+ All Categories
Home > Documents > fourier transforms -...

fourier transforms -...

Date post: 03-Mar-2018
Category:
Upload: dokhuong
View: 374 times
Download: 17 times
Share this document with a friend
54
FOURIER TRANSFORMS FOURIER INTEGRAL THEOREM OR FORMULA If f(t) is a given function defined in (-,) and satisfies Dirichlet’s conditions then f(x) = f(t) cos λ (t-x) dtd λ-------------------------(1) which is known as Fourier Integral of f(x). NOTE : Eqn (1) is true at a point of continuity. At a point of discontinuity the value of the integral on LHS of (1) is 1/2 [f(x+0) + f(x-0)] FOURIER SINE AND COSINE INTEGRALS F (x) = sinλx f(t) sinλt dt dλ Which is known as Fourier sine integral? f(x) = cosλx f(t) cosλt dt dλ Which is known as Fourier cosine integral? COMPLEX FROM OF FOURIER INTEGRAL If f(x) is piecewise continuously differentiable and absolutely integrable on the entire real line if |f(x) |dx is bounded then 1 π -o 2 π o o 2 π o o -
Transcript
Page 1: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

FOURIER TRANSFORMS

FOURIER INTEGRAL THEOREM OR FORMULA

If f(t) is a given function defined in (-∞,∞) and satisfies Dirichlet’s

conditions then

f(x) = ∫ ∫ f(t) cos λ (t-x) dtd λ-------------------------(1)

which is known as Fourier Integral of f(x).

NOTE :

Eqn (1) is true at a point of continuity. At a point of discontinuity

the value of the integral on LHS of (1) is 1/2 [f(x+0) + f(x-0)]

FOURIER SINE AND COSINE INTEGRALS

F (x) = ∫ sinλx ∫ f(t) sinλt dt dλ

Which is known as Fourier sine integral?

f(x) = ∫ cosλx ∫ f(t) cosλt dt dλ

Which is known as Fourier cosine integral?

COMPLEX FROM OF FOURIER INTEGRAL

If f(x) is piecewise continuously differentiable and absolutely

integrable on the entire real line if ∫ |f(x) |dx is bounded then

1

π

∞ ∞

-∞ o

2

π

∞ ∞

o o

2

π

∞ ∞

o o

-∞

Page 2: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

f(x) = ∫ ∫ f(t) ei (t-x)λ dt dλ

Problems:

1). Express the function f(x) =

as a Fourier integral. Hence evaluate

and find the value of

Solution :

Fourier Integral formula for f(x) is

f(x) =

=

Given f(t) = 1 for -1 < t < 1

= 0 for -∞ < t < -1

and 1< t < ∞

sub (2) in (1), we get

1

∞ ∞

-∞

-∞

1 for | x | < 1

0 for | x | > 1

ie. -1 < x < 1

ie. -∞< x < -1

ie. 1 < x < ∞

∫ sinλ cosλx

λ dλ

o

∫ sinλ

λ dλ

o

∫ f(t) cosλ (t-x) dt dλ ∞

o

1 π

∫ ∞

-∞

∫ f(t) cosλ (t-x) dt + ∞

o

1 π

∫ -1

-∞

f(t) cosλ (t-x) dt ∫ 1

-1

f(t) cosλ (t-x) dt dλ ∫ ∞

1 + (1)

(2)

Page 3: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

f(x) =

=

=

=

=

=

f(x) =

which is the required Fourier integral of the given function

To evaluate

(3)

∫ cosλ (t-x) dt dλ ∞

o

1 π

∫ sin λ (t-x)

λ

o

1 π

1

1

-1

-1

∫ sin λ (1-x)

λ

o

1 π

dλ sin λ (1+x)

λ +

∫ sin λ (1-x) ∞

o

1 π

dλ sin λ (1-x) +

λ

∫ sin λ cosλ x - cosλ sinλx ∞

o

1 π dλ

+ sinλ cosλx + cosλ sinλx

λ

∫ 2 sinλ cosλx ∞

o

1 π dλ

λ

∫ sinλ cosλx ∞

o dλ

λ

2 π

(3)

∫ sinλ cosλx ∞

o λ

∫ sinλ cosλx ∞

o λ

dλ = π

2 f(x)

∫ sinλ cosλx ∞

o λ

dλ = π

2 1 if | x | < 1

0 if | x | > 1

(4)

Page 4: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

To find the value of

Put x = 0, is (4), we get

=

∫sinλ dλ = π 0 λ 2

Hence the result.

2. Find the Fourier intergral of the function

Verify the representation directly at the point x = 0

Soln :

Fourier integral of f(x) is

f(x) =

=

Given f(t) = 0, -∞ < t < 0

= e-t, 0 < t < ∞

Sub (2) in (1), we get

∫ sinλ ∞

o λ dλ

∫ sinλ cos0

o λ dλ

π

2 (1) , if x = 0

0 , x< 0

1/2, x= 0

e-x

, x>0

f(x) = ie. -∞ < x < 0

ie. 0 < x < ∞

∫ f(t) cosλ (t-x) dt dλ

o

1 π

∫ ∞

-∞

∫ ∞

o

1 π

dλ f(t) cosλ (t-x) dt + ∫ f(t) cosλ (t-x) dt ∫ o

-∞

o

(1)

(2)

Page 5: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

∞ ∞ -t

f(x) = 1 ∫ 0 + ∫ e cos λ(t-x) dt dλ π 0 0

∞ -t ∞

= 1 ∫ e [- cos (λt-λx) + λ sin (λt-λx) dλ π 0 1+λ2

0

= 1 ∫ 0 - 1 [- cos λx + λ sin λx] dλ π 0 1+λ2

f (x) = 1 ∫ 1 (cos λx + λ sin λx ) dλ (3)

π 0 1+λ2

which is the required Fourier integral of the given function.

To verify the value of f(x) at x= 0

Put x = 0 in (3) , we get

f (0) = 1 ∫ dλ π 0 1+λ2

= 1 [ tan-1λ ]

π 0

= 1 π π 2

f(0) = 1

2

Hence verified.

3. Express f(x) = 1 for 0<x<π

0 for x>π as a Fourier Sine integral

and hence evaluate � ��������

sinλt dλ

Soln:

Fourier sine integral for f(x) is

f(x) = � � � ��

�� � ���� �� �� �� ��

Page 6: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

=� � � ��

�� �� ���� �� �� �� � � ���� ��

� �����d�

Given f(t) = 1 ��� 0 � � � �

0 for t �

sub (2) in (1) we get,

f(x) =

=

=

f(x) =

which is the required Fourier integral for f(x)

To evaluate

Note : At x = π , which is the point of discontinuity, the value of the

above integral becomes

∫ ∞

o

2

^ sin�x ∫

π

o sin�tdt dλ

∫ ∞

o

2

^ sin�x

π

o

-cos� t

λ

∫ ∞

o

2

^ sin�x -cos λπ

λ +

cos 0

λ

∫ ∞

o

2

^ sin�x 1-cos λπ

λ dλ (3)

∫ ∞

o sin�x (1-cos λπ )

λ

∫ ∞

o sin�x (1-cos λπ)

λ

dλ = ^/2 f(x) (3)

∫ ∞

o sin�x (1-cos λπ)

λ

dλ = ^/2 1 for 0 � x ≤ π

0 for x > π

Page 7: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

� �!"����#�������

�� = ��f(π)

= �� $%�����%��#�� &

= �� $��� &

= �'

ASSIGNMENT PROBLEMS

1). Using Fourier sine integral for f(x) = e-ax

, (a > 0)

show that

2). Find the Fourier cosine integral for f(x) = e-ax

. Hence deduce the

value of the integral

3). Using Fourier integral show that

HINT : Consider f(x) =

then apply Fourier sine integral formula because answer is in the

form of sine function.

∫ ∞

o

λsinλx

λ2 +a

2

dλ = /2 e-ax

^

∫ cosλx

1+λ2

o dλ

∫ sin πλ sinxλ

1-λ2

o

dλ = (π/2) sinx, 0 < x < π 0 x > π

(π/2) sinx, 0 ≤ x≤ π and

0 x > π

Page 8: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

4). With the help of Fourier integral show that

HINT : Same as previous problem but apply Fourier cosine integral

formula.

FOURIER TRANSFORMS

INFINITE (OR) COMPLEX FOURIER TRANSFORM AND ITS

INVERSION FORMULA

F[S]= F[f(x)] = 1 � ����(!�)��

is called complex Fourier transform of f(x).

f(x) =

is called inversion formula for the complex Fourier transform of f(x)

INFINITE FOURIER SINE AND COSINE TRANSFORMS

FOURIER SINE TRANSFORM :

Fs [f(x)] = �

√�� � ���� �� ���

∫ cosxλ

1+λ2

o dλ = /2 e

-x, x > 0 ^

Infinite Fourier Transform Finite Fourier Transform

2π -∞

∫ ∞

-∞ F [f(x)] e

ds

-isx

1

√2π

Page 9: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

is called the Fourier sine Transform of f(x)

f(x) = �

√�� � +s -f�x�0sinsx ds

is called the inversion formula for the Fourier Sine Transform of f(x).

FOURIER COSINE TRANSFORM

c[f(x)] =�

√�� � ���� 4� ���

is called the Fourier Cosine Transform of f(x)

f(x) = �

√�� � +s -f�x�0cossx ds

is called the inversion formula for the Fourier Cosine Transform of f(x).

CONVOLUTION OF TWO FUNCTIONS :

The convolution of two functions f(x) and g(x) over the interval

(-∞,∞) is defined as f *g =�

√�� � ��7�8�7 9 ���7 : ;���

CONVOLUTION THEOREM FOR FOURIER TRANSFORMS

STATEMENT :

The Fourier Transform of the convolution of f(x) and g(x) is the

product of their Fourier Transforms.

F[f * g] = F[s]. G [s]

Proof :

F[f * g] = �

√�� � �� < 8�(!�)��

= �

√�� � - �√��

# � ��7�8�7 9 ���� 0(!�) �7

[by (1)]

(1)

Page 10: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

√�� � ��7�# $ �

�� � 8�� 9 7�(!�)��# & �7

(by changing the order of integration)

= �√�� � ��7� $ �

√�� � 8�� 9 7�(!�)(!�=(#!�=��# &

# �7

= �

√�� � ��7�(!�= $ �√�� � 8�� 9 7�(!�)#=����

# &# �7

= �

√�� � ��7�(!�= $ �√�� � 8�� 9 7�(!�)#=����� 9 7

# �&# �7

Since d(x-u)=dx-du

=dx-0

=dx

= �

√�� � ��7�(!�=# $ �

√�� � 8���(!�>��# & �7 where x-u=t

= �

√�� � ��7�(!�=�7# $ �

√�� � 8���(!�>��# &

PARSEVAL’S IDENTITY FOR FOURIER TRANSFORMS:

STATEMENT:

If the Fourier Transforms of f(x) and g(x) are F[ s] and

G[s]respectively the

=

f g(t)e 1

√2^

= F[s] G[s]

Hence the theorem

|f(x)|2 dx = |F[s] |

2ds ∫

-∞

∫ ∞

-∞

Page 11: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

Proof

We know that

F[f * g] = F[s] . G[s] (by convolution theorem)

F#� [F[s] . G[s]] = f * g

�√�� � +- 0

# @-A0(#!�)� = �√�� ��7�8�� 9 7�(#!�)�

Putting x = 0, we get

sub (2) & (4) in (1), we get

Hence the theorem

FINITE FOURIER SINE AND COSINE TRANSFORMS

Fourier sine Transform

=

∫ -∞

F[s] . G[s] ds = ∫ -∞

∞ f(u) g(-u) du ∫ -∞

∞ (1)

Let g(-u) = f(u) (2)

i.e., g(u) = f(-u) (3)

B G[s] = F[g(u)]

= F[f(-u)]

= F[s]

ie., G[s] = +- 0 (4)

F[s] F[s] ds = ∫ ∞

f(u) f(u) du ∫ ∞

-∞ -∞

|F[s]|2 ds = ∫

∞ |f(u)|

2du ∫

-∞ -∞

Fs [f(x)] = f(x). sin nπx dx ∫ ℓ

l o ℓ

Page 12: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

where n is an integer is called the finite Fourier Sine Transform of

in the interval o<x< ℓ

is called the inversion formula for the finite Fourier sine Transform of

f(x)

FOURIER COSINE TRANSFORM :

where n is an integer, is called the finite Fourier Cosine Transform of f(x)

in the interval o<x< ℓ

is called the inversion formula for the finite Fourier Cosine Transform of

f(x).

Parseval’s identity

Note

(i).

(ii)

(iii).

(iv)

f(x) = 2/ ℓ

Fs [f(x)] sin nπx dx n=1 ℓ

Fc [f(x)] = f(x). cos nπx dx ∫ ℓ

o ℓ

f(x) = �ℓ Fc [o] +

�ℓ

∑"E� F C [f(x)] cos nπx

Fc[s] Gc[s] ds = ∫ ∞

f(x) g(x) dx ∫ ∞

o o

Fs[s] Gs[s] ds = ∫ ∞

f(x) g(x) dx ∫ ∞

o o

(Fc[s])2 ds = ∫

∞ f(x))

2 dx ∫

o o

(Fs[s])2 ds = ∫

∞ (f(x))

2 dx ∫

o o

Page 13: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

PROPERTIES OF FOURIER TRANSFORMS

1. Linearity Property

If F[s] and G[s] are Fourier Transforms of f(x) and g(x)

respectively then F(af(x) + bg(x)] = aF[s] + bG[s] where ‘a’ & ‘b’ are

constants.

Proof :

We have F[S] = F[f(x)] = �

√�� � ����(!�)��#

�√�� � 8���(!�)��

#

= �

√�� � -F�����G8���0(!�)��#

= F- �√�� � ����(!�)��0 �

# G- �√�� � 8���(!�)��0

#

Hence the proof.

Change of Scale property

If F[s] is the complex Fourier Transform of f(x) then F[f(ax)]

= F [s/a], a ≠ 0

= and G[S] = F[g(x)]

BF[af(x) + bg(x)]

= a F[f(x)] + b[F[g(x)]

= a F[s] + b G[s]

1

a

Page 14: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

Proof :

We have F[s] = F[f(x)] = �

√��

F[f(ax)] = �

√��

B F[f(ax)] = �

√�� � (!�H> IJ K# ������ L>

I

= �I $ �√�� � (!�� I⁄ �>

# ��������&

Cor :-

If Fs[s] and Fc[s] are the Fourier sine and cosine transforms of f(x)

respectively, then

(i) Fs [f(ax)] = (1/a) Fs [s/a]

and (ii) Fc[f(ax)] = (1/a) Fc [s/a]

Proof :-

We have Fs[s] = Fs[f(ax)] = N�� � ���� �� ���

Fs[f(ax)] = N��

∫ (!�) f(x) dx

-∞

∫ f(ax)dx -∞

eisx

Put ax = t x = -∞ then t = -∞

adx = dt x = ∞ then t = ∞

1

a =

F[s/a]

∫ f(ax) sinsx dx ∞

o

Put ax = t x = 0 ⇒ t = 0

adx = dt x = ∞ ⇒ t =∞

dx = dt/a

Page 15: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

B Fs[f(ax)] =

Hence the proof (i)

Similarly we prove (ii) also

3). Shifting Property

Statement:-

If F[s] is the complex Fourier Transform of f(x) then

F[f(x-a)] = eisa

F[s]

Proof :

+-��� 9 F� : �√�� � (!�)������

#

√��

Hencetheproof

∫ f(t) sin(s/a)t dt/a ∞

o 2

^

∫ f(t) sin(s/a)t dt ∞

o 2

^ = 1/a

∞ = 1/a Fs [s/a]

F[s]=F[f(x)] = �

√�� � (!�)������#

Put x-a = t x = -∞ then t = ∞

dx = dt x = ∞ then t = ∞

∫ eis(t+a) f(t) dt -∞

F[f(x-a)] = �

√��

∫ eist

f(t) dt

-∞

= eisa

= eisa

F[f(t]

= eisa F[s]

Page 16: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

Modulation Theorem

Statement

If F[s] is the complex fourier transform of f(x), then F[f(x) cosax] =

1/2 {F[s+a] + F[s-a]}

Proof:-

== 1√2�

= �� - P �√��

Cor :-

If Fs[s] and Fc[s] are Fourier sine and cosine transforms of f(x)

respectively, then

(i) Fs [f(x) cosax] = [Fs[s+a] + Fs[s-a]]

(ii) Fs [f(x) sinax] = [Fs[s+a] + Fs[s-a]]

(iii) Fs [f(x) sinax] = [Fc[s-a] + Fc[s+a]]

We have F[s] = F[f(x)] =�

√�� ∫ eisx

f(x) dx ∞

-∞

F[f(x) cosax] = �√�� ∫ e

isx f(x) cosax dx

-∞

∫ eisx f(x) -∞

∞ eisx

+ e-iax

2

dx =

�√��

∫ eisx eiax f(x)dx +

-∞

∞ ∫ eisx e-iax f(x)dx

-∞

∫ ei(s+a)x

f(x)dx +

-∞

∫ ei(s-a)x

f(x)dx

-∞

F[f(x) cosax] = [F[s+a] + F[s-a]]

1

2

1

2

1

2

1

2

Sin cos B = Sin (A+B) + Sin (A-B)

2

CosA SinB = Sin (A+B) - Sin (A-B)

2

Page 17: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

Proof :-

Hence the proof (i)

IIIly we prove for (ii) of (iii)

Property :-

If F[s] is the complex fourier transform of f(x) then

F[xn] f(x)] = (-i)

n

Proof :-

First to prove this result for n = 1

ie., F[x f(x)] = t(i)

Now :-

Fs [f(x) cosax] = ∫ f(x) cosax) sin sx dx ∞

o 2

^

= ∫ f(x) o

2

^

∞ sin(ax+sx) – (sin(ax-sx) dx

2

= ∫ f(x) o

2

^ sin(s+a) x +(sin(s-a)x dx

2

= ∫ f(x) o

2

^ sin(s+a)x dx +

∫ f(x) o

2

^ sin(s-a)x dx

∞ 1

2

= 1

2 Fs[s+a] + Fs [s-a]

CosA cosB = Cos(A+B) + Cos(A-B)

2

SinA SinB = Cos (A-B) – Cos (A+B)

2

dnF[s]

dsn

dnF[s]

dsn

d

ds F[s] =

d

ds ∫ eisx

f(x)dx 1

√2^ -∞

∫ eisx

f(x)dx 1

√2^ -∞

∞ =

δ

δs

∫ eisx

xix f(x)dx 1

√2^ -∞

∞ =

Page 18: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

~ This is true for n = 1

Next to prove this result of n = z

(1)

ie., F[x2f(x)] = (-i)

2 d

2F[s]

ds

Now

d2F[s]

ds

d

ds

d

ds = F[s]

d

ds = (i) F[xf(x) (by (1))

d

ds = (i) ∫ e

isx xix f(x)dx

1

√2^ -∞

= (i) ∫ eisx xf(x)dx 1

√2^ -∞

∞ δ

δs

= (i) ∫ eisx xix. x f(x)dx 1

√2^ -∞

= (i) ∫ eisx

x2 f(x)dx

1

√2^ -∞

∞ d

2

ds2 F[s]

2

= (i)2 F[x

2f(x)] (2)

Page 19: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

This is true for n = 2 also

~ In general

Cor :-

If Fc[s] and F3 [s] are fouier sine and cosine transforms of f(x)

respectively then

(i) Fc[x.f(x)] = Fs[f(x)]

(ii) Fc[x.f(x)] = Fc[f(x)]

Proof :-

(i) We have Fs[f(x)] =

~ Fs[f(x)] =

(ii). We have Fc [f(x) =

~ Fc [f(x) =

= (i)2 F[x

2f(x)] = (-1)

2 F(s)

d2

ds2

F[x2f(x)] = (-1)

2 F[s]

d2

ds2

d

ds

d

ds

∫ f(x) sinsxdx 1

√2^ -∞

∫ f(x) sinsx dx 1

√2^ -∞

∞ δ

δs

∫ f(x) xcosx dx 1

√2^ -∞

∞ =

∫ xf(x) cossxdx 1

√2^ -∞

∞ =

= Fc [x f(x)]

⇒ Fc [x f(x)] = Fs [f(x)]

d

ds

∫ f(x) cossxdx √2

^ -∞

d

ds ∫ f(x) cossx dx √2

^ -∞

∞ δ

δs

∫ f(x) -xsinsx dx √2

^ -∞

= ∫ xf(x) sinsx dx √2

^ -∞ = -

= Fs [x f(x)]

= Fs [x f(x)] = - Fc [f(x)] d

ds

Page 20: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

Propety :

If F(s) is the complex fourier trasform of f(x) then

Proof :-

First to prove the result for n = i

i.e.,

Now,

dn f(x)

dxn

F = (-is)n F(s)

df(x)

dx F = (-is) F(s)

df(x)

dx F

∫ eisx f'(x) dx

1

√2^ -∞

∞ =

df(x)

dx ~ = f(x)

∫ eisx

d(f(x)) 1

√2^ -∞

∞ =

∫ f(x) (is)eisx

dx 1

√2^ -∞

∞ = e

isx (f(x)) -

-∞

∫ eisx f(x) dx 1

√2^ -∞

∞ = 0 - is

(Assuming f(x) = 0 as x → + ∞)

= (-is) eisx f(x) dx

1

√2^ ∫ -∞

= (-is) F[s] (1)

Page 21: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

Next to prove this result for n = 2

First to prove the result for n = i

i.e.,

Now,

This is true for n = 2

In general

Cor :-

If Fs[s] and Fc[s] are fourier sine and, cosine transforms

respectively then

d2f(x)

dx F

= (-is)2 f [s]

d2(x)

dx F

∫ f''(x) e

isx dx

1

√2^

∞ =

-∞

~ f(x) = f''(x) d

2

dx

= eisx

d [f'(x)] 1

√2^ ∫ -∞

= [eisx f'(x)] - f'(x) eisx (is) dx 1

√2^ -∞

∫ ∞

-∞

= o-(is) f'(x) eisx dx 1

√2^ -∞

∞ ∫

= (-is) f'(x) eisx

dx 1

√2^ -∞

∞ ∫

= (-is) F [f'(x)]

= (-is) F [ f(x)] d

dx

= (-is) (-is) F [s] (by (1))

= (-is) F [s]

dn

dxn

F

= (-is)n F[s] f(x

Page 22: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

(i) Fs [f'(x)] = -s Fc[s] (or) (i) find Fs

(ii) Fs [f'(x)] = - f(o) + SFs [s]

Proof

(Assuming f(x) → 0 as x → + ∞)

(Assuming f(x) → 0 as x → + ∞)

~Fx [f'(x) = - f(o) + S Fs [S]

Hence the proof (ii)

df(x)

dx 1

√2^

(i) Fs [f'(x)] = f'(x) sinsx dx 1

√2^ ∫ -∞

= sinsx d(f(x)) 1

√2^ ∫ -∞

= (sinsx f(x)) - f(x) cossx - sdx 1

√2^ ∫ -∞

∞ ∫

-∞

o

= f(x) cossxdx 1

√2^ ∫ ∞

o

= -S f(x) cossxdx 1

√2^ ∫ ∞

o

= -S Fc f(x)

Hence Fs [f'(x)] = -S Fc [f(x)]

(or)

Fourier sine transform of is –S Fc (f(x)) df

dx

(ii) Fc [f'(x)] = f'(x) cosxdx 1

√2^ ∫ -∞

1

√2^ ∫ -∞

∞ = cosx d(f(x))

1

√2^ ∫ -∞

∞ = [(cosx f(x)) + f(x) ssinsx dx]

o

o

∞ ∫

1

√2^ ∫ -∞

∞ = [-f(o) + s f(x) sinsxdx]

o

∞ ∫

1

√2^

Page 23: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

Property : 7

If F[S] is the complex Fourier transform of f(x)

then F[f(-x)] = F[-S]

PROOF

Put –x = y When x = -∞ then y = ∞

-dx = dy Whenx = ∞ then y = -∞

~ F[f(-x)] = e-isy

f(y) (-dy)

Hence the proof

Property (8)

If F[S] is the complex Fourier Transform of f(x) then

F [f(x)] = F [-s]

F[f(-x)] = eisx f(-x) dx 1

√2^ ∫

-∞

1

√2^ ∫

-∞

1

√2^ ∫

-∞

= e i(-s) f(y) dy

1

√2^ ∫

-∞ = e i(-s)y f(y) dy

~ - = ∫ -∞

∞ ∫

-∞

= F [-s]

~ F[f(-x) = F [-s]

Page 24: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

Proof

We have F[s] = F [f(x)]

Taking complex conjugate on bothsides, we get

Hence the proof.

Property : (9)

If F[s] is the complex fourier transform of f(x) then F[f(-x)] = F[s]

Proof :-

We have F[s] = F[f(x)]

Taking complex cojugate on bothsides, we get

Put x = -y x = ∞ then y = -∞

dx = -dy x = -∞ then y = ∞

~

1

√2^ ∫

-∞

= f(x)eisx

dx

~ F[-s] 1

√2^ ∫

-∞

= f(x)eisx

dx

F[-s] 1

√2^ ∫

-∞

= f(x)eisx

dx

F[-s] = F [f(x)]

1

√2^ ∫

-∞ = f(x)e

isx dx

F[-s] 1

√2^ ∫ ∞

= f(x)eisx

dx -∞

F[-s] 1

√2^ ∫

-∞

= f(-y)eisy

(-dy)

1

√2^ ∫

-∞

= - f(-y)eisy

dy

1

√2^ ∫

∞ = f(-y)e

isy dy

1

√2^ ∫

∞ = f(-x)e

isy dy

1

√2^ ∫

∞ = f(-x)e

isy dx

-∞

-∞

-∞ [Change the variable y into x

Page 25: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

Hence the proof.

Problems :-

1). Find the fourier transform of f(x) = 0 for |x| > a

Hence deduce that (i)

Proof :-

Fourier transform of f(x) is

F[f(x)]

Given f(x) = 1 fof –a < x < a

= 0 otherwise

Sub (2) in (1), we get

F[f(x)]

-∞

o ∫

sint

t dt = ^/2

-∞

o ∫

sint

t dt = ^/2 (ii) 2

1

√2^ ∫

∞ = f(-x)e

isy dx

-∞

1

√2^ ∫

∞ = + + f(-x)e

isx ) dx

-a (1)

-a

a ∫

a ∫ a

(2)

1

√2^ ∫

-a = e

isx dx

a

1

√2^ ∫

-a

a = (cosx + isinsx) dx ~ e

iθ = cosθ + isinθ

= cosdx +i sinsxdx 1

√2^ ∫

-a

a ∫

-a

a

Page 26: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

~ F[f(x)] =

To deduce (i) dt = ^/2

Using fourier inversion formula, we get

= 2 cosdx + θ 1

√2^ ∫

-a

a

[~ Cossx is even ~ = 2

sinsx is odd ~ = 0]

∫ -a

a ∫

-a

a

∫ -a

a

= cossxdx 1

√2^ ∫

-a

a

= sinsx

s

1

√2^ o

a

= sinQs

s

1

√2^

sinas

s

2

^

∫ o

∞ sint

s

f(x) = e-isx

ds 1

√2^ ∫

-∞

∞ 2

^

sinas

s

sinas

s 1

^ = [cossx – isinsx] ds ∫

-∞

sinas

s

1

^ = cossx ds- (isinsx] ds ∫ ∞

-∞ ∫

-∞

sinas

s

sinas

s 1

^ = 2 cossx ds – 0 ∫

-∞

sinas

s [~ cossx is even,

∫ ∞

-∞ ∫

o

Page 27: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

Put a = 1

Put x = 0

Change the variable s to t, we get

(ii) Using parseval’s identity

= 2

and sinsx is odd, sinas

s

∫ ∞

-∞ = 0]

sinas

s ~ f(x) = cossx ds ∫

o

2

^

sinas

s f(x) = cossx ds

2

^ ∫

o

sinas

s f(0) = ds

2

^ ∫

o

sins

s ⇒ ds = f(o) ∫ ∞

o ^

2

sint

t dt = f(o) ∫

o

^

2

^

2 = (1) (~ At x = 0, f(x) = 1)

sint

t ⇒ dt = ^

2

[f(x)]2 dx = (F[s])

2 ds ∫

-∞ ∫

-∞

[f(x)]2 dx = ds ∫

-∞ ∫

-∞

sins

s

2

^

2

dx = ds ∫ a

-a

sinas

s

2

^ ∫

-∞

2

(x) = ds sinas

s

2

^ ∫

-∞

2 a

-a

a + a = ds sinas

s

2

^

2

∫ ∞

-∞

2a = ds sinas

s

2

^

2

∫ ∞

-∞

Page 28: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

Put a=1

Change the variable s to t, we get

2). Find the faurier transform of

f(x) = 1-x2, |x| < | x, -1 < x < 1 i.e.,

0, |x| > 1 Hence

deduce that

^ = ds

sinas

s ∫

-∞

2

⇒ ^ = 2 ds

sinas

s ∫

-∞

2

[ ~ is even

~ = s]

sinas

s

2

∫ ∞

-∞ ∫

o

sint

t

^

2 ⇒ = ds

∫ ∞

o

o

2

sint

t

^

2 = dt =

2

xcosx – sinx x

3

∫ ∞

o

cos x/2 dx = -3^

16

Page 29: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

(i)

Soln :-

Fourier Transform of f(x) is

Which is the required fourier transform

To evaluate ∫ ∞

o

1

√2^ ∫

∞ = f(x)e

isy dx

-∞

1

√2^ ∫

-1

= (1-x2)e

isx dx

√2^ ∫

-1 = (1-x

2) (cossx + isinsx) dx

-1

1

√2^ ∫

-1

= (1-x2) (cossx dx + (1-x

2) sinsx dx

1 ∫

-1

1

1

√2^ ∫

-1 = 2 (1-x

2) cossx dx

1

u = 1-x2

v = cossx

u' = -2x v1= sinsx/s

u'' = -2 v2= -cossx/s2

v3= -sinsx/s3

= (1-x2) sinsx/3 - 2cossx/s

2 + 2sinsx /s

3

2

^

= (-2coss/s2 + 2sins/s

3

2

^

F[f(x) = 2

2

^

sins-scoss

s3

xcosx - sinx

x3

cos x/2 dx

Page 30: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

By inversion formula, we get

Put x = 1/2, we get

(where s = x)

Which is the requrid result

f(x) 1

√2^ ∫

-∞ = F[f(x)] e

-isx ds

1

√2^ ∫

-∞ =

∞ 2

2

^

sins-scoss

s3 e

-isx ds

1

√2^ ∫

-∞ =

∞ sins-scoss

s3 (cossx – isinsx) ds

1

√2^ ∫

-∞ =

sins-scoss

s3 (cossx–i

∞ sins-scoss

s3

sinsx dy

1

√2^ ∫ -∞

f(x) = 2

sins-scoss

s3 cossx ds

∫ -∞

⇒ sins-scoss

s3 cossx ds = f(x)

∞ ^

4

∫ -∞

sins-scoss

s3 cos s/2 ds = f(1/2)

∞ ^

4

^

4 = (1-(1/2)

2)

^

4 =

4-1

4

3^

4 =

∫ -∞

sins-scoss

s3 cos s/2 ds =

∞ -3^

16 ⇒

∫ -∞

xcosx-sinx

s3

cos x/2 dx =

∞ ⇒

-3^

16

Page 31: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

3). Show that the fourier transform of

f(x) =

Hence deduce that dt =

using parseval’s identity. Show that dt =

Soln :- Fourier Transform of f(x) is

a2 – x

2, |x| < a is

0, |x| > a >0

2

2

^

sins-scoss

s3

sint-tcost

t3

∫ ∞

o

^

4 sint-tcost

t3

∫ ∞

o

^

4

2

1

√2^ ∫ -∞

F[f(x)] = f(x) eisx

dx ∞

1

√2^ ∫ -a

= (a2-x

2)e

isx dx

a

1

√2^ ∫ -a = (a

2-x

2) (cossx + isinsx) dx

a

1

√2^ ∫ -a

= (a2-x

2) cossx + i(a

2-x

2)sinsx) dx

a

1

√2^ ∫ -a

(a2-x

2) cossx dx

a = 2

1

√2^ ∫ o (a

2-x

2) cossx dx

=

u = a2-x

2 v = cosx

u' = -2x

v1 = sinsx/s

u'' = -2

v2 = -cossx/s2

v3 = -sinsx/s

3

= ca2-x

2) sinsx/s – 2xcossx/s

2 + 2 sinsx/s

3

2

^

a

o

= -2acosas/s2 + 2sinas/s

3

2

^

F[f(x)] = 2 2

^ sinas-ascosas

s3

Page 32: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

Using inversion formula, we get

put x = 0, we get

put a = 1, we get

f(x) 1

√2^ ∫ = F[f(x)] e

isy dx

-∞

1

√2^ ∫ = 2

-∞

e-isx

ds

2

^ sinas-ascosas

s3

1

2^ ∫

= ∞

-∞ (cossx – isinsx) ds

sinas-ascosas

s3

1

2^ ∫ = ∞

-∞ cossx –i sinsx ds

sinas-ascosas

s3

sinas-ascosas

s3

∫ ∞

-∞

1

2^ ∫ = 2 ∞

-∞ sinas-ascosas

s3

cossxds

= -∞

sinas-ascosas

s3

cossxds

f(x) 4

^ ∫ ∞

-∞ sinas-ascosas

s3

cossxds = f(x)

⇒ ∫ ∞

^

4

∞ sinas-scoss

s3

ds = (a2) ⇒ ∫ ^

4

sinas-scoss

s3

ds = ∫ ^

4

o

o

sint-tcost

t3

dt = (where s = t) ⇒ ∫ ^

4 o

[~ The firstintegrand is

even of the second

integrand is odd]

Page 33: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

Using Paraseval’s dentity we get

[f(x)]2 dx = (f[s])

2 ds ∫

-∞

∞ ∫

-∞

[f(x)]2 dx = ∫

-∞

∞ ∫

-∞

∞ 2

2

^

sinas-ascosas

s3 ds

(a2-x

2) dx = 8/^

∫ -a

a ∫

-∞

∞ sinas-ascosas

s3 ds

2

(a2-x

2) dx = 8/^

∫ ∫

0

∞ sinas-ascosas

s3 ds

2

0

a 2

2

Put a = 1, we get

(1-x2)dx = 16/^

∫ ∫

0

∞ sins-scoss

s3

ds

0

1 2

(1-2x2+x

4) dx = 8/^

∫ ∫

0

∞ sins-scoss

s3

ds

0

1

x-2x3+x

5 dx = 8/^ ∫

0

∞ sins-scoss

s3

ds

3 5

1

o

x- 2+ 1 = 8/^ ∫ 0

∞ sins-scoss

s3

ds

3 5

15-10+3 = 8/^ ∫ 0

sins-scoss

s3

ds

15

18 = 8/^ ∫ 0

sins-scoss

s3

ds

15

^ = ∫ sins-scoss

s3

ds

15

0

∫ sint-tcost

t3

dt =

0

∞ ^

15

Page 34: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

Where s = t

4). Find the fourier transform of f(x)

where f(x) 1-|x| for |x| < 1 Hence

0 for |x| > 1

deduce that

(i).

(ii).

Soln :

Fourier transform of f(x) is

∫ sint

t3

dt =

0

∞ ^

15

2

∫ sint

t3

dt =

0

∞ ^

3

4

[f(x)] = f(x)eisx

dx ∫ -∞

∞ 1

√2^

= (1-|x|)eisx

dx ∫ -1

1 1

√2^

= (1-|x|) (cossx+isinsx) dx ∫ -1

1 1

√2^

= [(1-|x|) (cossx+i(1-|x|) sinsx] dx ∫ -1

1 1

√2^

= (1-|x|) (cossxdx] ∫ 0

1 1

√2^ [2

(~ The first integral is even of the second

integrand is odd)

= (1-|x|) (cossxdx] ∫ 0

1 1

√2^

[~ In (0, 1), (1-|x|) = (1-x)]

= [(1-x) sinsx/s – cossx/s2]

1

√2^

1

0

= -coss + 1 1

√2^ s

2 s

2

Page 35: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

F[f(x)] =

(i) Using inversion formula, we get

Put x = 0, we get

1-coss

s2

2

^

f(x) = 1-coss e-isx

ds ∫ ∞ 1

√2^ -∞ s

2

2

^

∫ 1

^ -∞ s

2

∞ 1-coss (cossx – isinsx) ds

∫ -∞

s2

1

^ ∞

1-coss cossx – i ds s

2

1-coss sinsx

f(x) = 1-coss cossx ds ∫ ∞

-∞ s

2

1

^ ~ The first integral is even

of the second integral is odd

⇒ 1-coss cossx ds = ^/2 f(x)

s2

-∞ ∫

1-coss ds = ^/2 f(o)

s2

-∞ ∫

2sin2 s/2 ds = ^/2

s2

-∞ ∫

Put S/2 = t s = ∞ ⇒ t = ∞

S = 2t s = 0 ⇒ t = 0

sint dt = ^/2

t

o ∫

Page 36: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

(ii) Using Paraseval’s identity, we get

Find the fourier transform of e-a|x|

, a>0 and hence evaluate

dt and hence deduce F[xe-a|x|] z=I √2/^

Soln :-

Fourier transform of f(x) is

(f(x)2 dx = (F[s])

2 ds

-∞

∫ ∞

-∞

(1-|x|2 dx = ds

1

-1

∫ ∞

-∞

∫ 2

^ s2

1-coss

2

(1-|x|2 dx = ds

1

-1

∫ ∞

-∞

s2

2sin2s/2

s

2

2 4

^

(1-x)2 dx = 4 ds

1

o

∫ ∞

o

s

sin S/2 4

2

^

(1-2x+x)2 dx = ds

1

o

∫ ∞

o

s

sin S/2 4

8

^

x-2x2+x

3 dx = 2dt

2 3

8

^

o

s

sin S/2 4

(1-1+1/3) = dt 16

16^

o

2t

sint 4

^

3

o

t

sin t 4

dt

o

t

sin t 4

dt = ^/3 ⇒

(s2+a

2)

2

2as ∞

-∞

a2+t

2

cosxt

F[f(x)] = f(x) eisx

dx 1

√2^

-∞

= e-a|x|

eisx

dx 1

√2^

-∞

∫ = e

-a|x| (cossx isinsx) dx 1

√2^

-∞

= [e-a|x|

cossx + ie–a|x|

sinsx] dx 1

√2^

-∞

Page 37: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

(i) using inversion formula, we get

[ ~ e-a|x|

cosxdx is even

of e-a|x|

sinsx is odd]

F[f(x)] =

a

s2+a

2

2

^

~ e-ax

cosxdx = ∞

-∞

∫ a

s2+a

2

f[f(x)] = e-isx

ds 1

√2^

-∞

∫ 2

^

a

s2+a

2

= (cossx-isinsx) ds a

^

-∞

∫ 1

s2+a

2

= ds-i ds a

^

-∞

∫ cossx

s2+a

2

-∞

∫ sinsx

s2+a

2

= 2 ds a

^

-∞

∫ cossx

s2+a

2

[~ The first integrand is even

The second integrand is odd]

f(x) = 2 ds 2a

^

-∞

∫ cossx

s2+a

2

⇒ ds = f(x) ∞

-∞

∫ cossx

s2+a

2

^

2a

^

2

a

= e-a|x|

⇒ ds = e-a|x|

cosxt

a2+t

2

Page 38: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

6. Show that the fourier transform of f(x) = e-x2/2

is is self reciprocal.

Hence evaluate F(xe-x2/2

]

Soln :

Fourier Transform of f(x) is

(ii) F [xe-a|x|

= (-i) F [e-a|x|] d

ds

= (-i)

d

ds

a

s2+a

2

2

^

= (-i) a d

ds 1

s2+a

2

2

^

= (-i) a d

ds -2s

(s2+a

2)

2

2

^

F [xe-a|x|

] = i 2

^

-2as

(s2+a

2)

2

F [f(x)] = f(x) eisx

dx ∞

-∞

= e-x2/2

eisx

dx ∞

-∞

= e-x /2

+ isx

dx ∞

-∞

= e-1/2 (x -2isx)

dx

1

√2^

1

√2^

1

√2^

1

√2^

-∞

= e-1/2 (x -2isx + (is) – (is) )

dx 1

√2^

-∞

2

2

2 2 2

= e-1/2 ((x-is) + s)

dx 1

√2^

-∞

∫ 2 2

= e-s /2 e (x-is)

dx 1

√2^

-∞

∫ 2 -1/2

2

Page 39: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

= e-s /2 e x-is

dx 1

√2^

2 - 2 ∞

-∞

√2^

x-is

√2 Put = t

x - is = √2 t

dx = √2 dt

~F[f(x)] = e-t

dt e

-s /2

√ ^

2 ∞

-∞

∫ 2

√2

e-s /2

√ ^

2 ∞

-∞

∫ 2

= e-t

dt

e-s /2

√ ^

2 ∞

o

∫ 2

= 2 e-t

dt

2e-s /2

√2^

2 ∞

o

∫ 2

= e-t

dt

2e-s /2

√2^

2 ∞

o

∫ 2

= e-t

dt

^

2a

2e-s /2

√2^

2 ∞

o

∫ 2

= e-t

dt

=

^

2a ~

F[f(x)] = e-s/2

dt 2

(i) F[f(xe-x/2

] = (-i) F[e-x/2

] 2 2 d

ds

= (-i) [e-s/2

] 2

d

ds

= (-i) -e-s/2

x (1/2 x 2s) 2

F[f(xe-x/2

] = ise-s/2

2 2

Page 40: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

7. Find the fourier cosine transform of f.

8. Find the fourier sine transform of the function f(x)

Soln :-

Fourier sine transform of f(x) is

f(x) =

x for 0<x<1

2-x for 1<x<2

0 for x>2

Soln :-

Fourier cosine transform of f(x) is

Fc [f(x)] = f(x) cossx dx ∞

o

∫ 2

^

= [ f(x) cossx dx + f(x) cossxdx + f(x) cossxdx 2

^

o

∫ 2

1

∫ ∞

2

= [ xcossx dx + (2-x) cossxdx+0] 2

^

1

o

∫ 2

1

= [(xsinsx/s + cossx/s2) + [(2-x) sinsx/s - cossx)

2]

s2

2

^

1

o

= (sins + coss ) + 1 -cos2s - sins + coss

s s2 s

2 s

2 s s

2

2

^

= (2coss - cos2s ) + 1

s2 s

2 s

2

2

^

Fc [f(x)] = 2coss – cos2s-1

s2

2

^

sinx, 0<x<a

0, x>a

Fc [f(x)] = f(x) sinsxdx ∞

o

∫ 2

^

Page 41: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

9. Find the Fourier sine and cosine transforms of e-2x

. Hence find the

value of the following integrals.

i).

ii).

Soln :-

Fourier sine Transform of f(x) is

= f(x) sinsxdx + f(x) f(x) sinsxdx a

o

∫ 2

^

o

= sinxsinsxdx+o ∞

o

∫ 2

^

= [cos(1-s) x- cos (1+s)x)] dx a

o

∫ 2

^

1

2

a

= sin(1-s)x sin (1+s)x

1-s 1+s

a

o

∫ 1

√2^

Fs [f(x) = sin(1-s)a sin (1+s)a

1-s 1+s

1

√2^

o

∫ dx

(x2+4)

2

o

∫ x

2dx

(x2+4)

2

of Aise find (i) Fs [xe-2x

]

(ii) Fc [xe-2x

]

Fc [f(x)] = f(x) sinsxdx ∞

o

∫ 2

^

= e-2x

sinsxdx ∞

o

∫ 2

^

Fc [f(x)] = S

S2+22

2

^ (1)

Page 42: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

IIIly Fourier cosine transform of f(x) is

(i) Using Parseval’s identity, we get

Fc [f(x)] = f(x) cossxdx ∞

o

∫ 2

^

= e-2x

cossxdx ∞

o

∫ 2

^

Fc[F(x)] = 2

s2+s

2

o

∫ 2

^

[Fc (f(x))]2 ds = (f(x))

2dx

o

∫ ∞

o

(2) ds = (e-2x

)2dx

o

∫ ∞

o

∫ 2

^

2

s2+2

2

ds = (e-4x

)2dx

o

∫ 8

^

ds

s2+s

2

o

=

o

e-4x

-4

=

1

4

o

∫ ds

s2+s

2 =

o

∫ dt

s2+s

2

^

32 =

^

32

Page 43: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

(ii) Using Parseval’s identity, we get

10. Using parseval’s identity, prove that

i).

ii).

Soln :-

(ii) We know, Fourier cosine Transform of f(x) = e-ax

is

IIIly if g(x) = e

-bx, then Fc(g(x) =

[Fs (f(x))]2

ds = (f(x))2dx

o

∫ ∞

o

ds = (e-2x

)2dx

o

∫ ∞

o

∫ 2

^

2

s2+2

2

= e-4x

dx ∞

o

∫ 2

^ s

2ds

(s2+

4)

2

o

=

o

e-4x

-4

=

1

4

o

∫ x+dx

(x2+4)

=

^

8

o

∫ sinat

t(a2+t

2)

o

∫ dt

(a2+t

2) (b

2+t

2)

2

^

i.e. Fc[f(x)] = 2

^

dt = ^

8

1-e-a

a2

2

^

2ab(a+b)

a

s2+a

2

a

s2+a

2

2

^

b

s2+a

2

Page 44: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

We know,

Fc[f(x)] Fc[g(x)] ds = f(x) g(x) dx ∞

o

∫ ∞

o

2

^

a

s2+a

2

o

∫ b

s2+a

2

, = e-ax

e-bx

dx ∞

o

2ab

(s2+a

2)(s

2+a

2)

o

e-(a+b)x

-(a+b)

ds = e-(a+b)x

dx ∞

o

o

1

a+b

o

∫ ds

(s2+a

2) (s

2+b

2)

^

2ab(a+b)

=

⇒ =

o

∫ ds

(a2+t

2) (b

2+t

2)

^

2ab(a+b) ⇒ =

(i) We know, if f(x) = e-ax

then Fc [f(x)] = 2

^

a

s2+a

2

IIIly if g(x) = 1, 0<x<a then Fc [f(x)] =

0, x>a

2

^

sinas

s

We know, Fc[f(x)] Fc [g(x)] ds = f(x) g(x) dx ∞

o

∫ ∞

o

2

^

a

s2+a

2

o

∫ 2

^

sinas

s ds = e

-ax, dx

o

2

^

o

∫ ds =

a sinas

s(s2+a

2)

e-ax

, dx

-a

a

o

Page 45: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

11. Find the Fourier Soxine Transform of e-ax

x

Soln :-

Fourier Cosine Transform of f(x) is

Integrating w.r. to ‘s’. We get

2

^

o

∫ ds = +

sinas

s(s2+a

2)

e-a2

, dx

-a

1

a

o

∫ dx =

sinas

x(x2+a

2)

^

2a2

[1-e-a2

]

Fc[s] = Fc [f(x)] = f(x) cossxdx ∞

o

∫ 2

^

= e-ax cosxdx

x

o

∫ 2

^

Disff w.r.to ‘s’ on both sides, we get

= e-ax cosxdx

x

o

∫ 2

^

Fc[s] = d

ds

d

ds = e-ax cosxdx

x

o

∫ 2

^

= e-ax cosxdx dx

x

o

∫ 2

^

∂s

= e-ax (-xsinsx) dx

x

o

∫ 2

^

= e-ax sinsx dx

o

∫ 2

^

Fc[s] = - d

ds 2

^

s

s2+a

2

Page 46: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

12. Find the Fourier Cosine Transfer of

Soln :-

Same as previous problem

13. Find the faourier cosine transform of 3-ax

cosax

Soln :-

Fourier cosine transofrm of f(x) is

Fc[s] = - [Log (s2+a

2) 2

^

e-ax

- e-bx

x

Given f(x) = e

-ax - e

-bx

x

e-ax

x f(x) =

e-bx

x -

Fc [f(x)] = f(x) cossx dx ∞

o

∫ 2

^

= e-ax

cosax cossx dx ∞

o

∫ 2

^

= e-ax

dx

o

∫ 2

^

cos(a+s) x + cos (s-a) x

2

= e-ax

dx

o

∫ 2

^ [cos(a+s) x + cos (s-a) x] ~ e

-ax dx = a

s2+a

2

Fc [f(x)] = 2

^

a

(s+a)2+a

2

+ a

(s-a)2+a

2

Page 47: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

14. Find the fourier cosine transform of f(x) = . Hence derive

fourier sine Transform of ϕ(x) =

Soln :-

Fourier cosine transform of f(x) is

Diff w.r. to ‘s’, we get

x

1+x2

x

1+x2

Fc [s] = Fc[f(x)] = f(x) cossx dx ∞

o

∫ 2

^

Fc [s] = Fc[f(x)] = cossx dx ∞

o

∫ 2

^

x

1+x2 (1)

Fc[s] = d

ds 2

^

cossx

1+x2

d

ds

o

∫ dx (2)

2

^ cossx

o

∫ ∂

∂s dx

x

1+x2 =

2

^

o

∫ -xsinsx

1+x2

dx =

(4)

o

∫ sinsx

x(1+x2)

dx Fc[s] = +

(3) d

ds ^

2

2

^

2

^

o

∫ -x

2sinsx

x(1+x2)

dx = -

(~ Multiply of divide by x)

2

^

o

∫ (1-x

2-1) sinsx

x(1+x2)

dx = -

(Add and subtract ‘I’

on the x)

2

^

o

∫ (1-x

2) sinsx

x(1+x2)

dx - = -

o

∫ sinsx

x(1+x2) dx

Page 48: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

Again, diff w.r. to ‘s’, we get

2

^

o

∫ sinsx

x

dx - = -

o

∫ sinsx

x(1+x2) dx

2

^ = -

o

∫ sinsx

x(1+x2)

dx ^

2 -

~ dx = ^

2

o

∫ sinsx

x

o

1

x(1+x2)

sdx Fc[s] =

d2

ds2

2

^ ∂

∂s sinsx

o

x cosx

x(1+x2)

dx 2

^ =

o

cosx

(1+x2)

dx 2

^ =

= Fc [s] (by 0)

- Fc [s] = 0 ⇒ d

2 Fc[s]

ds2

(D2-1) Fc[s] = 0

Fc[s] = c, es + c2e

-s (4)

Fc[s] = c1es - c2e

-s (*)

d

ds

When s = 0, (1) ⇒ Fc[s] = ∞

o

dx

(1+x2)

2

^

(5)

(4) ⇒ Fc[s] = C1+C2 (6)

Page 49: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

Compare (5) & (6) ⇒ C1 + C2 =

When s = 0, (3) ⇒ F[s] = -

Sub C1 & C2 in (4), we get

o

dx

(1+x2)

2

^

(tan + x) 2

^

o

∫ C1 + C2 =

2

^ =

2 ^

C1 + C2 = 2 ^

d

ds 2 ^ (8)

(9) (4) ⇒ F[s] = C1-C2 d

ds

Compare (3) & (9) ⇒ C1-C2 = - 2 ^ (10)

(9) & (10) ⇒ 2C1 = 0

C1 = 0

C2 =

2 ^

Fc [s] = 0 + e-2

2 ^

Fc [s] = e-2

2 ^

Page 50: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

Fourier sine transform of ϕ(x) =

x

(1+x2)

Fs [ϕ(x)] = ∞

o

∫ 2

^ ϕ(x) sinsx dx

= ∞

o

∫ 2

^ sinsx dx

x

(1+x2)

[by (4)] = - Fc[s] d

ds

[by (4)] = - [C1es – C2e

-s]

Fs [ϕ(x)] = 2 ^ e

-s

where C1 = 0

of C2 =

2 ^

Page 51: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

Application of Foorier Transforms for Solving Integral Equations

Solve the integral equation f(x) con λxdx = e-1λ

Soln :-

By the definition of Fourier Cosine Transform,

Compare (1) & (2), we get

Using inversion fourmula for the Fourier transofrm, we get

o

Given ∞

o

∫ f(x) con λxdx = e-1λ

i.e., f(x) con λxdx = e-s

o

∫ where λ = s (1)

Fc [f(x)] = f(x) consxdx ∞

o

∫ 2

^

f(x) consxdx = Fc[f(x)] ∞

o

∫ 2 ^

(2)

Fc [f(x)] = e-s

2 ^

Fc [f(x)] = e-s 2

^

[f(x)] = Fc [f(x)] consx ds ∞

o

∫ 2

^

= e-s consx ds

o

∫ 2

^

= 2

^

1

(x2+1)

[f(x)] =

2

^(x2+1)

Page 52: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

16. Solve the integral equation f(x) consλxdx =

Soln :-

Comare (1) & (2) , we get

Using inversion formula, we get

1-λ, 0 < λ < 1

0, λ > 1

Hence deduce that ∞

o

∫ sin

2t

t2

dt = ^/2

Given f(x) cosλxdx = ∞

o

∫ 1-λ for 0 < λ < 1

0 for λ > 1

Put A = S, we get

o

∫ 1-s for 0 < s < 1

0 for s > 1

f(x) cossxdx = (1)

We know fourier csine Transform of f(x) is

Fc [f(x)] = f(x) cossxdx 2

^

o

⇒ f(x) cossxdx = Fc([f(x)] ∞

o

∫ ^/2 (2)

^/2 Fc([f(x)] = 1-s for 0 < s < 1

0 for s > 1

Fc [f(x)] = 2

^

1-s for 0 < s < 1

0 for s > 1

f(x) = Fc[f(x)] cossxds 2

^

o

= (1-S) cossxds

2

^

1

o

∫ 2

^

u = 1-s v = cossx

u' = -1 v1= sinsx/x

v2= cossx/x2

Page 53: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

(i) To deduce

Put λ = s, get

Put x = 0, we get

= - (1-s) (sinsx

x

2

^

cossx x

2

1

o

= - -cosx

x2

2

^

1 x

2

-cosx

x2

2

^ f(x) = (3)

1

o

∫ sint

t dt = 2

^

Given f(x) cossx dx = 1

o

∫ 1-λ for 0 < λ < 1

0 for λ > 1

1

o

∫ 1-cosx

x2

2

^ cossx dx =

1-s for 0 < s < 1

0 for s > 1

1

o

∫ 1-cosx

x2

2

^ cossx dx =

1-s for 0 < s < 1

0 for s > 1

o

∫ 2sin

2x/2

x2

2

^ dx = 1

o

∫ 2sin x/2

x2

2

dx = ^/4

Put x/2 = t

x = 2t

dx = 2dt

o

∫ ⇒ 2dt = ^/4 sint

2t

o

∫ ^/4 sint

t

1

2 dt =

o

∫ ^/2 sint

t dt =

2

2

Page 54: fourier transforms - chettinadtech.ac.inchettinadtech.ac.in/storage/12-07-16/12-07-16-14-51-00-1577... · ASSIGNMENT PROBLEMS 1). Using Fourier sine integral for f(x) ... Infinite

Recommended