬𝑬 𝒓𝒓, 𝑡𝑡

𝜕𝜕𝑡𝑡= 0

𝛁𝛁. 𝑱𝑱 𝒓𝒓, 𝑡𝑡 + 𝜖𝜖0𝜕𝜕𝑬𝑬 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

= 0

= 𝛁𝛁. 𝛁𝛁 ×𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜇𝜇𝑜𝑜

𝛁𝛁 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡 = 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕𝑬𝑬 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

= 𝛁𝛁. 𝛁𝛁 × 𝑸𝑸 𝒓𝒓, 𝑡𝑡

55Prof. Sergio B. MendesSpring 2018

In summary, Maxwell’s equations:

𝛁𝛁.𝑬𝑬 𝒓𝒓, 𝑡𝑡 =𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜖𝜖0

𝛁𝛁.𝑩𝑩 𝒓𝒓, 𝑡𝑡 = 0

𝛁𝛁 × 𝑬𝑬 𝒓𝒓, 𝑡𝑡 = −𝜕𝜕𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

𝛁𝛁 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡 = 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕𝑬𝑬 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

1.

2.

3.

4.

Gauss’s law

Faraday’s law

GeneralizedAmpère’s law

Gauss’s law of magnetism

56

Vector Potential: 𝑨𝑨 𝒓𝒓, 𝑡𝑡

𝛻𝛻.𝑩𝑩 𝒓𝒓, 𝒆𝒆 = 0

𝑩𝑩 𝒓𝒓, 𝒆𝒆 ≡ 𝛻𝛻 × 𝑨𝑨 𝒓𝒓, 𝑡𝑡 𝛻𝛻.𝑩𝑩 𝒓𝒓, 𝑡𝑡 = 𝛻𝛻. 𝛻𝛻 × 𝑨𝑨 𝒓𝒓, 𝑡𝑡 = 0

Prof. Sergio B. MendesSpring 2018

57Prof. Sergio B. MendesSpring 2018

Scalar Potential: Φ 𝒓𝒓, 𝑡𝑡

𝛻𝛻 × 𝑬𝑬 𝒓𝒓, 𝑡𝑡 = −𝜕𝜕𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

𝑩𝑩 𝒓𝒓, 𝑡𝑡 = 𝛻𝛻 × 𝑨𝑨 𝒓𝒓, 𝑡𝑡

𝛻𝛻 × 𝑬𝑬 𝒓𝒓, 𝑡𝑡 = −𝜕𝜕 𝛻𝛻 × 𝑨𝑨 𝒓𝒓, 𝑡𝑡

𝜕𝜕𝑡𝑡

𝛻𝛻 × 𝑬𝑬 𝒓𝒓, 𝑡𝑡 +𝜕𝜕𝑨𝑨 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

= 𝟎𝟎

𝑬𝑬 𝒓𝒓, 𝑡𝑡 +𝜕𝜕𝑨𝑨 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

≡ −𝛻𝛻Φ 𝒓𝒓, 𝑡𝑡

𝑬𝑬 𝒓𝒓, 𝑡𝑡 = −𝛻𝛻Φ 𝒓𝒓, 𝑡𝑡 −𝜕𝜕𝑨𝑨 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

&

≡ 𝛻𝛻 × −𝛻𝛻Φ 𝒓𝒓, 𝑡𝑡

58Prof. Sergio B. MendesSpring 2018

𝑩𝑩 𝒓𝒓, 𝒆𝒆 = 𝛻𝛻 × 𝑨𝑨 𝒓𝒓, 𝑡𝑡

Fields: 𝑬𝑬 𝒓𝒓, 𝑡𝑡 & 𝑩𝑩 𝒓𝒓, 𝑡𝑡

and

Potentials: Φ 𝒓𝒓, 𝑡𝑡 & 𝑨𝑨 𝒓𝒓, 𝑡𝑡

𝑬𝑬 𝒓𝒓, 𝑡𝑡 = −𝛻𝛻Φ 𝒓𝒓, 𝑡𝑡 −𝜕𝜕𝑨𝑨 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

59Prof. Sergio B. MendesSpring 2018

How to determine

the scalar Φ 𝒓𝒓, 𝑡𝑡 and vector 𝑨𝑨 𝒓𝒓, 𝑡𝑡 potentials

directly from

the charge 𝜌𝜌 𝒓𝒓, 𝑡𝑡 and current 𝑱𝑱 𝒓𝒓, 𝑡𝑡 densities ?

60Prof. Sergio B. MendesSpring 2018

𝑬𝑬 𝒓𝒓, 𝑡𝑡 = −𝛻𝛻Φ 𝒓𝒓, 𝑡𝑡 −𝜕𝜕𝑨𝑨 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

𝛻𝛻.𝑬𝑬 𝒓𝒓, 𝑡𝑡 =𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜖𝜖0

𝛻𝛻. −𝛻𝛻Φ 𝒓𝒓, 𝑡𝑡 −𝜕𝜕𝑨𝑨 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

=𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜖𝜖0

−𝛻𝛻2Φ 𝒓𝒓, 𝑡𝑡 −𝜕𝜕𝜕𝜕𝑡𝑡

𝛻𝛻.𝑨𝑨 𝒓𝒓, 𝑡𝑡 =𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜖𝜖0

Gauss’s law

61Prof. Sergio B. MendesSpring 2018

𝑬𝑬 𝒓𝒓, 𝑡𝑡 = −𝛻𝛻Φ 𝒓𝒓, 𝑡𝑡 −𝜕𝜕𝑨𝑨 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

𝛁𝛁 × 𝛻𝛻 × 𝑨𝑨 𝒓𝒓, 𝑡𝑡 − 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕𝜕𝜕𝑡𝑡

−𝛻𝛻Φ 𝒓𝒓, 𝑡𝑡 −𝜕𝜕𝑨𝑨 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

= 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓, 𝑡𝑡

𝑩𝑩 𝒓𝒓, 𝒆𝒆 = 𝛻𝛻 × 𝑨𝑨 𝒓𝒓, 𝑡𝑡

𝛁𝛁 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡 − 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕𝑬𝑬 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

= 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓, 𝑡𝑡

𝛻𝛻 × 𝛻𝛻 × 𝒂𝒂 = 𝛻𝛻 𝛻𝛻.𝒂𝒂 − 𝛻𝛻𝟐𝟐𝒂𝒂

𝛻𝛻 𝛻𝛻.𝑨𝑨 𝒓𝒓, 𝑡𝑡 − 𝛻𝛻𝟐𝟐𝑨𝑨 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0 𝛻𝛻𝜕𝜕𝜕𝜕𝑡𝑡 Φ 𝒓𝒓, 𝑡𝑡 +

𝜕𝜕2𝑨𝑨 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡2 = 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓, 𝑡𝑡

Remember HW 9:

−𝛻𝛻𝟐𝟐𝑨𝑨 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕2𝑨𝑨 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡2 + 𝛻𝛻 𝛻𝛻.𝑨𝑨 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0

𝜕𝜕𝜕𝜕𝑡𝑡 Φ 𝒓𝒓, 𝑡𝑡 = 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓, 𝑡𝑡

Ampère’s law

62Prof. Sergio B. MendesSpring 2018

−𝛻𝛻2Φ 𝒓𝒓, 𝑡𝑡 −𝜕𝜕𝜕𝜕𝑡𝑡

𝛻𝛻.𝑨𝑨 𝒓𝒓, 𝑡𝑡 =𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜖𝜖0

−𝛻𝛻𝟐𝟐𝑨𝑨 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕2𝑨𝑨 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡2 + 𝛻𝛻 𝛻𝛻.𝑨𝑨 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0

𝜕𝜕𝜕𝜕𝑡𝑡 Φ 𝒓𝒓, 𝑡𝑡 = 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓, 𝑡𝑡

The scalar Φ 𝒓𝒓, 𝑡𝑡 and vector 𝑨𝑨 𝒓𝒓, 𝑡𝑡potentials determined from the charge 𝜌𝜌 𝒓𝒓, 𝑡𝑡 and current 𝑱𝑱 𝒓𝒓, 𝑡𝑡 densities

63Prof. Sergio B. MendesSpring 2018

How can we simplify those equations ?

64Prof. Sergio B. MendesSpring 2018

We have certain freedom to choose the vector and scalar potentials:

𝑨𝑨𝑞 𝒓𝒓, 𝑡𝑡 ≡ 𝑨𝑨 𝒓𝒓, 𝑡𝑡 + 𝜵𝜵𝛬𝛬 𝒓𝒓, 𝑡𝑡

Φ′ 𝒓𝒓, 𝑡𝑡 ≡ Φ 𝒓𝒓, 𝑡𝑡 −𝜕𝜕𝛬𝛬 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

𝜵𝜵 × 𝑨𝑨𝑞 𝒓𝒓, 𝑡𝑡

−𝛻𝛻Φ𝑞 𝒓𝒓, 𝑡𝑡 −𝜕𝜕𝑨𝑨𝑞 𝒓𝒓, 𝑡𝑡

𝜕𝜕𝑡𝑡

= −𝛻𝛻Φ 𝒓𝒓, 𝑡𝑡 −𝜕𝜕𝜕𝜕𝑡𝑡𝑨𝑨 𝒓𝒓, 𝑡𝑡

= −𝛻𝛻 Φ 𝒓𝒓, 𝑡𝑡 −𝜕𝜕𝛬𝛬 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

= 𝑬𝑬 𝒓𝒓, 𝑡𝑡

= 𝑩𝑩 𝒓𝒓, 𝑡𝑡

Conclusion: if 𝑨𝑨 𝒓𝒓, 𝑡𝑡 & Φ 𝒓𝒓, 𝑡𝑡 is a solution then 𝑨𝑨𝑞 𝒓𝒓, 𝑡𝑡 & Φ′ 𝒓𝒓, 𝑡𝑡 (as defined above) is also a

solution, and vice-versa.

= 𝜵𝜵 × 𝑨𝑨 𝒓𝒓, 𝑡𝑡 + 𝜵𝜵𝛬𝛬 𝒓𝒓, 𝑡𝑡 = 𝜵𝜵 × 𝑨𝑨 𝒓𝒓, 𝑡𝑡

−𝜕𝜕𝜕𝜕𝑡𝑡 𝑨𝑨 𝒓𝒓, 𝑡𝑡 + 𝜵𝜵𝛬𝛬 𝒓𝒓, 𝑡𝑡

65Prof. Sergio B. MendesSpring 2018

𝑨𝑨𝑞 𝒓𝒓, 𝑡𝑡 = 𝑨𝑨 𝒓𝒓, 𝑡𝑡 + 𝜵𝜵𝛬𝛬 𝒓𝒓, 𝑡𝑡

Φ′ 𝒓𝒓, 𝑡𝑡 = Φ 𝒓𝒓, 𝑡𝑡 −𝜕𝜕𝛬𝛬 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

How can we use the freedom in the choice of the potentials

−𝛻𝛻2Φ𝑞 𝒓𝒓, 𝑡𝑡 −𝜕𝜕𝜕𝜕𝑡𝑡

𝛻𝛻.𝑨𝑨𝑞 𝒓𝒓, 𝑡𝑡 =𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜖𝜖0

−𝛻𝛻𝟐𝟐𝑨𝑨𝑞 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕2𝑨𝑨𝑞 𝒓𝒓, 𝑡𝑡

𝜕𝜕𝑡𝑡2+ 𝛻𝛻 𝛻𝛻.𝑨𝑨𝑞 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0

𝜕𝜕𝜕𝜕𝑡𝑡Φ𝑞 𝒓𝒓, 𝑡𝑡 = 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓, 𝑡𝑡

to simplify the following equations:

66Prof. Sergio B. MendesSpring 2018

𝑨𝑨𝑞 𝒓𝒓, 𝑡𝑡 = 𝑨𝑨 𝒓𝒓, 𝑡𝑡 + 𝜵𝜵𝛬𝛬 𝒓𝒓, 𝑡𝑡

Φ′ 𝒓𝒓, 𝑡𝑡 = Φ 𝒓𝒓, 𝑡𝑡 −𝜕𝜕𝛬𝛬 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

𝛻𝛻.𝑨𝑨𝑞 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕𝜕𝜕𝑡𝑡Φ𝑞 𝒓𝒓, 𝑡𝑡 = 𝛻𝛻.𝑨𝑨 𝒓𝒓, 𝑡𝑡 + 𝛻𝛻.𝜵𝜵𝛬𝛬 𝒓𝒓, 𝑡𝑡

+ 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕𝜕𝜕𝑡𝑡Φ 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0

𝜕𝜕𝜕𝜕𝑡𝑡

−𝜕𝜕𝛬𝛬 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

𝛻𝛻𝟐𝟐𝛬𝛬 𝒓𝒓, 𝑡𝑡 − 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕2𝛬𝛬 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡2

= − 𝛻𝛻.𝑨𝑨 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕𝜕𝜕𝑡𝑡Φ 𝒓𝒓, 𝑡𝑡

We now solve for 𝛬𝛬 𝒓𝒓, 𝑡𝑡 such that 𝛻𝛻.𝑨𝑨′ 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕𝜕𝜕𝑒𝑒Φ′ 𝒓𝒓, 𝑡𝑡 = 𝟎𝟎 :

= 𝑓𝑓 𝒓𝒓, 𝑡𝑡

−𝛻𝛻𝟐𝟐𝑨𝑨𝑞 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕2𝑨𝑨𝑞 𝒓𝒓, 𝑡𝑡

𝜕𝜕𝑡𝑡2+ 𝛻𝛻 𝛻𝛻.𝑨𝑨𝑞 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0

𝜕𝜕𝜕𝜕𝑡𝑡Φ𝑞 𝒓𝒓, 𝑡𝑡 = 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓, 𝑡𝑡

67Prof. Sergio B. MendesSpring 2018

𝛻𝛻.𝑨𝑨′ 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕𝜕𝜕𝑡𝑡Φ′ 𝒓𝒓, 𝑡𝑡 = 0

−𝛻𝛻2Φ𝑞 𝒓𝒓, 𝑡𝑡 −𝜕𝜕𝜕𝜕𝑡𝑡

𝛻𝛻.𝑨𝑨𝑞 𝒓𝒓, 𝑡𝑡 =𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜖𝜖0

−𝛻𝛻𝟐𝟐𝑨𝑨𝑞 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕2𝑨𝑨𝑞 𝒓𝒓, 𝑡𝑡

𝜕𝜕𝑡𝑡2+ 𝛻𝛻 𝛻𝛻.𝑨𝑨𝑞 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0

𝜕𝜕𝜕𝜕𝑡𝑡Φ𝑞 𝒓𝒓, 𝑡𝑡 = 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓, 𝑡𝑡

−𝛻𝛻𝟐𝟐𝑨𝑨𝑞 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕2𝑨𝑨𝑞 𝒓𝒓, 𝑡𝑡

𝜕𝜕𝑡𝑡2= 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓, 𝑡𝑡

−𝛻𝛻2Φ′ 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕2Φ𝑞 𝒓𝒓, 𝑡𝑡

𝜕𝜕𝑡𝑡2=𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜖𝜖0

Lorenz gauge

68Prof. Sergio B. MendesSpring 2018

𝛻𝛻.𝑨𝑨 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕𝜕𝜕𝑡𝑡Φ 𝒓𝒓, 𝑡𝑡 = 0

−𝛻𝛻𝟐𝟐𝑨𝑨 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕2𝑨𝑨 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡2

= 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓, 𝑡𝑡

−𝛻𝛻2Φ 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕2Φ 𝒓𝒓, 𝑡𝑡

𝜕𝜕𝑡𝑡2=𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜖𝜖0

In the Lorenz gauge:

𝜌𝜌 𝒓𝒓, 𝑡𝑡 determines Φ 𝒓𝒓, 𝑡𝑡

𝑱𝑱 𝒓𝒓, 𝑡𝑡 determines 𝑨𝑨 𝒓𝒓, 𝑡𝑡

69Prof. Sergio B. MendesSpring 2018

In addition to the Lorenz gauge, there are other possible choices to

simplify the equations below !!

−𝛻𝛻2Φ 𝒓𝒓, 𝑡𝑡 −𝜕𝜕𝜕𝜕𝑡𝑡

𝛻𝛻.𝑨𝑨 𝒓𝒓, 𝑡𝑡 =𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜖𝜖0

−𝛻𝛻𝟐𝟐𝑨𝑨 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕2𝑨𝑨 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡2

+ 𝛻𝛻 𝛻𝛻.𝑨𝑨 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕𝜕𝜕𝑡𝑡Φ 𝒓𝒓, 𝑡𝑡 = 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓, 𝑡𝑡

70Prof. Sergio B. MendesSpring 2018

The Coulomb gauge

−𝛻𝛻2Φ 𝒓𝒓, 𝑡𝑡 −𝜕𝜕𝜕𝜕𝑡𝑡

𝛻𝛻.𝑨𝑨 𝒓𝒓, 𝑡𝑡 =𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜖𝜖0

−𝛻𝛻𝟐𝟐𝑨𝑨 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕2𝑨𝑨 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡2 + 𝛻𝛻 𝛻𝛻.𝑨𝑨 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0

𝜕𝜕𝜕𝜕𝑡𝑡 Φ 𝒓𝒓, 𝑡𝑡 = 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓, 𝑡𝑡

𝛻𝛻.𝑨𝑨 𝒓𝒓, 𝑡𝑡 = 0

−𝛻𝛻2Φ 𝒓𝒓, 𝑡𝑡 =𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜖𝜖0

−𝛻𝛻𝟐𝟐𝑨𝑨 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕2𝑨𝑨 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡2 + 𝜇𝜇𝑜𝑜 𝜖𝜖0 𝛻𝛻

𝜕𝜕𝜕𝜕𝑡𝑡 Φ 𝒓𝒓, 𝑡𝑡 = 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓, 𝑡𝑡

or radiation gauge or transverse gauge

71Prof. Sergio B. MendesSpring 2018

Φ 𝒓𝒓, 𝑡𝑡 =1

4 𝜋𝜋 𝜖𝜖0�−∞

+∞𝜌𝜌 𝒓𝒓′, 𝑡𝑡𝒓𝒓 − 𝒓𝒓′

𝑑𝑑𝑑𝑑𝑞

−𝛻𝛻2Φ 𝒓𝒓, 𝑡𝑡 =𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜖𝜖0

72Prof. Sergio B. MendesSpring 2018

−𝛻𝛻𝟐𝟐𝑨𝑨 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕2𝑨𝑨 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡2 = 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓, 𝑡𝑡 − 𝜖𝜖0 𝛻𝛻

𝜕𝜕𝜕𝜕𝑡𝑡 Φ 𝒓𝒓, 𝑡𝑡

= 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓, 𝑡𝑡 −1

4 𝜋𝜋 𝛻𝛻𝜕𝜕𝜕𝜕𝑡𝑡

�−∞

+∞𝜌𝜌 𝒓𝒓′, 𝑡𝑡𝒓𝒓 − 𝒓𝒓′

𝑑𝑑𝑑𝑑𝑞

= 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓, 𝑡𝑡 +1

4 𝜋𝜋 𝛻𝛻 �−∞

+∞𝛻𝛻𝑞. 𝑱𝑱 𝒓𝒓𝑞, 𝑡𝑡𝒓𝒓 − 𝒓𝒓′

𝑑𝑑𝑑𝑑𝑞

−𝛻𝛻𝟐𝟐𝑨𝑨 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕2𝑨𝑨 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡2 = 𝜇𝜇𝑜𝑜 𝑱𝑱𝑻𝑻 𝒓𝒓, 𝑡𝑡

𝛻𝛻. 𝑱𝑱𝑻𝑻 𝒓𝒓, 𝑡𝑡 = 0𝑱𝑱𝑻𝑻 𝒓𝒓, 𝑡𝑡 ≡ 𝑱𝑱 𝒓𝒓, 𝑡𝑡 +1

4 𝜋𝜋 𝛻𝛻 �−∞

+∞𝛻𝛻𝑞. 𝑱𝑱 𝒓𝒓𝑞, 𝑡𝑡𝒓𝒓 − 𝒓𝒓′ 𝑑𝑑𝑑𝑑𝑞

Φ 𝒓𝒓, 𝑡𝑡 =1

4 𝜋𝜋 𝜖𝜖0�−∞

+∞𝜌𝜌 𝒓𝒓′, 𝑡𝑡𝒓𝒓 − 𝒓𝒓′ 𝑑𝑑𝑑𝑑𝑞

73Prof. Sergio B. MendesSpring 2018

𝑩𝑩 𝒓𝒓, 𝒆𝒆 = 𝛻𝛻 × 𝑨𝑨 𝒓𝒓, 𝑡𝑡

𝑬𝑬 𝒓𝒓, 𝑡𝑡 = −𝜕𝜕𝑨𝑨 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

𝜌𝜌 𝒓𝒓, 𝑡𝑡 = 0 𝑱𝑱 𝒓𝒓, 𝑡𝑡 = 0

Φ 𝒓𝒓, 𝑡𝑡 = 0

−𝛻𝛻𝟐𝟐𝑨𝑨 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕2𝑨𝑨 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡2 = 0

The Coulomb gauge is particularly useful in the absence of charges and currents

𝛻𝛻.𝑨𝑨 𝒓𝒓, 𝑡𝑡 = 0

&

74Prof. Sergio B. MendesSpring 2018

Energy and Power from E & B fields

𝛁𝛁 × 𝑬𝑬 𝒓𝒓, 𝑡𝑡 = −𝜕𝜕𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

𝛁𝛁 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡 = 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓, 𝑡𝑡 + 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕𝑬𝑬 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

𝑩𝑩 𝒓𝒓, 𝑡𝑡 .

𝑬𝑬 𝒓𝒓, 𝑡𝑡 .

𝑩𝑩 𝒓𝒓, 𝑡𝑡 . 𝛁𝛁 × 𝑬𝑬 𝒓𝒓, 𝑡𝑡 − 𝑬𝑬 𝒓𝒓, 𝑡𝑡 . 𝛁𝛁 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡 =

= −𝑩𝑩 𝒓𝒓, 𝑡𝑡 .𝜕𝜕𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

−𝜇𝜇𝑜𝑜 𝑬𝑬 𝒓𝒓, 𝑡𝑡 . 𝑱𝑱 𝒓𝒓, 𝑡𝑡 − 𝜇𝜇𝑜𝑜 𝜖𝜖0 𝑬𝑬 𝒓𝒓, 𝑡𝑡 .𝜕𝜕𝑬𝑬 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

75Prof. Sergio B. MendesSpring 2018

𝛻𝛻. 𝒂𝒂 × 𝒃𝒃 = 𝒃𝒃 .𝛻𝛻 × 𝒂𝒂 − 𝒂𝒂 . 𝛻𝛻 × 𝒃𝒃HW:

= 𝑩𝑩 𝒓𝒓, 𝑡𝑡 . 𝛻𝛻 × 𝑬𝑬 𝒓𝒓, 𝑡𝑡 − 𝑬𝑬 𝒓𝒓, 𝑡𝑡 . 𝛁𝛁 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡

= −12𝜕𝜕 𝑩𝑩 𝒓𝒓, 𝑡𝑡 2

𝜕𝜕𝑡𝑡− 𝜇𝜇𝑜𝑜 𝑬𝑬 𝒓𝒓, 𝑡𝑡 . 𝑱𝑱 𝒓𝒓, 𝑡𝑡 − 𝜇𝜇𝑜𝑜 𝜖𝜖0

12𝜕𝜕 𝑬𝑬 𝒓𝒓, 𝑡𝑡 2

𝜕𝜕𝑡𝑡

= −𝑩𝑩 𝒓𝒓, 𝑡𝑡 .𝜕𝜕𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

− 𝜇𝜇𝑜𝑜 𝑬𝑬 𝒓𝒓, 𝑡𝑡 . 𝑱𝑱 𝒓𝒓, 𝑡𝑡 − 𝜇𝜇𝑜𝑜 𝜖𝜖0 𝑬𝑬 𝒓𝒓, 𝑡𝑡 .𝜕𝜕𝑬𝑬 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

𝛻𝛻. 𝑬𝑬 𝒓𝒓, 𝑡𝑡 ×𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜇𝜇𝑜𝑜

+𝜖𝜖02𝜕𝜕 𝑬𝑬 𝒓𝒓, 𝑡𝑡 2

𝜕𝜕𝑡𝑡+

12 𝜇𝜇𝑜𝑜

𝜕𝜕 𝑩𝑩 𝒓𝒓, 𝑡𝑡 2

𝜕𝜕𝑡𝑡+ 𝑬𝑬 𝒓𝒓, 𝑡𝑡 . 𝑱𝑱 𝒓𝒓, 𝑡𝑡 = 0

𝛻𝛻. 𝑬𝑬 𝒓𝒓, 𝑡𝑡 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡

76Prof. Sergio B. MendesSpring 2018

𝛻𝛻. 𝑬𝑬 𝒓𝒓, 𝑡𝑡 ×𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜇𝜇𝑜𝑜

+𝜖𝜖02𝜕𝜕 𝑬𝑬 𝒓𝒓, 𝑡𝑡 2

𝜕𝜕𝑡𝑡 +1

2 𝜇𝜇𝑜𝑜𝜕𝜕 𝑩𝑩 𝒓𝒓, 𝑡𝑡 2

𝜕𝜕𝑡𝑡 + 𝑬𝑬 𝒓𝒓, 𝑡𝑡 . 𝑱𝑱 𝒓𝒓, 𝑡𝑡 = 0

�𝑉𝑉

𝛻𝛻.𝓢𝓢 +𝜕𝜕𝑢𝑢𝐸𝐸𝜕𝜕𝑡𝑡 +

𝜕𝜕𝑢𝑢𝐵𝐵𝜕𝜕𝑡𝑡 +

𝜕𝜕𝜕𝜕𝜕𝜕𝑡𝑡 𝑑𝑑𝑑𝑑 = 0

�𝑆𝑆𝓢𝓢 .𝒅𝒅𝒅𝒅 +

𝑑𝑑𝑈𝑈𝐸𝐸𝑑𝑑𝑡𝑡 +

𝑑𝑑𝑈𝑈𝐵𝐵𝑑𝑑𝑡𝑡 +

𝑑𝑑𝑊𝑊𝑑𝑑𝑡𝑡 = 0

𝛻𝛻.𝓢𝓢 +𝜕𝜕𝑢𝑢𝐸𝐸𝜕𝜕𝑡𝑡

+𝜕𝜕𝑢𝑢𝐵𝐵𝜕𝜕𝑡𝑡

+𝜕𝜕𝜕𝜕𝜕𝜕𝑡𝑡

= 0

�𝑆𝑆𝓢𝓢 .𝒅𝒅𝒅𝒅 +

𝑑𝑑𝑑𝑑𝑡𝑡�𝑉𝑉

𝑢𝑢𝐸𝐸 + 𝑢𝑢𝐵𝐵 + 𝜕𝜕 𝑑𝑑𝑑𝑑 = 0

𝓢𝓢 ≡ 𝑬𝑬 𝒓𝒓, 𝑡𝑡 ×𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜇𝜇𝑜𝑜

𝑢𝑢𝐸𝐸 =𝜖𝜖02 𝑬𝑬 𝒓𝒓, 𝑡𝑡 2 𝑢𝑢𝐵𝐵 =

12 𝜇𝜇𝑜𝑜

𝑩𝑩 𝒓𝒓, 𝑡𝑡 2

𝜕𝜕𝜕𝜕𝜕𝜕𝑡𝑡

= 𝑬𝑬 𝒓𝒓, 𝑡𝑡 . 𝑱𝑱 𝒓𝒓, 𝑡𝑡

Differential form of conservation of energy

(per-unit-time)

Integral form of conservation of

energy (per-unit-time)

Poynting vector

77Prof. Sergio B. MendesSpring 2018

HW: From Maxwell’s equations, prove the following relation:

𝜖𝜖0 𝑬𝑬 𝒓𝒓, 𝑡𝑡 × 𝛁𝛁 × 𝑬𝑬 𝒓𝒓, 𝑡𝑡 − 𝑬𝑬 𝒓𝒓, 𝑡𝑡 𝛁𝛁.𝑬𝑬 𝒓𝒓, 𝑡𝑡

+1𝜇𝜇𝑜𝑜

𝑩𝑩 𝒓𝒓, 𝑡𝑡 × 𝛁𝛁 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡 − 𝑩𝑩 𝒓𝒓, 𝑡𝑡 𝛁𝛁.𝑩𝑩 𝒓𝒓, 𝑡𝑡

+ 𝜌𝜌 𝒓𝒓, 𝑡𝑡 𝑬𝑬 𝒓𝒓, 𝑡𝑡 + 𝑱𝑱 𝒓𝒓, 𝑡𝑡 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡

+𝜕𝜕𝜕𝜕𝑡𝑡

𝜖𝜖0 𝜇𝜇𝑜𝑜 𝑬𝑬 𝒓𝒓, 𝑡𝑡 ×𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜇𝜇𝑜𝑜

= 0

78Prof. Sergio B. MendesSpring 2018

HW: Show that

= �𝑗𝑗=1

3𝜕𝜕𝜕𝜕𝑥𝑥𝑗𝑗

𝜖𝜖012𝑬𝑬 2𝛿𝛿𝑖𝑖𝑗𝑗 − 𝐸𝐸𝑖𝑖 𝐸𝐸𝑗𝑗 +

1𝜇𝜇𝑜𝑜

12𝑩𝑩 2𝛿𝛿𝑖𝑖𝑗𝑗 − 𝐵𝐵𝑖𝑖 𝐵𝐵𝑗𝑗

𝜖𝜖0 𝑬𝑬 𝒓𝒓, 𝑡𝑡 × 𝛁𝛁 × 𝑬𝑬 𝒓𝒓, 𝑡𝑡 − 𝑬𝑬 𝒓𝒓, 𝑡𝑡 𝛁𝛁.𝑬𝑬 𝒓𝒓, 𝑡𝑡 𝑖𝑖 +

+1𝜇𝜇𝑜𝑜

𝑩𝑩 𝒓𝒓, 𝑡𝑡 × 𝛁𝛁 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡 − 𝑩𝑩 𝒓𝒓, 𝑡𝑡 𝛁𝛁.𝑩𝑩 𝒓𝒓, 𝑡𝑡 𝑖𝑖 =

79Prof. Sergio B. MendesSpring 2018

Linear Momentum and Forcefrom E & B fields

𝛁𝛁 × 𝑬𝑬 𝒓𝒓, 𝑡𝑡 +𝜕𝜕𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

= 0

𝛁𝛁 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡 − 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓, 𝑡𝑡 − 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕𝑬𝑬 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

= 01𝜇𝜇𝑜𝑜𝑩𝑩 𝒓𝒓, 𝑡𝑡 ×

− 𝜖𝜖0 𝑬𝑬 𝒓𝒓, 𝑡𝑡 𝛁𝛁.𝑬𝑬 𝒓𝒓, 𝑡𝑡 −𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜖𝜖0

= 0

𝛁𝛁.𝑩𝑩 𝒓𝒓, 𝑡𝑡 = 0−1𝜇𝜇𝑜𝑜𝑩𝑩 𝒓𝒓, 𝑡𝑡

𝜖𝜖0 𝑬𝑬 𝒓𝒓, 𝑡𝑡 ×

80Prof. Sergio B. MendesSpring 2018

𝜖𝜖0 𝑬𝑬 𝒓𝒓, 𝑡𝑡 × 𝛁𝛁 × 𝑬𝑬 𝒓𝒓, 𝑡𝑡 − 𝑬𝑬 𝒓𝒓, 𝑡𝑡 𝛁𝛁.𝑬𝑬 𝒓𝒓, 𝑡𝑡

+1𝜇𝜇𝑜𝑜

𝑩𝑩 𝒓𝒓, 𝑡𝑡 × 𝛁𝛁 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡 − 𝑩𝑩 𝒓𝒓, 𝑡𝑡 𝛁𝛁.𝑩𝑩 𝒓𝒓, 𝑡𝑡

+ 𝜌𝜌 𝒓𝒓, 𝑡𝑡 𝑬𝑬 𝒓𝒓, 𝑡𝑡 + 𝑱𝑱 𝒓𝒓, 𝑡𝑡 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡

+𝜕𝜕𝜕𝜕𝑡𝑡

𝜖𝜖0 𝜇𝜇𝑜𝑜 𝑬𝑬 𝒓𝒓, 𝑡𝑡 ×𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜇𝜇𝑜𝑜

= 0

81Prof. Sergio B. MendesSpring 2018

𝜌𝜌 𝒓𝒓, 𝑡𝑡 𝑬𝑬 𝒓𝒓, 𝑡𝑡 + 𝑱𝑱 𝒓𝒓, 𝑡𝑡 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑭𝑭𝐿𝐿 𝒓𝒓, 𝑡𝑡

𝜌𝜌 𝒓𝒓, 𝑡𝑡 𝑬𝑬 𝒓𝒓, 𝑡𝑡 + 𝑱𝑱 𝒓𝒓, 𝑡𝑡 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡 =𝑑𝑑𝑭𝑭𝐿𝐿 𝒓𝒓, 𝑡𝑡

𝑑𝑑𝑑𝑑≡ 𝒇𝒇𝐿𝐿 𝒓𝒓, 𝑡𝑡

the Lorentz force (per-unit-volume)due to the fields acting on the

charged particles (charges and currents)

The rate of change of the

linear momentum (per-unit-volume) of the charged

particles

=𝜕𝜕𝒑𝒑 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

82Prof. Sergio B. MendesSpring 2018+𝜕𝜕𝒑𝒑 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

+𝜕𝜕𝜕𝜕𝑡𝑡

𝜖𝜖0 𝜇𝜇𝑜𝑜 𝑬𝑬 𝒓𝒓, 𝑡𝑡 ×𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜇𝜇𝑜𝑜

= 0

𝜖𝜖0 𝑬𝑬 𝒓𝒓, 𝑡𝑡 × 𝛁𝛁 × 𝑬𝑬 𝒓𝒓, 𝑡𝑡 − 𝑬𝑬 𝒓𝒓, 𝑡𝑡 𝛁𝛁.𝑬𝑬 𝒓𝒓, 𝑡𝑡

+1𝜇𝜇𝑜𝑜

𝑩𝑩 𝒓𝒓, 𝑡𝑡 × 𝛁𝛁 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡 − 𝑩𝑩 𝒓𝒓, 𝑡𝑡 𝛁𝛁.𝑩𝑩 𝒓𝒓, 𝑡𝑡

+ 𝜌𝜌 𝒓𝒓, 𝑡𝑡 𝑬𝑬 𝒓𝒓, 𝑡𝑡 + 𝑱𝑱 𝒓𝒓, 𝑡𝑡 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡

+ 𝒇𝒇𝐿𝐿 𝒓𝒓, 𝑡𝑡

83Prof. Sergio B. MendesSpring 2018

𝒈𝒈 𝒓𝒓, 𝑡𝑡 ≡ 𝜖𝜖0 𝜇𝜇𝑜𝑜 𝑬𝑬 𝒓𝒓, 𝑡𝑡 ×𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜇𝜇𝑜𝑜

= 𝜖𝜖0 𝜇𝜇𝑜𝑜 𝓢𝓢

Linear momentum (per-unit-volume) associated withthe E & B fields

𝜕𝜕𝜕𝜕𝑡𝑡

𝜖𝜖0 𝜇𝜇𝑜𝑜 𝑬𝑬 𝒓𝒓, 𝑡𝑡 ×𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜇𝜇𝑜𝑜

=𝜕𝜕𝜕𝜕𝑡𝑡𝒈𝒈 𝒓𝒓, 𝑡𝑡

84Prof. Sergio B. MendesSpring 2018

+𝜕𝜕𝒑𝒑 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

+𝜕𝜕𝒈𝒈 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

= 0

𝜖𝜖0 𝑬𝑬 𝒓𝒓, 𝑡𝑡 × 𝛁𝛁 × 𝑬𝑬 𝒓𝒓, 𝑡𝑡 − 𝑬𝑬 𝒓𝒓, 𝑡𝑡 𝛁𝛁.𝑬𝑬 𝒓𝒓, 𝑡𝑡

+1𝜇𝜇𝑜𝑜

𝑩𝑩 𝒓𝒓, 𝑡𝑡 × 𝛁𝛁 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡 − 𝑩𝑩 𝒓𝒓, 𝑡𝑡 𝛁𝛁.𝑩𝑩 𝒓𝒓, 𝑡𝑡

+𝜕𝜕𝜕𝜕𝑡𝑡

𝜖𝜖0 𝜇𝜇𝑜𝑜 𝑬𝑬 𝒓𝒓, 𝑡𝑡 ×𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜇𝜇𝑜𝑜

85Prof. Sergio B. MendesSpring 2018

+𝜕𝜕𝑝𝑝𝑖𝑖 𝒓𝒓, 𝑡𝑡

𝜕𝜕𝑡𝑡

+𝜕𝜕𝑔𝑔𝑖𝑖 𝒓𝒓, 𝑡𝑡

𝜕𝜕𝑡𝑡

= 0

𝜖𝜖0 𝑬𝑬 𝒓𝒓, 𝑡𝑡 × 𝛁𝛁 × 𝑬𝑬 𝒓𝒓, 𝑡𝑡 − 𝑬𝑬 𝒓𝒓, 𝑡𝑡 𝛁𝛁.𝑬𝑬 𝒓𝒓, 𝑡𝑡 𝑖𝑖

+1𝜇𝜇𝑜𝑜

𝑩𝑩 𝒓𝒓, 𝑡𝑡 × 𝛁𝛁 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡 − 𝑩𝑩 𝒓𝒓, 𝑡𝑡 𝛁𝛁.𝑩𝑩 𝒓𝒓, 𝑡𝑡 𝑖𝑖

Let’s calculate one Cartesian component:

86Prof. Sergio B. MendesSpring 2018

𝑖𝑖

𝑬𝑬 × 𝛁𝛁 × 𝑬𝑬 − 𝑬𝑬 𝛁𝛁.𝑬𝑬 𝑖𝑖

= 𝜖𝜖𝑖𝑖𝑗𝑗𝑖𝑖 𝐸𝐸𝑗𝑗 𝜖𝜖𝑖𝑖𝑎𝑎𝑘𝑘𝜕𝜕𝐸𝐸𝑘𝑘𝜕𝜕𝑥𝑥𝑎𝑎

− 𝐸𝐸𝑖𝑖𝜕𝜕𝐸𝐸𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

𝑃𝑃𝑖𝑖 = 𝛁𝛁 × 𝑬𝑬 𝑖𝑖

𝑬𝑬 × 𝑷𝑷 𝑖𝑖

𝑬𝑬 𝒓𝒓, 𝑡𝑡 × 𝛁𝛁 × 𝑬𝑬 𝒓𝒓, 𝑡𝑡 − 𝑬𝑬 𝒓𝒓, 𝑡𝑡 𝛁𝛁.𝑬𝑬 𝒓𝒓, 𝑡𝑡

𝑬𝑬 𝛁𝛁.𝑬𝑬 𝑖𝑖

= 𝜖𝜖𝑖𝑖𝑗𝑗𝑖𝑖 𝐸𝐸𝑗𝑗 𝛁𝛁 × 𝑬𝑬 𝑖𝑖 − 𝐸𝐸𝑖𝑖𝜕𝜕𝐸𝐸𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

= 𝜖𝜖𝑖𝑖𝑗𝑗𝑖𝑖 𝐸𝐸𝑗𝑗 𝑃𝑃𝑖𝑖

= 𝜖𝜖𝑖𝑖𝑎𝑎𝑘𝑘𝜕𝜕𝐸𝐸𝑘𝑘𝜕𝜕𝑥𝑥𝑎𝑎

= 𝐸𝐸𝑖𝑖𝜕𝜕𝐸𝐸𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

𝜖𝜖𝑖𝑖𝑗𝑗𝑖𝑖

otherwise

(1,2,3) or (2,3,1) or (3,1,2)

(1,3,2) or (3,2,1) or (2,1,3)

= 0

= + 1

= - 1

= �𝑗𝑗=1

3

�𝑖𝑖=1

3

𝜖𝜖𝑖𝑖𝑗𝑗𝑖𝑖 𝐸𝐸𝑗𝑗 𝑃𝑃𝑖𝑖

= �𝑘𝑘=1

3

�𝑎𝑎=1

3

𝜖𝜖𝑖𝑖𝑎𝑎𝑘𝑘𝜕𝜕𝐸𝐸𝑘𝑘𝜕𝜕𝑥𝑥𝑎𝑎

= 𝐸𝐸𝑖𝑖�𝑗𝑗=1

3𝜕𝜕𝐸𝐸𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

87Prof. Sergio B. MendesSpring 2018

𝜖𝜖𝑖𝑖𝑗𝑗𝑖𝑖 𝜖𝜖𝑖𝑖𝑎𝑎𝑘𝑘

= 𝛿𝛿𝑖𝑖𝑎𝑎 𝛿𝛿𝑗𝑗𝑘𝑘

𝑬𝑬 × 𝛁𝛁 × 𝑬𝑬 − 𝑬𝑬 𝛁𝛁.𝑬𝑬 𝑖𝑖 = 𝜖𝜖𝑖𝑖𝑗𝑗𝑖𝑖 𝜖𝜖𝑖𝑖𝑎𝑎𝑘𝑘 𝐸𝐸𝑗𝑗𝜕𝜕𝐸𝐸𝑘𝑘𝜕𝜕𝑥𝑥𝑎𝑎

− 𝐸𝐸𝑖𝑖𝜕𝜕𝐸𝐸𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

= 𝐸𝐸𝑗𝑗𝜕𝜕𝐸𝐸𝑗𝑗𝜕𝜕𝑥𝑥𝑖𝑖

−𝜕𝜕𝐸𝐸𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

− 𝐸𝐸𝑖𝑖𝜕𝜕𝐸𝐸𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

= 𝛿𝛿𝑖𝑖𝑎𝑎 𝛿𝛿𝑗𝑗𝑘𝑘 − 𝛿𝛿𝑖𝑖𝑘𝑘 𝛿𝛿𝑗𝑗𝑎𝑎 𝐸𝐸𝑗𝑗𝜕𝜕𝐸𝐸𝑘𝑘𝜕𝜕𝑥𝑥𝑎𝑎

− 𝐸𝐸𝑖𝑖𝜕𝜕𝐸𝐸𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

− 𝛿𝛿𝑖𝑖𝑘𝑘 𝛿𝛿𝑗𝑗𝑎𝑎

= 𝜖𝜖𝑖𝑖𝑖𝑖𝑗𝑗 𝜖𝜖𝑖𝑖𝑎𝑎𝑘𝑘

88Prof. Sergio B. MendesSpring 2018

𝑬𝑬 × 𝛁𝛁 × 𝑬𝑬 − 𝑬𝑬 𝛁𝛁.𝑬𝑬 𝑖𝑖 = 𝐸𝐸𝑗𝑗𝜕𝜕𝐸𝐸𝑗𝑗𝜕𝜕𝑥𝑥𝑖𝑖

−𝜕𝜕𝐸𝐸𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

− 𝐸𝐸𝑖𝑖𝜕𝜕𝐸𝐸𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

= 𝐸𝐸𝑗𝑗𝜕𝜕𝐸𝐸𝑗𝑗𝜕𝜕𝑥𝑥𝑖𝑖

− 𝐸𝐸𝑗𝑗𝜕𝜕𝐸𝐸𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

− 𝐸𝐸𝑖𝑖𝜕𝜕𝐸𝐸𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

=12𝜕𝜕 𝐸𝐸𝑗𝑗 𝐸𝐸𝑗𝑗𝜕𝜕𝑥𝑥𝑖𝑖

−𝜕𝜕 𝐸𝐸𝑖𝑖 𝐸𝐸𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

=12𝜕𝜕 𝑬𝑬 2

𝜕𝜕𝑥𝑥𝑗𝑗𝛿𝛿𝑖𝑖𝑗𝑗 −

𝜕𝜕 𝐸𝐸𝑖𝑖 𝐸𝐸𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

=𝜕𝜕𝜕𝜕𝑥𝑥𝑗𝑗

12𝑬𝑬 2𝛿𝛿𝑖𝑖𝑗𝑗 − 𝐸𝐸𝑖𝑖 𝐸𝐸𝑗𝑗

89Prof. Sergio B. MendesSpring 2018

+𝜕𝜕𝑝𝑝𝑖𝑖 𝒓𝒓, 𝑡𝑡

𝜕𝜕𝑡𝑡

+𝜕𝜕𝑔𝑔𝑖𝑖 𝒓𝒓, 𝑡𝑡

𝜕𝜕𝑡𝑡

= 0

𝜖𝜖0 𝑬𝑬 𝒓𝒓, 𝑡𝑡 × 𝛁𝛁 × 𝑬𝑬 𝒓𝒓, 𝑡𝑡 − 𝑬𝑬 𝒓𝒓, 𝑡𝑡 𝛁𝛁.𝑬𝑬 𝒓𝒓, 𝑡𝑡 𝑖𝑖

+1𝜇𝜇𝑜𝑜

𝑩𝑩 𝒓𝒓, 𝑡𝑡 × 𝛁𝛁 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡 − 𝑩𝑩 𝒓𝒓, 𝑡𝑡 𝛁𝛁.𝑩𝑩 𝒓𝒓, 𝑡𝑡 𝑖𝑖

90Prof. Sergio B. MendesSpring 2018

+𝜕𝜕𝑝𝑝𝑖𝑖𝜕𝜕𝑡𝑡

+𝜕𝜕𝑔𝑔𝑖𝑖𝜕𝜕𝑡𝑡

= 0

𝜕𝜕𝜕𝜕𝑥𝑥𝑗𝑗

𝜖𝜖012𝑬𝑬 2𝛿𝛿𝑖𝑖𝑗𝑗 − 𝐸𝐸𝑖𝑖 𝐸𝐸𝑗𝑗

+𝜕𝜕𝜕𝜕𝑥𝑥𝑗𝑗

1𝜇𝜇𝑜𝑜

12𝑩𝑩 2𝛿𝛿𝑖𝑖𝑗𝑗 − 𝐵𝐵𝑖𝑖 𝐵𝐵𝑗𝑗

�𝑗𝑗=1

3𝜕𝜕𝑇𝑇𝑖𝑖𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

91Prof. Sergio B. MendesSpring 2018

𝑇𝑇𝑖𝑖𝑗𝑗 ≡ 𝜖𝜖012𝑬𝑬 2𝛿𝛿𝑖𝑖𝑗𝑗 − 𝐸𝐸𝑖𝑖 𝐸𝐸𝑗𝑗 +

1𝜇𝜇𝑜𝑜

12𝑩𝑩 2 𝛿𝛿𝑖𝑖𝑗𝑗 − 𝐵𝐵𝑖𝑖 𝐵𝐵𝑗𝑗

�𝑗𝑗=1

3𝜕𝜕𝑇𝑇𝑖𝑖𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

+𝜕𝜕𝑔𝑔𝑖𝑖𝜕𝜕𝑡𝑡

+𝜕𝜕𝑝𝑝𝑖𝑖𝜕𝜕𝑡𝑡

= 0

�𝑉𝑉�𝑗𝑗=1

3𝜕𝜕𝑇𝑇𝑖𝑖𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

𝑑𝑑𝑑𝑑 + �𝑉𝑉

𝜕𝜕𝑔𝑔𝑖𝑖𝜕𝜕𝑡𝑡

+𝜕𝜕𝑝𝑝𝑖𝑖𝜕𝜕𝑡𝑡

𝑑𝑑𝑑𝑑 = 0

�𝑆𝑆�𝑗𝑗=1

3

𝑇𝑇𝑖𝑖𝑗𝑗 𝑑𝑑𝑆𝑆𝑗𝑗 +𝑑𝑑𝑑𝑑𝑡𝑡�

𝑉𝑉𝑔𝑔𝑖𝑖 + 𝑝𝑝𝑖𝑖 𝑑𝑑𝑑𝑑 = 0

Maxwell’s stress tensor

−𝐹𝐹𝑖𝑖

92Prof. Sergio B. MendesSpring 2018

𝐹𝐹𝑖𝑖 = −�𝑆𝑆�𝑗𝑗=1

3

𝑇𝑇𝑖𝑖𝑗𝑗 𝑑𝑑𝑆𝑆𝑗𝑗

𝑭𝑭 = −�𝑆𝑆𝑻𝑻 . �𝒏𝒏 𝑑𝑑𝑆𝑆

𝑑𝑑𝑭𝑭𝑑𝑑𝑆𝑆

= − 𝑻𝑻 . �𝒏𝒏

= −�𝑆𝑆�𝑗𝑗=1

3

𝑇𝑇𝑖𝑖𝑗𝑗 �𝑛𝑛𝑗𝑗 𝑑𝑑𝑆𝑆�𝒏𝒏

unit vector normal to

the surface

𝑑𝑑𝐹𝐹𝑖𝑖𝑑𝑑𝑆𝑆

= −�𝑗𝑗=1

3

𝑇𝑇𝑖𝑖𝑗𝑗 �𝑛𝑛𝑗𝑗

93Prof. Sergio B. MendesSpring 2018

𝑇𝑇𝑖𝑖𝑗𝑗 ≡ 𝜖𝜖012𝑬𝑬 2𝛿𝛿𝑖𝑖𝑗𝑗 − 𝐸𝐸𝑖𝑖 𝐸𝐸𝑗𝑗 +

1𝜇𝜇𝑜𝑜

12𝑩𝑩 2 𝛿𝛿𝑖𝑖𝑗𝑗 − 𝐵𝐵𝑖𝑖 𝐵𝐵𝑗𝑗

= 𝜖𝜖0 −12𝑬𝑬 2 �𝒏𝒏 + 𝑬𝑬 𝑬𝑬. �𝒏𝒏 +

1𝜇𝜇𝑜𝑜

−12𝑩𝑩 2 �𝒏𝒏 + 𝑩𝑩 𝑩𝑩. �𝒏𝒏

𝑑𝑑𝑭𝑭𝑑𝑑𝑆𝑆

= − 𝑻𝑻 . �𝒏𝒏

𝑑𝑑𝑭𝑭𝑑𝑑𝑆𝑆

= −𝜖𝜖02𝑬𝑬 2 +

12 𝜇𝜇𝑜𝑜

𝑩𝑩 2 �𝒏𝒏 + 𝜖𝜖0 𝑬𝑬 𝑬𝑬. �𝒏𝒏 +1𝜇𝜇𝑜𝑜𝑩𝑩 𝑩𝑩. �𝒏𝒏

along − �𝒏𝒏,

compressing the surface inwards

along + �𝒏𝒏,

tensioning the surface outwards

94Prof. Sergio B. MendesSpring 2018

𝑬𝑬 ⊥ �𝒏𝒏

𝑑𝑑𝑭𝑭𝑑𝑑𝑆𝑆

= −𝜖𝜖02𝑬𝑬 2 �𝒏𝒏

𝑩𝑩 ⊥ �𝒏𝒏

𝑑𝑑𝑭𝑭𝑑𝑑𝑆𝑆

= −1

2 𝜇𝜇𝑜𝑜𝑩𝑩 2�𝒏𝒏

𝑩𝑩 = 𝟎𝟎 𝑬𝑬 = 0

𝑑𝑑𝑭𝑭�𝒏𝒏 𝑑𝑑𝑭𝑭

�𝒏𝒏

95Prof. Sergio B. MendesSpring 2018

𝑑𝑑𝑭𝑭�𝒏𝒏

�𝒏𝒏𝑑𝑑𝑭𝑭

crashing can

96Prof. Sergio B. MendesSpring 2018

97Prof. Sergio B. MendesSpring 2018

𝑬𝑬 ∥ �𝒏𝒏 or −�𝒏𝒏𝑩𝑩 = 𝟎𝟎

𝑑𝑑𝑭𝑭𝑑𝑑𝑆𝑆

= +𝜖𝜖02𝑬𝑬 2 �𝒏𝒏

𝑑𝑑𝑭𝑭𝑑𝑑𝑆𝑆

= +1

2 𝜇𝜇𝑜𝑜𝑩𝑩 2�𝒏𝒏

𝑩𝑩 ∥ �𝒏𝒏 or − �𝒏𝒏𝑬𝑬 = 𝟎𝟎

�𝒏𝒏𝑑𝑑𝑭𝑭

�𝒏𝒏𝑑𝑑𝑭𝑭

�𝒏𝒏𝑑𝑑𝑭𝑭

�𝒏𝒏𝑑𝑑𝑭𝑭

98Prof. Sergio B. MendesSpring 2018

𝑑𝑑𝑭𝑭

�𝒏𝒏

�𝒏𝒏

𝑑𝑑𝑭𝑭

𝑑𝑑𝑭𝑭

�𝒏𝒏

�𝒏𝒏

𝑑𝑑𝑭𝑭

99Prof. Sergio B. MendesSpring 2018

Conservation Laws

100Prof. Sergio B. MendesSpring 2018

𝛁𝛁. 𝑱𝑱 +𝜕𝜕𝜌𝜌𝜕𝜕𝑡𝑡

= 0

Conservation of Charge

101Prof. Sergio B. MendesSpring 2018

𝛁𝛁.𝓢𝓢 +𝜕𝜕𝜕𝜕𝑡𝑡

𝑢𝑢𝐸𝐸 + 𝑢𝑢𝐵𝐵 + 𝜕𝜕 = 0

𝓢𝓢 = 𝑬𝑬 𝒓𝒓, 𝑡𝑡 ×𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜇𝜇𝑜𝑜

𝑢𝑢𝐸𝐸 =𝜖𝜖02 𝑬𝑬 𝒓𝒓, 𝑡𝑡 2 𝑢𝑢𝐵𝐵 =

12 𝜇𝜇𝑜𝑜

𝑩𝑩 𝒓𝒓, 𝑡𝑡 2

𝜕𝜕 = 𝑬𝑬 𝒓𝒓, 𝑡𝑡 . 𝑱𝑱 𝒓𝒓, 𝑡𝑡

Conservation of Energy

102Prof. Sergio B. MendesSpring 2018

𝛁𝛁.𝑻𝑻 +𝜕𝜕𝜕𝜕𝑡𝑡

𝒑𝒑 + 𝒈𝒈 = 0

𝒈𝒈 𝒓𝒓, 𝑡𝑡 = 𝜖𝜖0 𝜇𝜇𝑜𝑜 𝑬𝑬 𝒓𝒓, 𝑡𝑡 ×𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜇𝜇𝑜𝑜

= 𝜖𝜖0 𝜇𝜇𝑜𝑜 𝓢𝓢

𝑇𝑇𝑖𝑖𝑗𝑗 = 𝜖𝜖012 𝑬𝑬 2𝛿𝛿𝑖𝑖𝑗𝑗 − 𝐸𝐸𝑖𝑖 𝐸𝐸𝑗𝑗 +

1𝜇𝜇𝑜𝑜

12 𝑩𝑩 2 𝛿𝛿𝑖𝑖𝑗𝑗 − 𝐵𝐵𝑖𝑖 𝐵𝐵𝑗𝑗

𝜕𝜕𝜕𝜕𝑡𝑡 𝒑𝒑 = 𝒇𝒇𝐿𝐿 𝒓𝒓, 𝑡𝑡 = 𝜌𝜌 𝒓𝒓, 𝑡𝑡 𝑬𝑬 𝒓𝒓, 𝑡𝑡 + 𝑱𝑱 𝒓𝒓, 𝑡𝑡 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡

Conservation of Linear Momentum

103Prof. Sergio B. MendesSpring 2018

𝛻𝛻.𝑬𝑬 𝒓𝒓, 𝑡𝑡 =

𝛻𝛻.𝑩𝑩 𝒓𝒓, 𝑡𝑡 = 0

𝛻𝛻 × 𝑬𝑬 𝒓𝒓, 𝑡𝑡 = −𝜕𝜕𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

𝛁𝛁 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡 = 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕𝑬𝑬 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

Electromagnetic Waves𝜌𝜌 𝒓𝒓, 𝑡𝑡 = 0 𝑱𝑱 𝒓𝒓, 𝑡𝑡 = 0

+ 𝜇𝜇𝑜𝑜 𝑱𝑱 𝒓𝒓, 𝑡𝑡

𝜌𝜌 𝒓𝒓, 𝑡𝑡𝜖𝜖0

Consider: &

0

104Prof. Sergio B. MendesSpring 2018

𝛁𝛁 × 𝑬𝑬 𝒓𝒓, 𝑡𝑡 = −𝜕𝜕𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

𝜵𝜵 ×

𝛻𝛻 × 𝛻𝛻 × 𝒂𝒂 = 𝛻𝛻 𝛻𝛻.𝒂𝒂 − 𝛻𝛻𝟐𝟐𝒂𝒂HW:

𝜵𝜵 × 𝛁𝛁 × 𝑬𝑬 𝒓𝒓, 𝑡𝑡 = 𝛁𝛁 𝛁𝛁.𝑬𝑬 𝒓𝒓, 𝑡𝑡 − 𝛁𝛁𝟐𝟐𝑬𝑬 𝒓𝒓, 𝑡𝑡

𝛁𝛁 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡 = 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕𝑬𝑬 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

𝛻𝛻.𝑬𝑬 𝒓𝒓, 𝑡𝑡 = 𝟎𝟎

𝛻𝛻𝟐𝟐𝑬𝑬 𝒓𝒓, 𝑡𝑡 = 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕2𝑬𝑬 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡2

= −𝛁𝛁 ×𝜕𝜕𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

= −𝜕𝜕𝜕𝜕𝑡𝑡

𝛁𝛁 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡

105Prof. Sergio B. MendesSpring 2018

𝛁𝛁 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡 = 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕𝑬𝑬 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

𝜵𝜵 ×

𝛻𝛻 × 𝛻𝛻 × 𝒂𝒂 = 𝛻𝛻 𝛻𝛻.𝒂𝒂 − 𝛻𝛻𝟐𝟐𝒂𝒂HW:

𝜵𝜵 × 𝛁𝛁 × 𝑩𝑩 𝒓𝒓, 𝑡𝑡 = 𝛁𝛁 𝛁𝛁.𝑩𝑩 𝒓𝒓, 𝑡𝑡 − 𝛁𝛁𝟐𝟐𝑩𝑩 𝒓𝒓, 𝑡𝑡

𝛁𝛁 × 𝑬𝑬 𝒓𝒓, 𝑡𝑡 = −𝜕𝜕𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

𝛻𝛻.𝑩𝑩 𝒓𝒓, 𝑡𝑡 = 𝟎𝟎

𝛻𝛻𝟐𝟐𝑩𝑩 𝒓𝒓, 𝑡𝑡 = 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕2𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡2

= 𝜇𝜇𝑜𝑜 𝜖𝜖0 𝛁𝛁 ×𝜕𝜕𝑬𝑬 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡

= 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕𝜕𝜕𝑡𝑡

𝛁𝛁 × 𝑬𝑬 𝒓𝒓, 𝑡𝑡

106Prof. Sergio B. MendesSpring 2018

𝛻𝛻𝟐𝟐𝑬𝑬 𝒓𝒓, 𝑡𝑡 = 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕2𝑬𝑬 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡2

𝛻𝛻𝟐𝟐𝑩𝑩 𝒓𝒓, 𝑡𝑡 = 𝜇𝜇𝑜𝑜 𝜖𝜖0𝜕𝜕2𝑩𝑩 𝒓𝒓, 𝑡𝑡𝜕𝜕𝑡𝑡2

𝑣𝑣 =1𝜇𝜇𝑜𝑜 𝜖𝜖0

≅ 2.99792458 × 108 m/s


Recommended