+ All Categories
Home > Documents > Free-algebra functors as coalgebraic signatures

Free-algebra functors as coalgebraic signatures

Date post: 03-Apr-2022
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
151
Free-algebra functors as coalgebraic signatures H. Peter Gumm PALS Seminar Boulder 27.10.2020
Transcript

Free-algebra functors ascoalgebraic signatures

H. Peter Gumm

PALS Seminar Boulder 27.10.2020

IntroState based systemsFunctors and Coalgebras

Fuctor propertiesWeak Pullback PreservationFunctors parameterized by algebras

Free-algebra functorPreimage preservationWeak kernel preservation

Conclusion- and Breaking News

IntroState based systemsFunctors and Coalgebras

Functor propertiesWeak Pullback PreservationFunctors parameterized by algebras

Free-algebra functorPreimage preservationWeak kernel preservation

Conclusion- and Breaking News

Automata𝑆 set of states,

Ξ£ input alphabet

β€’ Acceptor:

β€’ 𝛿: 𝑆 Γ— Ξ£ β†’ 𝑆

β€’ 𝑇 βŠ† 𝑆

+,-

1

0

0,1

1

+,-,0,10

+,-

𝑠3

𝑠4𝑠0 𝑠2

𝑠1

+,-

Ξ£ = {0,1, +, βˆ’}

+,-,0,1

e.g.-1011 accepted

+0110 not accepted

Automata𝑆 set of states,

Ξ£ input alphabet

β€’ Acceptor:

β€’ 𝛿: 𝑆 Γ— Ξ£ β†’ 𝑆

β€’ 𝑇 βŠ† 𝑆

+,-

1

0

0,1

1

+,-,0,10

+,-

𝑠3

𝑠4𝑠0 𝑠2

𝑠1

𝑆

𝑆Σ

+,-

Ξ£ = {0,1, +, βˆ’}

+,-,0,1

e.g.-1011 accepted

+0110 not accepted

Automata𝑆 set of states,

Ξ£ input alphabet

β€’ Acceptor:

β€’ 𝛿: 𝑆 Γ— Ξ£ β†’ 𝑆

β€’ 𝑇 βŠ† 𝑆

+,-

1

0

0,1

1

+,-,0,10

+,-

𝑠3

𝑠4𝑠0 𝑠2

𝑠1

𝑆 𝑆

𝑆Σ 2

+,-

Ξ£ = {0,1, +, βˆ’}

+,-,0,1

e.g.-1011 accepted

+0110 not accepted

Automata𝑆 set of states,

Ξ£ input alphabet

β€’ Acceptor:

β€’ 𝛿: 𝑆 Γ— Ξ£ β†’ 𝑆

β€’ 𝑇 βŠ† 𝑆

+,-

1

0

0,1

1

+,-,0,10

+,-

𝑠3

𝑠4𝑠0 𝑠2

𝑠1

𝑆

𝑆Σ Γ— 2

+,-

Ξ£ = {0,1, +, βˆ’}

+,-,0,1

e.g.-1011 accepted

+0110 not accepted

Nondeterminism

β€’ NFAβ€’ 𝛿: 𝑆 Γ— Ξ£ β†’ β„™(𝑆)

β€’ 𝑇 βŠ† 𝑆

a a

a, b

b b

ba

b

a

𝑠0

𝑠2

𝑠1 𝑠5𝑠3 𝑠4

Nondeterminism

β€’ NFAβ€’ 𝛿: 𝑆 Γ— Ξ£ β†’ β„™(𝑆)

β€’ 𝑇 βŠ† 𝑆

a a

a, b

b b

ba

b

a

𝑆

β„™(𝑆)Ξ£

𝑠0

𝑠2

𝑠1 𝑠5𝑠3 𝑠4

Nondeterminism

β€’ NFAβ€’ 𝛿: 𝑆 Γ— Ξ£ β†’ β„™(𝑆)

β€’ 𝑇 βŠ† 𝑆

a a

a, b

b b

ba

b

a

𝑆

β„™(𝑆)Ξ£ Γ— 2

𝑠0

𝑠2

𝑠1 𝑠5𝑠3 𝑠4

Nondeterminism

β€’ NFAβ€’ 𝛿: 𝑆 Γ— Ξ£ β†’ β„™(𝑆)

β€’ 𝑇 βŠ† 𝑆

β€’ Kripke structureβ€’ 𝑅 βŠ† 𝑆 Γ— 𝑆

β€’ 𝑣 ∢ 𝑆 β†’ β„™(𝐢)

a a

a, b

b b

ba

b

a

𝑆

β„™(𝑆)Ξ£ Γ— 2

𝑠0

𝑠2

𝑠1 𝑠5𝑠3 𝑠4

π‘Ÿπ‘’π‘‘π‘π‘™π‘’π‘’

π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘

𝑆

β„™(𝑆) Γ— β„™(𝐢)

Nondeterminism

β€’ NFAβ€’ 𝛿: 𝑆 Γ— Ξ£ β†’ β„™(𝑆)

β€’ 𝑇 βŠ† 𝑆

β€’ Kripke structureβ€’ 𝑅 βŠ† 𝑆 Γ— 𝑆

β€’ 𝑣 ∢ 𝑆 β†’ β„™(𝐢)

a a

a, b

b b

ba

b

a

𝑆

β„™(𝑆)Ξ£ Γ— 2

𝑠0

𝑠2

𝑠1 𝑠5𝑠3 𝑠4

π‘Ÿπ‘’π‘‘π‘π‘™π‘’π‘’

π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘

Probabilistic

β€’ Probabilistic systems

β€’ 𝛿: 𝑆 Γ— 𝑆 β†’ 0,1 ℝ

β€’ Οƒπ‘₯βˆˆπ‘† 𝛿 𝑠, π‘₯ = 1

1/2

1/3

1/6

1/2 1/2

3/4

1/4

1/2

1/2

1𝑠0

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

Probabilistic

β€’ Probabilistic systems

β€’ 𝛿: 𝑆 Γ— 𝑆 β†’ 0,1 ℝ

β€’ Οƒπ‘₯βˆˆπ‘† 𝛿 𝑠, π‘₯ = 1

1/2

1/3

1/6

1/2 1/2

3/4

1/4

1/2

1/2

1

𝑆

𝔻(𝑆)𝑠0

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

Higher order

β€’ Neighbourhood structure

β€’ 𝑅 βŠ† 𝑆 Γ— 2𝑆

β€’ 𝑐: 𝑆 β†’ β„™(𝐢)

Higher order

β€’ Neighbourhood structure

β€’ 𝑅 βŠ† 𝑆 Γ— 2𝑆

β€’ 𝑐: 𝑆 β†’ β„™(𝐢)

𝑆

22𝑆× β„™(𝐢)

Higher order

β€’ Neighbourhood structure

β€’ 𝑅 βŠ† 𝑆 Γ— 2𝑆

β€’ 𝑐: 𝑆 β†’ β„™(𝐢)

β€’ Topological space

β€’ 𝜏 βŠ† β„™ β„™ 𝑆‒ closed under

β€’ unionsβ€’ finite intersections

𝑆

22𝑆× β„™(𝐢)

Higher order

β€’ Neighbourhood structure

β€’ 𝑅 βŠ† 𝑆 Γ— 2𝑆

β€’ 𝑐: 𝑆 β†’ β„™(𝐢)

β€’ Topological space

β€’ 𝜏 βŠ† β„™ β„™ 𝑆‒ closed under

β€’ unionsβ€’ finite intersections

𝑆

22𝑆× β„™(𝐢)

𝑆

𝔽𝑖𝑙(𝑆)

Coalgebras and Algebras

β€’ Set functors fix the β€žsignatureβ€œ of coalgebras

𝑆

𝑆Σ Γ— 2

𝑆

β„™(𝑆)Ξ£ Γ— 2

𝑆

𝔻(𝑆)

𝑆

22𝑆× β„™(𝐢)

𝑆

𝔽𝑖𝑙(𝑆)

𝑆

𝐹(𝑆)

𝛼

Coalgebras and Algebras

β€’ Set functors fix the β€žsignatureβ€œ of coalgebras

β€’ Algebras are upside-down coalgebras

𝑆

𝐹(𝑆)

𝛼

𝐹(𝐴)

𝐴

𝛼𝐴 Γ— 𝐴

𝐴

𝐴2 + 𝐴2

𝐴

𝐴2 + 𝐴 + 1

𝐴

β„™(𝐴)

𝐴

β‹―

𝑆

𝑆Σ Γ— 2

𝑆

β„™(𝑆)Ξ£ Γ— 2

𝑆

𝔻(𝑆)

𝑆

22𝑆× β„™(𝐢)

𝑆

𝔽𝑖𝑙(𝑆)

IntroState based systemsFunctors and Coalgebras

Fuctor propertiesWeak Pullback PreservationFunctors parameterized by algebras

Free-algebra functorPreimage preservationWeak kernel preservation

Conclusion- and Breaking News

Functors

β€’ 𝐹 𝑋 a β€žnatural set theoretical constructionβ€œ

β€’ 𝐹 should be a functor:β€’ for each 𝑋 construct new set 𝐹(𝑋)

β€’ for each 𝑓: 𝑋 β†’ π‘Œ provide map 𝐹𝑓: 𝐹 𝑋 β†’ 𝐹(π‘Œ)

such that

β€’ 𝐹 𝑔 ∘ 𝑓 = 𝐹𝑔 ∘ 𝐹𝑓

β€’ 𝐹 πœ„π‘‘π΄ = πœ„π‘‘πΉ 𝐴

𝑆

𝐹(𝑆)

𝛼

Functors and Coalgebras

β€’ 𝐹 𝑋 a β€žnatural set theoretical constructionβ€œ

β€’ 𝐹 should be a functor:β€’ for each 𝑋 construct new set 𝐹(𝑋)

β€’ for each 𝑓: 𝑋 β†’ π‘Œ provide map 𝐹𝑓: 𝐹 𝑋 β†’ 𝐹(π‘Œ)

such that

β€’ 𝐹 𝑔 ∘ 𝑓 = 𝐹𝑔 ∘ 𝐹𝑓

β€’ 𝐹 πœ„π‘‘π΄ = πœ„π‘‘πΉ 𝐴

𝑆

𝐹(𝑆)

𝛼

𝐹-coalgebra

𝐹-coalgebras

𝐴

𝐹(𝐴)

𝛼

Homomorphism

𝐹-coalgebras

𝐡𝐴

𝐹(𝐴) 𝐹(𝐡)

𝛼 𝛽

Homomorphism

𝐹-coalgebras and homomorphisms

𝐡𝐴

𝐹(𝐴) 𝐹(𝐡)

𝛼 𝛽

πœ‘

Homomorphism

𝐹-coalgebras and homomorphisms

𝐡𝐴

𝐹(𝐴) 𝐹(𝐡)

𝛼 𝛽

πœ‘

πΉπœ‘

Homomorphism

𝐹-coalgebras and homomorphisms

𝐡 𝐢𝐴

𝐹(𝐴) 𝐹(𝐡) 𝐹(𝐢)

𝛼 𝛽 𝛾

πœ‘

πΉπœ‘

Homomorphisms compose

𝐹-coalgebras and homomorphisms

𝐡 𝐢𝐴

𝐹(𝐴) 𝐹(𝐡) 𝐹(𝐢)

𝛼 𝛽 𝛾

πœ‘ πœ“

πΉπœ‘ πΉπœ“

Homomorphisms compose

𝐹-coalgebras and homomorphisms

𝐡 𝐢𝐴

𝐹(𝐴) 𝐹(𝐡) 𝐹(𝐢)

𝛼 𝛽 𝛾

πœ‘ πœ“

πœ“ ∘ πœ‘

πΉπœ‘ πΉπœ“

Homomorphisms compose

𝐹-coalgebras and homomorphisms

𝐡 𝐢𝐴

𝐹(𝐴) 𝐹(𝐡) 𝐹(𝐢)

𝛼 𝛽 𝛾

πœ‘ πœ“

πœ“ ∘ πœ‘

𝐹(πœ“ ∘ πœ‘)

πΉπœ‘ πΉπœ“

Homomorphisms compose 𝐹 πœ“ ∘ πœ‘ = πΉπœ“ ∘ πΉπœ‘

𝑆𝑒𝑑𝐹

β€’ 𝐹-coalgebras form a category 𝑆𝑒𝑑𝐹

β€’ Homomorphism theorems

β€’ Substructures, quotients, congruences, …

β€’ Co-equations, Co-Birkhoff

β€’ Modal logic

β€’ …

β€’ Properties of 𝐹 determine structure of 𝑆𝑒𝑑𝐹- weak pullback preservation

𝑆

𝐹(𝑆)

IntroState based systemsFunctors and Coalgebras

Fuctor propertiesWeak Pullback PreservationFunctors parameterized by algebras

Free-algebra functorPreimage preservationWeak kernel preservation

Conclusion- and Breaking News

F weakly preserves pullbacks

β€’ (Weak) pullback

A C

P B

f

g

𝑃 = { π‘Ž, 𝑏 ∈ 𝐴 Γ— 𝐡 ∣ 𝑓 π‘Ž = 𝑔 𝑏 }

F weakly preserves pullbacks

β€’ (Weak) pullback

A C

P B

f

gπœ‹1

πœ‹2𝑃 = { π‘Ž, 𝑏 ∈ 𝐴 Γ— 𝐡 ∣ 𝑓 π‘Ž = 𝑔 𝑏 }

F weakly preserves pullbacks

β€’ (Weak) pullback

A C

P B

f

g

Q

πœ‹1

πœ‹2𝑑 𝑃 = { π‘Ž, 𝑏 ∈ 𝐴 Γ— 𝐡 ∣ 𝑓 π‘Ž = 𝑔 𝑏 }

F weakly preserves pullbacks

β€’ (Weak) pullback

A C

P B

f

g

Q

πœ‹1

πœ‹2

π‘ž1

π‘ž1

𝑃 = { π‘Ž, 𝑏 ∈ 𝐴 Γ— 𝐡 ∣ 𝑓 π‘Ž = 𝑔 𝑏 }

F weakly preserves pullbacks

β€’ (Weak) pullback

A C

P B

f

g

Q

πœ‹1

πœ‹2

π‘ž1

π‘ž1

𝑑 𝑃 = { π‘Ž, 𝑏 ∈ 𝐴 Γ— 𝐡 ∣ 𝑓 π‘Ž = 𝑔 𝑏 }

F weakly preserves pullbacks

β€’ (Weak) pullback

β€’ apply 𝐹

A C

P B

F(A) F(C)

F(P) F(B)

f

g

Ff

Fg

𝑃 = { π‘Ž, 𝑏 ∈ 𝐴 Γ— 𝐡 ∣ 𝑓 π‘Ž = 𝑔 𝑏 }

F weakly preserves pullbacks

β€’ (Weak) pullback

β€’ apply 𝐹

Is this a weak pullback diagram?

A C

P B

F(A) F(C)

F(P) F(B)

f

g

Ff

Fg

𝑃 = { π‘Ž, 𝑏 ∈ 𝐴 Γ— 𝐡 ∣ 𝑓 π‘Ž = 𝑔 𝑏 }

Observational equivalence

𝐡 𝐢

𝐹(𝐡) 𝐹(𝐢)

πœ“

Observational equivalence

πœ‘π΅ 𝐢

𝐹(𝐴)

𝐹(𝐡)

𝐴

𝐹(𝐢)

πœ“

Observational equivalence

πœ‘π΅ 𝐢

𝐹(𝐴)

𝐹(𝐡)

𝑃 𝐴

𝐹(𝐢)

πœ“Observationalequivalence …

𝐹(𝑃)

Observational equivalence

πœ‘π΅ 𝐢

𝐹(𝐴)

𝐹(𝐡)

𝑃 𝐴

𝐹(𝐢)

πœ“Observationalequivalence …

𝐹(𝑃)

F weakly preserves pullbacks

πœ‘π΅ 𝐢

𝐹(𝐴)

𝐹(𝐡)

𝑃 𝐴

𝐹(𝐢)

πœ“Observationalequivalence …

𝐹(𝑃)

Bisimilarity

πœ‘π΅ 𝐢

𝐹(𝐴)

𝐹(𝐡)

𝑃 𝐴

𝐹(𝐢)

πœ“Observationalequivalence …

… is bisimilarity

Weak pullback preservation

β€’ 𝐹 weakly preserves pullbacks, iff 𝐹 preservesβ€’ kernel pairsβ€’ and preimages

β€’ 𝐹 weakly preserves kernel pairs, β€’ iff congruences are bisimulationsβ€’ iff observational equivalence = bisimilarity

𝑋 π‘Œ

ker(𝑓) 𝑋

𝑓

𝑓

Weak pullback preservation

β€’ 𝐹 weakly preserves pullbacks, iff 𝐹 preservesβ€’ kernel pairsβ€’ and preimages

β€’ 𝐹 weakly preserves kernel pairs, β€’ iff congruences are bisimulationsβ€’ iff observational equivalence = bisimilarity

β€’ 𝐹 weakly preserves preimagesβ€’ iff homomorphisms πœ‘: 𝐴 β†’ 𝐡 + 𝐢 split domainβ€’ iff 𝐻𝑆(π”Ž) = 𝑆𝐻(π”Ž), for any class π”Ž

(provided |𝐹 1 | > 1 )

𝑋 π‘Œ

ker(𝑓) 𝑋

𝑓

𝑓

𝑋 π‘Œ

π‘“βˆ’1 𝑉 𝑉

𝑓

πœ„

Weak pullback preservation

β€’ 𝐹 weakly preserves pullbacks, iff 𝐹 preservesβ€’ kernel pairsβ€’ and preimages

β€’ 𝐹 weakly preserves kernel pairs, β€’ iff 𝐹 preserves pullbacks of episβ€’ iff observational equivalence = bisimilarity

𝑋 π‘Œ

ker(𝑓) 𝑋

𝑓

𝑓

Weak pullback preservation

β€’ 𝐹 weakly preserves pullbacks, iff 𝐹 preservesβ€’ kernel pairsβ€’ and preimages

β€’ 𝐹 weakly preserves kernel pairs, β€’ iff 𝐹 preserves pullbacks of episβ€’ iff observational equivalence = bisimilarity

β€’ 𝐹 weakly preserves preimagesβ€’ iff 𝐻𝑆(π”Ž) = 𝑆𝐻(π”Ž), for any class π”Ž

(provided |𝐹 1 | > 1 )

𝑋 π‘Œ

ker(𝑓) 𝑋

𝑓

𝑓

𝑋 π‘Œ

π‘“βˆ’1 𝑉 𝑉

𝑓

πœ„

Functors weakly preserving special pullbacks

β€’ all pullbacksβ€’ 𝐹 𝑋 = … 𝑋, 𝑋𝑛, Ξ£π‘–βˆˆπΌπ‘‹

𝑛𝑖 , β„™ 𝑋 , β„™πœ” 𝑋 , 𝔽(𝑋), 𝐷𝑋 , …

Functors weakly preserving special pullbacks

β€’ all pullbacksβ€’ 𝐹 𝑋 = … 𝑋, 𝑋𝑛, Ξ£π‘–βˆˆπΌπ‘‹

𝑛𝑖 , β„™ 𝑋 , β„™πœ” 𝑋 , 𝔽(𝑋), 𝐷𝑋 , …

β€’ preimagesβ€’ 𝐹 𝑋 = … β„™<𝑛 𝑋 , 𝑋2

3 , 𝐿𝑋 , …

β€’ kernel pairs

β€’ 𝐹 𝑋 = … 22𝑋, 𝑋2 βˆ’ 𝑋 + 1, 𝑂𝑑𝑑(𝑋),…

𝑋 π‘Œ

π‘“βˆ’1 𝑉 𝑉

𝑓

πœ„

Functors weakly preserving special pullbacks

β€’ all pullbacksβ€’ 𝐹 𝑋 = … 𝑋, 𝑋𝑛, Ξ£π‘–βˆˆπΌπ‘‹

𝑛𝑖 , β„™ 𝑋 , β„™πœ” 𝑋 , 𝔽(𝑋), 𝐷𝑋 , …

β€’ preimagesβ€’ 𝐹 𝑋 = … β„™<𝑛 𝑋 , 𝑋2

3 , 𝐿𝑋 , …

β€’ kernel pairs

β€’ 𝐹 𝑋 = … 22𝑋, 𝑋2 βˆ’ 𝑋 + 1, 𝑂𝑑𝑑 𝑋 ,… 𝑋 π‘Œ

ker(𝑓) 𝑋

𝑓

𝑓

𝑋 π‘Œ

π‘“βˆ’1 𝑉 𝑉

𝑓

πœ„

IntroState based systemsFunctors and Coalgebras

Functor propertiesWeak Pullback PreservationFunctors parameterized by algebras

Free-algebra functorPreimage preservationWeak kernel preservation

Conclusion- and Breaking News

Parameterizing functors by algebras

β€’ Let πΉπ’œ depend on some algebra π’œ

β€’ Choose π’œ so that πΉπ’œ has desirable properties, e.g. (weakly) preserves

β€’ kernel pairs

β€’ preimages

β€’ pullbacks

𝐿-fuzzy functor

1. Generalize β„™ 𝑋 = 2𝑋

β€’ Replace 2 = {0,1} by a complete lattice 𝐿

β€’ on objects: 𝐿𝑋

β€’ on maps 𝑓: 𝑋 β†’ π‘Œ:

𝐿𝑓 𝜎 (𝑦):= ሧ

𝑓 π‘₯ =𝑦

𝜎(π‘₯)

For π‘ˆ βŠ† 𝑋 put πœ’π‘ˆ π‘₯ = α‰Š1, π‘₯ ∈ π‘ˆ0, π‘₯ βˆ‰ π‘ˆ

𝐿-fuzzy functor

1. Generalize β„™ 𝑋 = πŸπ‘‹

β€’ Replace 2 = {0,1} by a complete lattice 𝐿

β€’ on objects: 𝐿𝑋

β€’ on maps 𝑓: 𝑋 β†’ π‘Œ:

𝐿𝑓 𝜎 (𝑦):= ሧ

𝑓 π‘₯ =𝑦

𝜎(π‘₯)

β€’ 𝐿(βˆ’) always preserves preimages

For π‘ˆ βŠ† 𝑋 put πœ’π‘ˆ π‘₯ = α‰Š1, π‘₯ ∈ π‘ˆ0, π‘₯ βˆ‰ π‘ˆ

𝐿-fuzzy functor

1. Generalize β„™ 𝑋 = πŸπ‘‹

β€’ Replace 2 = {0,1} by a complete lattice 𝐿

β€’ on objects: 𝐿𝑋

β€’ on maps 𝑓: 𝑋 β†’ π‘Œ:

𝐿𝑓 𝜎 (𝑦):= ሧ

𝑓 π‘₯ =𝑦

𝜎(π‘₯)

β€’ 𝐿(βˆ’) always preserves preimages

β€’ 𝐿(βˆ’) weakly preserves kernel pairs iff 𝐿 is JID

π‘₯ ∧ ⋁ π‘₯𝑖 𝑖 ∈ 𝐼 = ⋁{π‘₯ ∧ π‘₯𝑖 ∣ 𝑖 ∈ 𝐼}

β‹―π‘₯𝑖 π‘₯𝑗

π‘₯

For π‘ˆ βŠ† 𝑋 put πœ’π‘ˆ π‘₯ = α‰Š1, π‘₯ ∈ π‘ˆ0, π‘₯ βˆ‰ π‘ˆ

𝐿-fuzzy functor

1. Generalize β„™ 𝑋 = πŸπ‘‹

β€’ Replace 2 = {0,1} by a complete lattice 𝐿

β€’ on objects: 𝐿𝑋

β€’ on maps 𝑓: 𝑋 β†’ π‘Œ:

𝐿𝑓 𝜎 (𝑦):= ሧ

𝑓 π‘₯ =𝑦

𝜎(π‘₯)

β€’ 𝐿(βˆ’) always preserves preimages

β€’ 𝐿(βˆ’) weakly preserves kernel pairs iff 𝐿 is JID

π‘₯ ∧ ⋁ π‘₯𝑖 𝑖 ∈ 𝐼 = ⋁{π‘₯ ∧ π‘₯𝑖 ∣ 𝑖 ∈ 𝐼}

β‹―π‘₯𝑖 π‘₯𝑗

π‘₯

For π‘ˆ βŠ† 𝑋 put πœ’π‘ˆ π‘₯ = α‰Š1, π‘₯ ∈ π‘ˆ0, π‘₯ βˆ‰ π‘ˆ

𝐿-fuzzy functor

1. Generalize β„™ 𝑋 = πŸπ‘‹

β€’ Replace 2 = {0,1} by a complete lattice 𝐿

β€’ on objects: 𝐿𝑋

β€’ on maps 𝑓: 𝑋 β†’ π‘Œ:

𝐿𝑓 𝜎 (𝑦):= ሧ

𝑓 π‘₯ =𝑦

𝜎(π‘₯)

β€’ 𝐿(βˆ’) always preserves preimages

β€’ 𝐿(βˆ’) weakly preserves kernel pairs iff 𝐿 is JID

π‘₯ ∧ ⋁ π‘₯𝑖 𝑖 ∈ 𝐼 = ⋁{π‘₯ ∧ π‘₯𝑖 ∣ 𝑖 ∈ 𝐼}

β‹―π‘₯𝑖 π‘₯𝑗

π‘₯

β‹―

For π‘ˆ βŠ† 𝑋 put πœ’π‘ˆ π‘₯ = α‰Š1, π‘₯ ∈ π‘ˆ0, π‘₯ βˆ‰ π‘ˆ

𝐿-fuzzy functor

1. Generalize β„™ 𝑋 = πŸπ‘‹

β€’ Replace 2 = {0,1} by a complete lattice 𝐿

β€’ on objects: 𝐿𝑋

β€’ on maps 𝑓: 𝑋 β†’ π‘Œ:

𝐿𝑓 𝜎 (𝑦):= ሧ

𝑓 π‘₯ =𝑦

𝜎(π‘₯)

β€’ 𝐿(βˆ’) always preserves preimages

β€’ 𝐿(βˆ’) weakly preserves kernel pairs iff 𝐿 is JID

π‘₯ ∧ ⋁ π‘₯𝑖 𝑖 ∈ 𝐼 = ⋁{π‘₯ ∧ π‘₯𝑖 ∣ 𝑖 ∈ 𝐼}

β‹―π‘₯𝑖 π‘₯𝑗

π‘₯

β‹―

For π‘ˆ βŠ† 𝑋 put πœ’π‘ˆ π‘₯ = α‰Š1, π‘₯ ∈ π‘ˆ0, π‘₯ βˆ‰ π‘ˆ

Finite 𝕄-bags

2. Generalize β„™πœ”(𝑋)

β€’ Replace boolean algebra 𝟐 by a commutative monoid𝕄 = (𝑀,+, 0)

Finite 𝕄-bags

2. Generalize β„™πœ”(𝑋)

β€’ Replace boolean algebra 𝟐 by a commutative monoid𝕄 = (𝑀,+, 0)

β€’ on objects: π•„πœ”π‘‹ = {π‘š1π‘₯1 +β‹―π‘šπ‘›π‘₯𝑛 ∣ 𝑛 ∈ β„•,π‘šπ‘– ∈ 𝑀. π‘₯𝑖 ∈ 𝑋}

Finite 𝕄-bags

2. Generalize β„™πœ”(𝑋)

β€’ Replace boolean algebra 𝟐 by a commutative monoid𝕄 = (𝑀,+, 0)

β€’ on objects: π•„πœ”π‘‹ = {π‘š1π‘₯1 +β‹―π‘šπ‘›π‘₯𝑛 ∣ 𝑛 ∈ β„•,π‘šπ‘– ∈ 𝕄. π‘₯𝑖 ∈ 𝑋}

β€’ on maps 𝑓: 𝑋 β†’ π‘Œ: π•„πœ”π‘“π‘š1π‘₯1 +β‹―π‘šπ‘›π‘₯𝑛 ∢= π‘š1𝑓π‘₯1 +β‹―π‘šπ‘›π‘“π‘₯𝑛

Finite 𝕄-bags

2. Generalize β„™πœ”(𝑋)

β€’ Replace boolean algebra 𝟐 by a commutative monoid𝕄 = (𝑀,+, 0)

β€’ on objects: π•„πœ”π‘‹ = {π‘š1π‘₯1 +β‹―π‘šπ‘›π‘₯𝑛 ∣ 𝑛 ∈ β„•,π‘šπ‘– ∈ 𝕄. π‘₯𝑖 ∈ 𝑋}

β€’ on maps 𝑓: 𝑋 β†’ π‘Œ: π•„πœ”π‘“π‘š1π‘₯1 +β‹―π‘šπ‘›π‘₯𝑛 ∢= π‘š1𝑓π‘₯1 +β‹―π‘šπ‘›π‘“π‘₯𝑛

β€’ The functor π•„πœ”(βˆ’)

(weakly) preserves

Finite 𝕄-bags

2. Generalize β„™πœ”(𝑋)

β€’ Replace boolean algebra 𝟐 by a commutative monoid𝕄 = (𝑀,+, 0)

β€’ on objects: π•„πœ”π‘‹ = {π‘š1π‘₯1 +β‹―π‘šπ‘›π‘₯𝑛 ∣ 𝑛 ∈ β„•,π‘šπ‘– ∈ 𝕄. π‘₯𝑖 ∈ 𝑋}

β€’ on maps 𝑓: 𝑋 β†’ π‘Œ: π•„πœ”π‘“π‘š1π‘₯1 +β‹―π‘šπ‘›π‘₯𝑛 ∢= π‘š1𝑓π‘₯1 +β‹―π‘šπ‘›π‘“π‘₯𝑛

β€’ The functor π•„πœ”(βˆ’)

(weakly) preserves

β€’ preimages iff 𝕄 is positive

Finite 𝕄-bags

2. Generalize β„™πœ”(𝑋)

β€’ Replace boolean algebra 𝟐 by a commutative monoid𝕄 = (𝑀,+, 0)

β€’ on objects: π•„πœ”π‘‹ = {π‘š1π‘₯1 +β‹―π‘šπ‘›π‘₯𝑛 ∣ 𝑛 ∈ β„•,π‘šπ‘– ∈ 𝕄. π‘₯𝑖 ∈ 𝑋}

β€’ on maps 𝑓: 𝑋 β†’ π‘Œ: π•„πœ”π‘“π‘š1π‘₯1 +β‹―π‘šπ‘›π‘₯𝑛 ∢= π‘š1𝑓π‘₯1 +β‹―π‘šπ‘›π‘“π‘₯𝑛

β€’ The functor π•„πœ”(βˆ’)

(weakly) preserves

β€’ preimages iff 𝕄 is positive

positive: π‘₯ + 𝑦 = 0 β‡’ π‘₯ = 0

Finite 𝕄-bags

2. Generalize β„™πœ”(𝑋)

β€’ Replace boolean algebra 𝟐 by a commutative monoid𝕄 = (𝑀,+, 0)

β€’ on objects: π•„πœ”π‘‹ = {π‘š1π‘₯1 +β‹―π‘šπ‘›π‘₯𝑛 ∣ 𝑛 ∈ β„•,π‘šπ‘– ∈ 𝕄. π‘₯𝑖 ∈ 𝑋}

β€’ on maps 𝑓: 𝑋 β†’ π‘Œ: π•„πœ”π‘“π‘š1π‘₯1 +β‹―π‘šπ‘›π‘₯𝑛 ∢= π‘š1𝑓π‘₯1 +β‹―π‘šπ‘›π‘“π‘₯𝑛

β€’ The functor π•„πœ”(βˆ’)

(weakly) preserves

β€’ preimages iff 𝕄 is positive

β€’ kernel pairs iff 𝕄 is refinable

positive: π‘₯ + 𝑦 = 0 β‡’ π‘₯ = 0

Finite 𝕄-bags

2. Generalize β„™πœ”(𝑋)

β€’ Replace boolean algebra 𝟐 by a commutative monoid𝕄 = (𝑀,+, 0)

β€’ on objects: π•„πœ”π‘‹ = {π‘š1π‘₯1 +β‹―π‘šπ‘›π‘₯𝑛 ∣ 𝑛 ∈ β„•,π‘šπ‘– ∈ 𝕄. π‘₯𝑖 ∈ 𝑋}

β€’ on maps 𝑓: 𝑋 β†’ π‘Œ: π•„πœ”π‘“π‘š1π‘₯1 +β‹―π‘šπ‘›π‘₯𝑛 ∢= π‘š1𝑓π‘₯1 +β‹―π‘šπ‘›π‘“π‘₯𝑛

β€’ The functor π•„πœ”(βˆ’)

(weakly) preserves

β€’ preimages iff 𝕄 is positive

β€’ kernel pairs iff 𝕄 is refinable

refinable:π‘₯1 + π‘₯2 = 𝑦1 + 𝑦2 β‡’

π‘₯1π‘₯2

𝑦1 𝑦2 =

positive: π‘₯ + 𝑦 = 0 β‡’ π‘₯ = 0

Finite 𝕄-bags

2. Generalize β„™πœ”(𝑋)

β€’ Replace boolean algebra 𝟐 by a commutative monoid𝕄 = (𝑀,+, 0)

β€’ on objects: π•„πœ”π‘‹ = {π‘š1π‘₯1 +β‹―π‘šπ‘›π‘₯𝑛 ∣ 𝑛 ∈ β„•,π‘šπ‘– ∈ 𝕄. π‘₯𝑖 ∈ 𝑋}

β€’ on maps 𝑓: 𝑋 β†’ π‘Œ: π•„πœ”π‘“π‘š1π‘₯1 +β‹―π‘šπ‘›π‘₯𝑛 ∢= π‘š1𝑓π‘₯1 +β‹―π‘šπ‘›π‘“π‘₯𝑛

β€’ The functor π•„πœ”(βˆ’)

(weakly) preserves

β€’ preimages iff 𝕄 is positive

β€’ kernel pairs iff 𝕄 is refinable

positive: π‘₯ + 𝑦 = 0 β‡’ π‘₯ = 0

refinable:π‘₯1 + π‘₯2 = 𝑦1 + 𝑦2 β‡’

π‘Ž 𝑏 π‘₯1𝑐 𝑑 π‘₯2𝑦1 𝑦2 =

IntroState based systemsFunctors and Coalgebras

Functor propertiesWeak Pullback PreservationFunctors parameterized by algebras

Free-algebra functorPreimage preservationWeak kernel preservation

Conclusion- and Breaking News

Properties of 𝐹Σ(𝑋)

𝐹Σ 𝑋 π’œ

𝑋

πœ‘

β€’ Suppose π’œ satisfies the equations Ξ£

Properties of 𝐹Σ(𝑋)

𝐹Σ 𝑋 π’œ

𝑋

πœ‘

βˆƒ ! ΰ΄€πœ‘

β€’ Suppose π’œ satisfies the equations Ξ£

β€’ Each map πœ‘:𝑋 β†’ 𝐴 has unique homomorphic extension

ΰ΄€πœ‘: 𝐹Σ 𝑋 β†’ π’œ

Properties of 𝐹Σ(𝑋)

𝐹Σ 𝑋 π’œ

𝑋

πœ‘

βˆƒ ! ΰ΄€πœ‘

β€’ Suppose π’œ satisfies the equations Ξ£

β€’ Each map πœ‘:𝑋 β†’ 𝐴 has unique homomorphic extension

ΰ΄€πœ‘: 𝐹Σ 𝑋 β†’ π’œ

β€’ ΰ΄€πœ‘ 𝑑 π‘₯1, … , π‘₯𝑛 = 𝑑𝐴(πœ‘π‘₯1, … , πœ‘π‘₯𝑛)

Properties of 𝐹Σ(𝑋)

𝐹Σ 𝑋 𝐹Σ π‘Œ

𝑋 π‘Œπœ‘

?

β€’ Suppose π’œ satisfies the equations Ξ£

β€’ Each map πœ‘:𝑋 β†’ 𝐴 has unique homomorphic extension

ΰ΄€πœ‘: 𝐹Σ 𝑋 β†’ π’œ

β€’ ΰ΄€πœ‘ 𝑑 π‘₯1, … , π‘₯𝑛 = 𝑑𝐴(πœ‘π‘₯1, … , πœ‘π‘₯𝑛)

β€’ 𝐹Σ(βˆ’) is a 𝑆𝑒𝑑-functor

Properties of 𝐹Σ(𝑋)

𝐹Σ 𝑋 𝐹Σ π‘Œ

𝑋 π‘Œ

πœ„π‘Œ

πœ‘

?

β€’ Suppose π’œ satisfies the equations Ξ£

β€’ Each map πœ‘:𝑋 β†’ 𝐴 has unique homomorphic extension

ΰ΄€πœ‘: 𝐹Σ 𝑋 β†’ π’œ

β€’ ΰ΄€πœ‘ 𝑑 π‘₯1, … , π‘₯𝑛 = 𝑑𝐴(πœ‘π‘₯1, … , πœ‘π‘₯𝑛)

β€’ 𝐹Σ(βˆ’) is a 𝑆𝑒𝑑-functor

Properties of 𝐹Σ(𝑋)

𝐹Σ 𝑋 𝐹Σ π‘Œ

𝑋 π‘Œ

πœ„π‘Œ

πœ‘

πœ‘β€²

β€’ Suppose π’œ satisfies the equations Ξ£

β€’ Each map πœ‘:𝑋 β†’ 𝐴 has unique homomorphic extension

ΰ΄€πœ‘: 𝐹Σ 𝑋 β†’ π’œ

β€’ ΰ΄€πœ‘ 𝑑 π‘₯1, … , π‘₯𝑛 = 𝑑𝐴(πœ‘π‘₯1, … , πœ‘π‘₯𝑛)

β€’ 𝐹Σ(βˆ’) is a 𝑆𝑒𝑑-functor

Properties of 𝐹Σ(𝑋)

β€’ Suppose π’œ satisfies the equations Ξ£

β€’ Each map πœ‘:𝑋 β†’ 𝐴 has unique homomorphic extension

ΰ΄€πœ‘: 𝐹Σ 𝑋 β†’ π’œ

β€’ ΰ΄€πœ‘ 𝑑 π‘₯1, … , π‘₯𝑛 = 𝑑𝐴(πœ‘π‘₯1, … , πœ‘π‘₯𝑛)

β€’ 𝐹Σ(βˆ’) is a 𝑆𝑒𝑑-functor

𝐹Σ 𝑋 𝐹Σ π‘Œ

𝑋 π‘Œ

πœ„π‘Œ

πΉΞ£πœ‘ ∢= ΰ΄₯πœ‘β€²

πœ‘

πœ‘β€²

IntroState based systemsFunctors and Coalgebras

Functor propertiesWeak Pullback PreservationFunctors parameterized by algebras

Free-algebra functorPreimage preservationWeak kernel preservation

Conclusion- and Breaking News

Independence

β€’ 𝑝(π‘₯, 𝑣1, … , 𝑣𝑛) weakly independent of π‘₯ if

𝑝 π‘₯, 𝑣1, … , 𝑣𝑛 β‰ˆ π‘ž(𝑦) where π‘₯ β‰  𝑦

Independence

β€’ 𝑝(π‘₯, 𝑣1, … , 𝑣𝑛) weakly independent of π‘₯ if

𝑝 π‘₯, 𝑣1, … , 𝑣𝑛 β‰ˆ π‘ž(𝑦) where π‘₯ β‰  𝑦

β€’ 𝑝(π‘₯, 𝑧1 , … , 𝑧𝑛) independent of π‘₯, if

𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝(𝑦, 𝑧1, … , 𝑧𝑛) where π‘₯, 𝑦, 𝑧1, … , 𝑧𝑛 mutually different

Independence

β€’ 𝑝(π‘₯, 𝑣1, … , 𝑣𝑛) weakly independent of π‘₯ if

𝑝 π‘₯, 𝑣1, … , 𝑣𝑛 β‰ˆ π‘ž(𝑦) where π‘₯ β‰  𝑦

β€’ 𝑝(π‘₯, 𝑧1 , … , 𝑧𝑛) independent of π‘₯, if

𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝(𝑦, 𝑧1, … , 𝑧𝑛) where π‘₯, 𝑦, 𝑧1, … , 𝑧𝑛 mutually different

Derivative of Ξ£:

Ξ£β€² ≔ {𝑝 π‘₯, Ԧ𝑧 β‰ˆ 𝑝 𝑦, Ԧ𝑧 ∣ 𝑝 π‘₯, Ԧ𝑣 weakly independent of π‘₯}

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(β‡’)

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(β‡’) 𝑝 π‘₯, 𝑣1, … , 𝑣𝑛 β‰ˆ π‘ž 𝑦 ⊒ 𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝(𝑦, 𝑧1, … , 𝑧𝑛)

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(β‡’) 𝑝 π‘₯, 𝑣1, … , 𝑣𝑛 β‰ˆ π‘ž 𝑦 ⊒ 𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝(𝑦, 𝑧1, … , 𝑧𝑛)

π‘₯, 𝑦, 𝑧1, … , 𝑧𝑛 π‘₯, 𝑦, 𝑣1, … , 𝑣𝑛

π‘₯ βˆ‰ πœ‘βˆ’1 𝑦 𝑦

πœ‘

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(β‡’) 𝑝 π‘₯, 𝑣1, … , 𝑣𝑛 β‰ˆ π‘ž 𝑦 ⊒ 𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝(𝑦, 𝑧1, … , 𝑧𝑛)

π‘₯, 𝑦, 𝑧1, … , 𝑧𝑛 π‘₯, 𝑦, 𝑣1, … , 𝑣𝑛

π‘₯ βˆ‰ πœ‘βˆ’1 𝑦 𝑦

πœ‘

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(β‡’) 𝑝 π‘₯, 𝑣1, … , 𝑣𝑛 β‰ˆ π‘ž 𝑦 ⊒ 𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝(𝑦, 𝑧1, … , 𝑧𝑛)

π‘₯, 𝑦, 𝑧1, … , 𝑧𝑛 π‘₯, 𝑦, 𝑣1, … , 𝑣𝑛

π‘₯ βˆ‰ πœ‘βˆ’1 𝑦 𝑦

ΰ΄€πœ‘π‘ π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝 πœ‘π‘₯, πœ‘π‘§1, … , πœ‘π‘§π‘› πœ‘

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(β‡’) 𝑝 π‘₯, 𝑣1, … , 𝑣𝑛 β‰ˆ π‘ž 𝑦 ⊒ 𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝(𝑦, 𝑧1, … , 𝑧𝑛)

π‘₯, 𝑦, 𝑧1, … , 𝑧𝑛 π‘₯, 𝑦, 𝑣1, … , 𝑣𝑛

π‘₯ βˆ‰ πœ‘βˆ’1 𝑦 𝑦

ΰ΄€πœ‘π‘ π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝 πœ‘π‘₯, πœ‘π‘§1, … , πœ‘π‘§π‘›β‰ˆ 𝑝 π‘₯, 𝑣1, … , 𝑣𝑛

πœ‘

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(β‡’) 𝑝 π‘₯, 𝑣1, … , 𝑣𝑛 β‰ˆ π‘ž 𝑦 ⊒ 𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝(𝑦, 𝑧1, … , 𝑧𝑛)

π‘₯, 𝑦, 𝑧1, … , 𝑧𝑛 π‘₯, 𝑦, 𝑣1, … , 𝑣𝑛

π‘₯ βˆ‰ πœ‘βˆ’1 𝑦 𝑦

ΰ΄€πœ‘π‘ π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝 πœ‘π‘₯, πœ‘π‘§1, … , πœ‘π‘§π‘›β‰ˆ 𝑝 π‘₯, 𝑣1, … , π‘£π‘›β‰ˆ π‘ž 𝑦

πœ‘

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(β‡’) 𝑝 π‘₯, 𝑣1, … , 𝑣𝑛 β‰ˆ π‘ž 𝑦 ⊒ 𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝(𝑦, 𝑧1, … , 𝑧𝑛)

π‘₯, 𝑦, 𝑧1, … , 𝑧𝑛 π‘₯, 𝑦, 𝑣1, … , 𝑣𝑛

π‘₯ βˆ‰ πœ‘βˆ’1 𝑦 𝑦

ΰ΄€πœ‘π‘ π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝 πœ‘π‘₯, πœ‘π‘§1, … , πœ‘π‘§π‘›β‰ˆ 𝑝 π‘₯, 𝑣1, … , π‘£π‘›β‰ˆ π‘ž 𝑦 ∈ 𝐹Σ 𝑦

πœ‘

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(β‡’) 𝑝 π‘₯, 𝑣1, … , 𝑣𝑛 β‰ˆ π‘ž 𝑦 ⊒ 𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝(𝑦, 𝑧1, … , 𝑧𝑛)

π‘₯, 𝑦, 𝑧1, … , 𝑧𝑛 π‘₯, 𝑦, 𝑣1, … , 𝑣𝑛

π‘₯ βˆ‰ πœ‘βˆ’1 𝑦 𝑦

ΰ΄€πœ‘π‘ π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝 πœ‘π‘₯, πœ‘π‘§1, … , πœ‘π‘§π‘›β‰ˆ 𝑝 π‘₯, 𝑣1, … , π‘£π‘›β‰ˆ π‘ž 𝑦 ∈ 𝐹Σ 𝑦

β‡’ 𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 ∈ ΰ΄€πœ‘βˆ’1 (𝐹Σ 𝑦 )

πœ‘

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(β‡’) 𝑝 π‘₯, 𝑣1, … , 𝑣𝑛 β‰ˆ π‘ž 𝑦 ⊒ 𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝(𝑦, 𝑧1, … , 𝑧𝑛)

π‘₯, 𝑦, 𝑧1, … , 𝑧𝑛 π‘₯, 𝑦, 𝑣1, … , 𝑣𝑛

π‘₯ βˆ‰ πœ‘βˆ’1 𝑦 𝑦

ΰ΄€πœ‘π‘ π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝 πœ‘π‘₯, πœ‘π‘§1, … , πœ‘π‘§π‘›β‰ˆ 𝑝 π‘₯, 𝑣1, … , π‘£π‘›β‰ˆ π‘ž 𝑦 ∈ 𝐹Σ 𝑦

β‡’ 𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 ∈ ΰ΄€πœ‘βˆ’1 (𝐹Σ 𝑦 )= 𝐹Σ(πœ‘

βˆ’1 𝑦 )

πœ‘

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(β‡’) 𝑝 π‘₯, 𝑣1, … , 𝑣𝑛 β‰ˆ π‘ž 𝑦 ⊒ 𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝(𝑦, 𝑧1, … , 𝑧𝑛)

π‘₯, 𝑦, 𝑧1, … , 𝑧𝑛 π‘₯, 𝑦, 𝑣1, … , 𝑣𝑛

π‘₯ βˆ‰ πœ‘βˆ’1 𝑦 𝑦

ΰ΄€πœ‘π‘ π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝 πœ‘π‘₯, πœ‘π‘§1, … , πœ‘π‘§π‘›β‰ˆ 𝑝 π‘₯, 𝑣1, … , π‘£π‘›β‰ˆ π‘ž 𝑦 ∈ 𝐹Σ 𝑦

β‡’ 𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 ∈ ΰ΄€πœ‘βˆ’1 (𝐹Σ 𝑦 )= 𝐹Σ(πœ‘

βˆ’1 𝑦 )βŠ† 𝐹Σ( 𝑦, 𝑧1, … , 𝑧𝑛 )

πœ‘

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(β‡’) 𝑝 π‘₯, 𝑣1, … , 𝑣𝑛 β‰ˆ π‘ž 𝑦 ⊒ 𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝(𝑦, 𝑧1, … , 𝑧𝑛)

π‘₯, 𝑦, 𝑧1, … , 𝑧𝑛 π‘₯, 𝑦, 𝑣1, … , 𝑣𝑛

π‘₯ βˆ‰ πœ‘βˆ’1 𝑦 𝑦

ΰ΄€πœ‘π‘ π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝 πœ‘π‘₯, πœ‘π‘§1, … , πœ‘π‘§π‘›β‰ˆ 𝑝 π‘₯, 𝑣1, … , π‘£π‘›β‰ˆ π‘ž 𝑦 ∈ 𝐹Σ 𝑦

β‡’ 𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 ∈ ΰ΄€πœ‘βˆ’1 (𝐹Σ 𝑦 )= 𝐹Σ(πœ‘

βˆ’1 𝑦 )βŠ† 𝐹Σ( 𝑦, 𝑧1, … , 𝑧𝑛 )

β‡’ 𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ π‘Ÿ 𝑦, 𝑧1, … , 𝑧𝑛

πœ‘

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(β‡’) 𝑝 π‘₯, 𝑣1, … , 𝑣𝑛 β‰ˆ π‘ž 𝑦 ⊒ 𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝(𝑦, 𝑧1, … , 𝑧𝑛)

π‘₯, 𝑦, 𝑧1, … , 𝑧𝑛 π‘₯, 𝑦, 𝑣1, … , 𝑣𝑛

π‘₯ βˆ‰ πœ‘βˆ’1 𝑦 𝑦

ΰ΄€πœ‘π‘ π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝 πœ‘π‘₯, πœ‘π‘§1, … , πœ‘π‘§π‘›β‰ˆ 𝑝 π‘₯, 𝑣1, … , π‘£π‘›β‰ˆ π‘ž 𝑦 ∈ 𝐹Σ 𝑦

β‡’ 𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 ∈ ΰ΄€πœ‘βˆ’1 (𝐹Σ 𝑦 )= 𝐹Σ(πœ‘

βˆ’1 𝑦 )βŠ† 𝐹Σ( 𝑦, 𝑧1, … , 𝑧𝑛 )

β‡’ 𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ π‘Ÿ 𝑦, 𝑧1, … , 𝑧𝑛 β‰ˆ π‘Ÿ π‘₯, 𝑧1, … , 𝑧𝑛

πœ‘

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(β‡’) 𝑝 π‘₯, 𝑣1, … , 𝑣𝑛 β‰ˆ π‘ž 𝑦 ⊒ 𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝(𝑦, 𝑧1, … , 𝑧𝑛)

π‘₯, 𝑦, 𝑧1, … , 𝑧𝑛 π‘₯, 𝑦, 𝑣1, … , 𝑣𝑛

π‘₯ βˆ‰ πœ‘βˆ’1 𝑦 𝑦

ΰ΄€πœ‘π‘ π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝 πœ‘π‘₯, πœ‘π‘§1, … , πœ‘π‘§π‘›β‰ˆ 𝑝 π‘₯, 𝑣1, … , π‘£π‘›β‰ˆ π‘ž 𝑦 ∈ 𝐹Σ 𝑦

β‡’ 𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 ∈ ΰ΄€πœ‘βˆ’1 (𝐹Σ 𝑦 )= 𝐹Σ(πœ‘

βˆ’1 𝑦 )βŠ† 𝐹Σ( 𝑦, 𝑧1, … , 𝑧𝑛 )

β‡’ 𝑝 π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ π‘Ÿ 𝑦, 𝑧1, … , 𝑧𝑛 β‰ˆ π‘Ÿ π‘₯, 𝑧1, … , 𝑧𝑛 β‰ˆ 𝑝(𝑦, 𝑧1, … , 𝑧𝑛)

πœ‘

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(⇐)

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(⇐) Enough to consider classifying preimages

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(⇐) Enough to consider classifying preimages

𝑆 𝟐

π‘ˆ 𝟏

πœ’π‘ˆ

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(⇐) Enough to consider classifying preimages

𝑋 βˆͺ π‘Œ {π‘₯, 𝑦}

π‘Œ {𝑦}

πœ‘

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(⇐) Enough to consider classifying preimages

𝐹Σ 𝑋 βˆͺ π‘Œ 𝐹Σ({π‘₯, 𝑦})

𝐹Σ(π‘Œ) 𝐹Σ({𝑦})

ΰ΄€πœ‘

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(⇐) Enough to consider classifying preimages

𝐹Σ 𝑋 βˆͺ π‘Œ 𝐹Σ({π‘₯, 𝑦})

𝐹Σ(π‘Œ) 𝐹Σ({𝑦})

Given 𝑝 ∈ 𝐹Σ(𝑋 βˆͺ π‘Œ) with ΰ΄€πœ‘π‘ ∈ 𝐹Σ 𝑦 show 𝑝 ∈ 𝐹Σ(π‘Œ)

ΰ΄€πœ‘

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(⇐) Enough to consider classifying preimages

𝐹Σ 𝑋 βˆͺ π‘Œ 𝐹Σ({π‘₯, 𝑦})

𝐹Σ(π‘Œ) 𝐹Σ({𝑦})

Given 𝑝 ∈ 𝐹Σ(𝑋 βˆͺ π‘Œ) with ΰ΄€πœ‘π‘ ∈ 𝐹Σ 𝑦 show 𝑝 ∈ 𝐹Σ(π‘Œ)

ΰ΄€πœ‘π‘ = ΰ΄€πœ‘π‘ π‘₯1, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘šΰ΄€πœ‘

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(⇐) Enough to consider classifying preimages

𝐹Σ 𝑋 βˆͺ π‘Œ 𝐹Σ({π‘₯, 𝑦})

𝐹Σ(π‘Œ) 𝐹Σ({𝑦})

Given 𝑝 ∈ 𝐹Σ(𝑋 βˆͺ π‘Œ) with ΰ΄€πœ‘π‘ ∈ 𝐹Σ 𝑦 show 𝑝 ∈ 𝐹Σ(π‘Œ)

ΰ΄€πœ‘π‘ = ΰ΄€πœ‘π‘ π‘₯1, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘šΰ΄€πœ‘

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(⇐) Enough to consider classifying preimages

𝐹Σ 𝑋 βˆͺ π‘Œ 𝐹Σ({π‘₯, 𝑦})

𝐹Σ(π‘Œ) 𝐹Σ({𝑦})

Given 𝑝 ∈ 𝐹Σ(𝑋 βˆͺ π‘Œ) with ΰ΄€πœ‘π‘ ∈ 𝐹Σ 𝑦 show 𝑝 ∈ 𝐹Σ(π‘Œ)

ΰ΄€πœ‘π‘ = ΰ΄€πœ‘π‘ π‘₯1, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘š= 𝑝 π‘₯,… , π‘₯, 𝑦, … , 𝑦

ΰ΄€πœ‘

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(⇐) Enough to consider classifying preimages

𝐹Σ 𝑋 βˆͺ π‘Œ 𝐹Σ({π‘₯, 𝑦})

𝐹Σ(π‘Œ) 𝐹Σ({𝑦})

Given 𝑝 ∈ 𝐹Σ(𝑋 βˆͺ π‘Œ) with ΰ΄€πœ‘π‘ ∈ 𝐹Σ 𝑦 show 𝑝 ∈ 𝐹Σ(π‘Œ)

ΰ΄€πœ‘π‘ = ΰ΄€πœ‘π‘ π‘₯1, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘š= 𝑝 π‘₯,… , π‘₯, 𝑦, … , 𝑦 β‰ˆ π‘ž(𝑦)

ΰ΄€πœ‘

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(⇐) Enough to consider classifying preimages

𝐹Σ 𝑋 βˆͺ π‘Œ 𝐹Σ({π‘₯, 𝑦})

𝐹Σ(π‘Œ) 𝐹Σ({𝑦})

Given 𝑝 ∈ 𝐹Σ(𝑋 βˆͺ π‘Œ) with ΰ΄€πœ‘π‘ ∈ 𝐹Σ 𝑦 show 𝑝 ∈ 𝐹Σ(π‘Œ)

ΰ΄€πœ‘π‘ π‘₯1, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘š= 𝑝 π‘₯,… , π‘₯, 𝑦, … , 𝑦 β‰ˆ π‘ž(𝑦)

𝑝 π‘₯1, π‘₯2, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘šβ‰ˆβ‰ˆβ‰ˆβ‰ˆ

ΰ΄€πœ‘

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(⇐) Enough to consider classifying preimages

𝐹Σ 𝑋 βˆͺ π‘Œ 𝐹Σ({π‘₯, 𝑦})

𝐹Σ(π‘Œ) 𝐹Σ({𝑦})

Given 𝑝 ∈ 𝐹Σ(𝑋 βˆͺ π‘Œ) with ΰ΄€πœ‘π‘ ∈ 𝐹Σ 𝑦 show 𝑝 ∈ 𝐹Σ(π‘Œ)

ΰ΄€πœ‘π‘ π‘₯1, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘š= 𝑝 π‘₯,… , π‘₯, 𝑦, … , 𝑦 β‰ˆ π‘ž(𝑦)

𝑝 π‘₯1, π‘₯2, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘šβ‰ˆ 𝑝 𝑧1, π‘₯2, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘šβ‰ˆβ‰ˆβ‰ˆ

ΰ΄€πœ‘

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(⇐) Enough to consider classifying preimages

𝐹Σ 𝑋 βˆͺ π‘Œ 𝐹Σ({π‘₯, 𝑦})

𝐹Σ(π‘Œ) 𝐹Σ({𝑦})

Given 𝑝 ∈ 𝐹Σ(𝑋 βˆͺ π‘Œ) with ΰ΄€πœ‘π‘ ∈ 𝐹Σ 𝑦 show 𝑝 ∈ 𝐹Σ(π‘Œ)

ΰ΄€πœ‘π‘ π‘₯1, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘š= 𝑝 π‘₯,… , π‘₯, 𝑦, … , 𝑦 β‰ˆ π‘ž(𝑦)

𝑝 π‘₯1, π‘₯2, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘šβ‰ˆ 𝑝 𝑧1, π‘₯2, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘šβ‰ˆ 𝑝 𝑧1, 𝑧2, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘šβ‰ˆβ‰ˆ

ΰ΄€πœ‘

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(⇐) Enough to consider classifying preimages

𝐹Σ 𝑋 βˆͺ π‘Œ 𝐹Σ({π‘₯, 𝑦})

𝐹Σ(π‘Œ) 𝐹Σ({𝑦})

Given 𝑝 ∈ 𝐹Σ(𝑋 βˆͺ π‘Œ) with ΰ΄€πœ‘π‘ ∈ 𝐹Σ 𝑦 show 𝑝 ∈ 𝐹Σ(π‘Œ)

ΰ΄€πœ‘π‘ π‘₯1, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘š= 𝑝 π‘₯,… , π‘₯, 𝑦, … , 𝑦 β‰ˆ π‘ž(𝑦)

𝑝 π‘₯1, π‘₯2, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘šβ‰ˆ 𝑝 𝑧1, π‘₯2, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘šβ‰ˆ 𝑝 𝑧1, 𝑧2, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘šβ‰ˆ β‹―β‰ˆ 𝑝 𝑧1, 𝑧2, … , 𝑧𝑛, 𝑦1, … , π‘¦π‘š

ΰ΄€πœ‘

Preservation of preimages

β€’ Thm.: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(⇐) Enough to consider classifying preimages

𝐹Σ 𝑋 βˆͺ π‘Œ 𝐹Σ({π‘₯, 𝑦})

𝐹Σ(π‘Œ) 𝐹Σ({𝑦})

Given 𝑝 ∈ 𝐹Σ(𝑋 βˆͺ π‘Œ) with ΰ΄€πœ‘π‘ ∈ 𝐹Σ 𝑦 show 𝑝 ∈ 𝐹Σ(π‘Œ)

ΰ΄€πœ‘π‘ π‘₯1, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘š= 𝑝 π‘₯,… , π‘₯, 𝑦, … , 𝑦 β‰ˆ π‘ž(𝑦)

𝑝 π‘₯1, π‘₯2, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘šβ‰ˆ 𝑝 𝑧1, π‘₯2, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘šβ‰ˆ 𝑝 𝑧1, 𝑧2, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘šβ‰ˆ β‹―β‰ˆ 𝑝 𝑧1, 𝑧2, … , 𝑧𝑛, 𝑦1, … , π‘¦π‘š β‰ˆ 𝑝 𝑦, 𝑦, … , 𝑦, 𝑦1, … , π‘¦π‘š

ΰ΄€πœ‘

Preservation of preimages

β€’ Thm: 𝐹Σ βˆ’ preserves preimages iff Ξ£ ⊒ Ξ£β€²

β€’ Proof(⇐) Enough to consider classifying preimages

𝐹Σ 𝑋 βˆͺ π‘Œ 𝐹Σ({π‘₯, 𝑦})

𝐹Σ(π‘Œ) 𝐹Σ({𝑦})

Given 𝑝 ∈ 𝐹Σ(𝑋 βˆͺ π‘Œ) with ΰ΄€πœ‘π‘ ∈ 𝐹Σ 𝑦 show 𝑝 ∈ 𝐹Σ(π‘Œ)

ΰ΄€πœ‘π‘ π‘₯1, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘š= 𝑝 π‘₯,… , π‘₯, 𝑦, … , 𝑦 β‰ˆ π‘ž(𝑦)

𝑝 π‘₯1, π‘₯2, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘šβ‰ˆ 𝑝 𝑧1, π‘₯2, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘šβ‰ˆ 𝑝 𝑧1, 𝑧2, … , π‘₯𝑛, 𝑦1, … , π‘¦π‘šβ‰ˆ β‹―β‰ˆ 𝑝 𝑧1, 𝑧2, … , 𝑧𝑛, 𝑦1, … , π‘¦π‘š β‰ˆ 𝑝 𝑦, 𝑦, … , 𝑦, 𝑦1, … , π‘¦π‘š ∈ 𝐹Σ(π‘Œ)

ΰ΄€πœ‘

IntroState based systemsFunctors and Coalgebras

Functor propertiesWeak Pullback PreservationFunctors parameterized by algebras

Free-algebra functorPreimage preservationWeak kernel preservation

Conclusion- and Breaking News

Malβ€˜cev term

β€’ Variety 𝒱(Ξ£) = all algebras satisfying Ξ£

Malβ€˜cev term

β€’ Variety 𝒱(Ξ£) = all algebras satisfying Ξ£

β€’ Malβ€˜cev variety βˆΆβ‡” βˆƒπ‘š.

π‘₯ = π‘š(π‘₯, 𝑦, 𝑦)

π‘š π‘₯, π‘₯, 𝑦 = 𝑦

А. И. ΠœΠ°Π»ΡŒΡ†Π΅Π²1909-1967

Malβ€˜cev term

β€’ Variety 𝒱(Ξ£) = all algebras satisfying Ξ£

β€’ Malβ€˜cev variety βˆΆβ‡” βˆƒπ‘š.

π‘₯ = π‘š(π‘₯, 𝑦, 𝑦)

π‘š π‘₯, π‘₯, 𝑦 = 𝑦

А. И. ΠœΠ°Π»ΡŒΡ†Π΅Π²1909-1967

Groups:π‘š π‘₯, 𝑦, 𝑧 = π‘₯ βˆ— π‘¦βˆ’1 βˆ— 𝑧

Quasigroups: π‘š π‘₯, 𝑦, 𝑧 = (π‘₯/(𝑦\y)) βˆ— (𝑦\𝑧)

Rings: π‘š π‘₯, 𝑦, 𝑧 = π‘₯ βˆ’ 𝑦 + 𝑧

…

Malβ€˜cev term

β€’ Variety 𝒱(Ξ£) = all algebras satisfying Ξ£

β€’ Malβ€˜cev variety βˆΆβ‡” βˆƒπ‘š.

π‘₯ = π‘š(π‘₯, 𝑦, 𝑦)

π‘š π‘₯, π‘₯, 𝑦 = 𝑦

β€’ 𝑛 βˆ’permutable variety βˆΆβ‡” βˆƒπ‘˜. βˆƒπ‘š1, … ,π‘šπ‘˜ .

π‘₯ = π‘š1 π‘₯, 𝑦, 𝑦 ,π‘šπ‘– π‘₯, π‘₯, 𝑦 = π‘šπ‘–+1 π‘₯, 𝑦, 𝑦

π‘šπ‘˜ π‘₯, π‘₯, 𝑦 = 𝑦

А. И. ΠœΠ°Π»ΡŒΡ†Π΅Π²1909-1967

Groups:π‘š π‘₯, 𝑦, 𝑧 = π‘₯ βˆ— π‘¦βˆ’1 βˆ— 𝑧

Quasigroups: π‘š π‘₯, 𝑦, 𝑧 = (π‘₯/(𝑦\y)) βˆ— (𝑦\𝑧)

Rings: π‘š π‘₯, 𝑦, 𝑧 = π‘₯ βˆ’ 𝑦 + 𝑧

…

Malβ€˜cev term

β€’ Variety 𝒱(Ξ£) = all algebras satisfying Ξ£

β€’ Malβ€˜cev variety βˆΆβ‡” βˆƒπ‘š.

π‘₯ = π‘š(π‘₯, 𝑦, 𝑦)

π‘š π‘₯, π‘₯, 𝑦 = 𝑦

β€’ 𝑛 βˆ’permutable variety βˆΆβ‡” βˆƒπ‘˜. βˆƒπ‘š1, … ,π‘šπ‘˜ .

π‘₯ = π‘š1 π‘₯, 𝑦, 𝑦 ,π‘šπ‘– π‘₯, π‘₯, 𝑦 = π‘šπ‘–+1 π‘₯, 𝑦, 𝑦

π‘šπ‘˜ π‘₯, π‘₯, 𝑦 = 𝑦

А. И. ΠœΠ°Π»ΡŒΡ†Π΅Π²1909-1967

Groups:π‘š π‘₯, 𝑦, 𝑧 = π‘₯ βˆ— π‘¦βˆ’1 βˆ— 𝑧

Quasigroups: π‘š π‘₯, 𝑦, 𝑧 = (π‘₯/(𝑦\y)) βˆ— (𝑦\𝑧)

Rings: π‘š π‘₯, 𝑦, 𝑧 = π‘₯ βˆ’ 𝑦 + 𝑧

…

… the above, and also …

β€’ implication algebrasβ€’ all congruence regular algebras

…

When does 𝐹Σ(βˆ’) preserve kernel pairs

β€’ Thm: If 𝒱 is Malβ€˜cev, then 𝐹Σ βˆ’ weakly preserves kernel pairs

When does 𝐹Σ(βˆ’) preserve kernel pairs

β€’ Thm: If 𝒱 is Malβ€˜cev, then 𝐹Σ βˆ’ weakly preserves kernel pairs

When does 𝐹Σ(βˆ’) preserve kernel pairs

β€’ Thm: If 𝒱 is Malβ€˜cev, then 𝐹Σ βˆ’ weakly preserves kernel pairs

When does 𝐹Σ(βˆ’) preserve kernel pairs

β€’ Thm: If 𝒱 is Malβ€˜cev, then 𝐹Σ βˆ’ weakly preserves kernel pairs

When does 𝐹Σ(βˆ’) preserve kernel pairs

β€’ Thm: If 𝒱 is Malβ€˜cev, then 𝐹Σ βˆ’ weakly preserves kernel pairs

When does 𝐹Σ(βˆ’) preserve kernel pairs

β€’ Thm: If 𝒱 is Malβ€˜cev, then 𝐹Σ βˆ’ weakly preserves kernel pairs

Malβ€˜cev β‡’ weak kernel preservationβ€’ Thm: If 𝒱 is Malβ€˜cev, then 𝐹Σ βˆ’ weakly preserves kernel pairs

Malβ€˜cev β‡’ weak kernel preservationβ€’ Thm: If 𝒱 is Malβ€˜cev, then 𝐹Σ βˆ’ weakly preserves kernel pairs

Malβ€˜cev β‡’ weak kernel preservationβ€’ Thm: If 𝒱 is Malβ€˜cev, then 𝐹Σ βˆ’ weakly preserves kernel pairs

Malβ€˜cev β‡’ weak kernel preservationβ€’ Thm: If 𝒱 is Malβ€˜cev, then 𝐹Σ βˆ’ weakly preserves kernel pairs

Malβ€˜cev β‡’ weak kernel preservationβ€’ Thm: If 𝒱 is Malβ€˜cev, then 𝐹Σ βˆ’ weakly preserves kernel pairs

Malβ€˜cev β‡’ weak kernel preservationβ€’ Thm: If 𝒱 is Malβ€˜cev, then 𝐹Σ βˆ’ weakly preserves kernel pairs

Malβ€˜cev β‡’ weak kernel preservationβ€’ Thm: If 𝒱 is Malβ€˜cev, then 𝐹Σ βˆ’ weakly preserves kernel pairs

𝑛-permutable + wkp ⇔ Malβ€˜cev

β€’ Lemma: If 𝐹Σ weakly preserves kernel pairs then for any terms 𝑝, π‘ž

𝑝 π‘₯, π‘₯, 𝑦 = π‘ž π‘₯, 𝑦, 𝑦 ⇔ βˆƒ 𝑠.

𝑝 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘ž π‘₯, 𝑦, 𝑧 = 𝑠(π‘₯, π‘₯, 𝑦, 𝑧)

𝑛-permutable + wkp ⇔ Malβ€˜cev

β€’ Lemma: If 𝐹Σ weakly preserves kernel pairs then for any terms 𝑝, π‘ž

𝑝 π‘₯, π‘₯, 𝑦 = π‘ž π‘₯, 𝑦, 𝑦 ⇔ βˆƒ 𝑠.

𝑝 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘ž π‘₯, 𝑦, 𝑧 = 𝑠(π‘₯, π‘₯, 𝑦, 𝑧)

𝑑

π‘π‘Ž 𝑏

⟹

𝑠 π‘Ž, 𝑏, 𝑐, 𝑑 π‘ž 𝑏, 𝑐, 𝑑

𝑝 π‘Ž, 𝑏, 𝑐 𝑝 𝑏, 𝑏, 𝑐 = π‘ž(𝑏, 𝑐, 𝑐)πœƒ

πœ“

πœƒ

𝑛-permutable + wkp ⇔ Malβ€˜cev

β€’ Lemma: If 𝐹Σ weakly preserves kernel pairs then for any terms 𝑝, π‘ž

𝑝 π‘₯, π‘₯, 𝑦 = π‘ž π‘₯, 𝑦, 𝑦 ⇔ βˆƒ 𝑠.

𝑝 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘ž π‘₯, 𝑦, 𝑧 = 𝑠(π‘₯, π‘₯, 𝑦, 𝑧)

𝑑

π‘π‘Ž 𝑏

⟹

𝑠 π‘Ž, 𝑏, 𝑐, 𝑑 π‘ž 𝑏, 𝑐, 𝑑

𝑝 π‘Ž, 𝑏, 𝑐 𝑝 𝑏, 𝑏, 𝑐 = π‘ž(𝑏, 𝑐, 𝑐)πœƒ

πœ“

πœƒ

𝑛-permutable + wkp ⇔ Malβ€˜cev

β€’ Lemma: If 𝐹Σ weakly preserves kernel pairs then for any terms 𝑝, π‘ž

𝑝 π‘₯, π‘₯, 𝑦 = π‘ž π‘₯, 𝑦, 𝑦 ⇔ βˆƒ 𝑠.

𝑝 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘ž π‘₯, 𝑦, 𝑧 = 𝑠(π‘₯, π‘₯, 𝑦, 𝑧)

𝑑

π‘π‘Ž 𝑏

⟹

𝑠 π‘Ž, 𝑏, 𝑐, 𝑑 π‘ž 𝑏, 𝑐, 𝑑

𝑝 π‘Ž, 𝑏, 𝑐 𝑝 𝑏, 𝑏, 𝑐 = π‘ž(𝑏, 𝑐, 𝑐)πœƒ

πœ“πœ“

πœƒ

𝑛-permutable + wkp ⇔ Malβ€˜cev

β€’ Lemma: If 𝐹Σ weakly preserves kernel pairs then for any terms 𝑝, π‘ž

𝑝 π‘₯, π‘₯, 𝑦 = π‘ž π‘₯, 𝑦, 𝑦 ⇔ βˆƒ 𝑠.

𝑝 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘ž π‘₯, 𝑦, 𝑧 = 𝑠(π‘₯, π‘₯, 𝑦, 𝑧)

𝑑

π‘π‘Ž 𝑏

⟹

𝑠 π‘Ž, 𝑏, 𝑐, 𝑑 π‘ž 𝑏, 𝑐, 𝑑

𝑝 π‘Ž, 𝑏, 𝑐 𝑝 𝑏, 𝑏, 𝑐 = π‘ž(𝑏, 𝑐, 𝑐)πœƒ

πœ“πœ“

πœƒ

πœ“

πœƒ

𝑛-permutable + wkp ⇔ Malβ€˜cev

β€’ Lemma: If 𝐹Σ weakly preserves kernel pairs then for any terms 𝑝, π‘ž

𝑝 π‘₯, π‘₯, 𝑦 = π‘ž π‘₯, 𝑦, 𝑦 ⇔ βˆƒ 𝑠.

𝑝 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘ž π‘₯, 𝑦, 𝑧 = 𝑠(π‘₯, π‘₯, 𝑦, 𝑧)

β€’ Thm: Malβ€˜cev ⇔ 𝑛 βˆ’permutable + 𝐹Σ weakly preserves kernel pairs

π‘₯ = π‘š(π‘₯, 𝑦, 𝑦)π‘š π‘₯, π‘₯, 𝑦 = 𝑦

π‘₯ = π‘š1 π‘₯, 𝑦, 𝑦 ,π‘šπ‘– π‘₯, π‘₯, 𝑦 = π‘šπ‘–+1 π‘₯, 𝑦, 𝑦

π‘šπ‘˜ π‘₯, π‘₯, 𝑦 = 𝑦+WKP⇔

𝑛-permutable + wkp ⇔ Malβ€˜cev

β€’ Lemma: If 𝐹Σ weakly preserves kernel pairs then for any terms 𝑝, π‘ž

𝑝 π‘₯, π‘₯, 𝑦 = π‘ž π‘₯, 𝑦, 𝑦 ⇔ βˆƒ 𝑠.

𝑝 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘ž π‘₯, 𝑦, 𝑧 = 𝑠(π‘₯, π‘₯, 𝑦, 𝑧)

β€’ Thm: Malβ€˜cev ⇔ 𝑛 βˆ’permutable + 𝐹Σ weakly preserves kernel pairs

π‘₯ = π‘š1 π‘₯, 𝑦, 𝑦 ,β‹―

π‘šπ‘–βˆ’1 π‘₯, π‘₯, 𝑦 = π‘šπ‘– π‘₯, 𝑦, 𝑦 = π‘š(π‘₯, 𝑦, 𝑦)π‘šπ‘– π‘₯, π‘₯, 𝑦 = π‘šπ‘–+1 π‘₯, 𝑦, 𝑦

π‘š π‘₯, 𝑦, 𝑦 = π‘šπ‘–+1 π‘₯, π‘₯, 𝑦 = π‘šπ‘–+2 π‘₯, 𝑦, 𝑦⋯

π‘šπ‘˜ π‘₯, π‘₯, 𝑦 = 𝑦

Proof ⇐ :

𝑛-permutable + wkp ⇔ Malβ€˜cev

β€’ Lemma: If 𝐹Σ weakly preserves kernel pairs then for any terms 𝑝, π‘ž

𝑝 π‘₯, π‘₯, 𝑦 = π‘ž π‘₯, 𝑦, 𝑦 ⇔ βˆƒ 𝑠.

𝑝 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘ž π‘₯, 𝑦, 𝑧 = 𝑠(π‘₯, π‘₯, 𝑦, 𝑧)

β€’ Thm: Malβ€˜cev ⇔ 𝑛 βˆ’permutable + 𝐹Σ weakly preserves kernel pairs

π‘₯ = π‘š1 π‘₯, 𝑦, 𝑦 ,β‹―

π‘šπ‘–βˆ’1 π‘₯, π‘₯, 𝑦 = π‘šπ‘– π‘₯, 𝑦, 𝑦 = π‘š(π‘₯, 𝑦, 𝑦)π‘šπ‘– π‘₯, π‘₯, 𝑦 = π‘šπ‘–+1 π‘₯, 𝑦, 𝑦

π‘š π‘₯, 𝑦, 𝑦 = π‘šπ‘–+1 π‘₯, π‘₯, 𝑦 = π‘šπ‘–+2 π‘₯, 𝑦, 𝑦⋯

π‘šπ‘˜ π‘₯, π‘₯, 𝑦 = 𝑦

Proof ⇐ :

𝑛-permutable + wkp ⇔ Malβ€˜cev

β€’ Lemma: If 𝐹Σ weakly preserves kernel pairs then for any terms 𝑝, π‘ž

𝑝 π‘₯, π‘₯, 𝑦 = π‘ž π‘₯, 𝑦, 𝑦 ⇔ βˆƒ 𝑠.

𝑝 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘ž π‘₯, 𝑦, 𝑧 = 𝑠(π‘₯, π‘₯, 𝑦, 𝑧)

β€’ Thm: Malβ€˜cev ⇔ 𝑛 βˆ’permutable + 𝐹Σ weakly preserves kernel pairs

π‘₯ = π‘š1 π‘₯, 𝑦, 𝑦 ,β‹―

π‘šπ‘–βˆ’1 π‘₯, π‘₯, 𝑦 = π‘šπ‘– π‘₯, 𝑦, 𝑦 = π‘š(π‘₯, 𝑦, 𝑦)π‘šπ‘– π‘₯, π‘₯, 𝑦 = π‘šπ‘–+1 π‘₯, 𝑦, 𝑦

π‘š π‘₯, 𝑦, 𝑦 = π‘šπ‘–+1 π‘₯, π‘₯, 𝑦 = π‘šπ‘–+2 π‘₯, 𝑦, 𝑦⋯

π‘šπ‘˜ π‘₯, π‘₯, 𝑦 = 𝑦

Proof ⇐ :

𝑛-permutable + wkp ⇔ Malβ€˜cev

β€’ Lemma: If 𝐹Σ weakly preserves kernel pairs then for any terms 𝑝, π‘ž

𝑝 π‘₯, π‘₯, 𝑦 = π‘ž π‘₯, 𝑦, 𝑦 ⇔ βˆƒ 𝑠.

𝑝 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘ž π‘₯, 𝑦, 𝑧 = 𝑠(π‘₯, π‘₯, 𝑦, 𝑧)

β€’ Thm: Malβ€˜cev ⇔ 𝑛 βˆ’permutable + 𝐹Σ weakly preserves kernel pairs

π‘₯ = π‘š1 π‘₯, 𝑦, 𝑦 ,β‹―

π‘šπ‘–βˆ’1 π‘₯, π‘₯, 𝑦 = π‘šπ‘– π‘₯, 𝑦, 𝑦 = π‘š(π‘₯, 𝑦, 𝑦)π‘šπ‘– π‘₯, π‘₯, 𝑦 = π‘šπ‘–+1 π‘₯, 𝑦, 𝑦

π‘š π‘₯, 𝑦, 𝑦 = π‘šπ‘–+1 π‘₯, π‘₯, 𝑦 = π‘šπ‘–+2 π‘₯, 𝑦, 𝑦⋯

π‘šπ‘˜ π‘₯, π‘₯, 𝑦 = 𝑦

Proof ⇐ :π‘šπ‘– π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘šπ‘–+1 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, π‘₯, 𝑦, 𝑧

𝑛-permutable + wkp ⇔ Malβ€˜cev

β€’ Lemma: If 𝐹Σ weakly preserves kernel pairs then for any terms 𝑝, π‘ž

𝑝 π‘₯, π‘₯, 𝑦 = π‘ž π‘₯, 𝑦, 𝑦 ⇔ βˆƒ 𝑠.

𝑝 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘ž π‘₯, 𝑦, 𝑧 = 𝑠(π‘₯, π‘₯, 𝑦, 𝑧)

β€’ Thm: Malβ€˜cev ⇔ 𝑛 βˆ’permutable + 𝐹Σ weakly preserves kernel pairs

π‘₯ = π‘š1 π‘₯, 𝑦, 𝑦 ,β‹―

π‘šπ‘–βˆ’1 π‘₯, π‘₯, 𝑦 = π‘šπ‘– π‘₯, 𝑦, 𝑦 = π‘š(π‘₯, 𝑦, 𝑦)π‘šπ‘– π‘₯, π‘₯, 𝑦 = π‘šπ‘–+1 π‘₯, 𝑦, 𝑦

π‘š π‘₯, 𝑦, 𝑦 = π‘šπ‘–+1 π‘₯, π‘₯, 𝑦 = π‘šπ‘–+2 π‘₯, 𝑦, 𝑦⋯

π‘šπ‘˜ π‘₯, π‘₯, 𝑦 = 𝑦

Proof ⇐ :π‘šπ‘– π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘šπ‘–+1 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, π‘₯, 𝑦, 𝑧

π‘š π‘₯, 𝑦, 𝑧 ≔ 𝑠(π‘₯, 𝑦, 𝑦, 𝑧)

𝑛-permutable + wkp ⇔ Malβ€˜cev

β€’ Lemma: If 𝐹Σ weakly preserves kernel pairs then for any terms 𝑝, π‘ž

𝑝 π‘₯, π‘₯, 𝑦 = π‘ž π‘₯, 𝑦, 𝑦 ⇔ βˆƒ 𝑠.

𝑝 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘ž π‘₯, 𝑦, 𝑧 = 𝑠(π‘₯, π‘₯, 𝑦, 𝑧)

β€’ Thm: Malβ€˜cev ⇔ 𝑛 βˆ’permutable + 𝐹Σ weakly preserves kernel pairs

π‘₯ = π‘š1 π‘₯, 𝑦, 𝑦 ,β‹―

π‘šπ‘–βˆ’1 π‘₯, π‘₯, 𝑦 = π‘šπ‘– π‘₯, 𝑦, 𝑦 = π‘š(π‘₯, 𝑦, 𝑦)π‘šπ‘– π‘₯, π‘₯, 𝑦 = π‘šπ‘–+1 π‘₯, 𝑦, 𝑦

π‘š π‘₯, 𝑦, 𝑦 = π‘šπ‘–+1 π‘₯, π‘₯, 𝑦 = π‘šπ‘–+2 π‘₯, 𝑦, 𝑦⋯

π‘šπ‘˜ π‘₯, π‘₯, 𝑦 = 𝑦

Proof ⇐ :π‘šπ‘– π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘šπ‘–+1 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, π‘₯, 𝑦, 𝑧

π‘š π‘₯, 𝑦, 𝑧 ≔ 𝑠(π‘₯, 𝑦, 𝑦, 𝑧)

π‘š π‘₯, 𝑦, 𝑦 = 𝑠 π‘₯, 𝑦, 𝑦, 𝑦= π‘šπ‘–(π‘₯, 𝑦, 𝑦)

𝑛-permutable + wkp ⇔ Malβ€˜cev

β€’ Lemma: If 𝐹Σ weakly preserves kernel pairs then for any terms 𝑝, π‘ž

𝑝 π‘₯, π‘₯, 𝑦 = π‘ž π‘₯, 𝑦, 𝑦 ⇔ βˆƒ 𝑠.

𝑝 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘ž π‘₯, 𝑦, 𝑧 = 𝑠(π‘₯, π‘₯, 𝑦, 𝑧)

β€’ Thm: Malβ€˜cev ⇔ 𝑛 βˆ’permutable + 𝐹Σ weakly preserves kernel pairs

π‘₯ = π‘š1 π‘₯, 𝑦, 𝑦 ,β‹―

π‘šπ‘–βˆ’1 π‘₯, π‘₯, 𝑦 = π‘šπ‘– π‘₯, 𝑦, 𝑦 = π‘š(π‘₯, 𝑦, 𝑦)π‘šπ‘– π‘₯, π‘₯, 𝑦 = π‘šπ‘–+1 π‘₯, 𝑦, 𝑦

π‘š π‘₯, 𝑦, 𝑦 = π‘šπ‘–+1 π‘₯, π‘₯, 𝑦 = π‘šπ‘–+2 π‘₯, 𝑦, 𝑦⋯

π‘šπ‘˜ π‘₯, π‘₯, 𝑦 = 𝑦

Proof ⇐ :π‘šπ‘– π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘šπ‘–+1 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, π‘₯, 𝑦, 𝑧

π‘š π‘₯, 𝑦, 𝑧 ≔ 𝑠(π‘₯, 𝑦, 𝑦, 𝑧)

𝑛-permutable + wkp ⇔ Malβ€˜cev

β€’ Lemma: If 𝐹Σ weakly preserves kernel pairs then for any terms 𝑝, π‘ž

𝑝 π‘₯, π‘₯, 𝑦 = π‘ž π‘₯, 𝑦, 𝑦 ⇔ βˆƒ 𝑠.

𝑝 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘ž π‘₯, 𝑦, 𝑧 = 𝑠(π‘₯, π‘₯, 𝑦, 𝑧)

β€’ Thm: Malβ€˜cev ⇔ 𝑛 βˆ’permutable + 𝐹Σ weakly preserves kernel pairs

π‘₯ = π‘š1 π‘₯, 𝑦, 𝑦 ,β‹―

π‘šπ‘–βˆ’1 π‘₯, π‘₯, 𝑦 = π‘šπ‘– π‘₯, 𝑦, 𝑦 = π‘š(π‘₯, 𝑦, 𝑦)π‘šπ‘– π‘₯, π‘₯, 𝑦 = π‘šπ‘–+1 π‘₯, 𝑦, 𝑦

π‘š π‘₯, 𝑦, 𝑦 = π‘šπ‘–+1 π‘₯, π‘₯, 𝑦 = π‘šπ‘–+2 π‘₯, 𝑦, 𝑦⋯

π‘šπ‘˜ π‘₯, π‘₯, 𝑦 = 𝑦

Proof ⇐ :π‘šπ‘– π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘šπ‘–+1 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, π‘₯, 𝑦, 𝑧

π‘š π‘₯, 𝑦, 𝑧 ≔ 𝑠(π‘₯, 𝑦, 𝑦, 𝑧)

π‘š π‘₯, π‘₯, 𝑦 = 𝑠 π‘₯, π‘₯, π‘₯, 𝑦= π‘šπ‘–+1(π‘₯, π‘₯, 𝑦)

𝑛-permutable + wkp ⇔ Malβ€˜cev

β€’ Lemma: If 𝐹Σ weakly preserves kernel pairs then for any terms 𝑝, π‘ž

𝑝 π‘₯, π‘₯, 𝑦 = π‘ž π‘₯, 𝑦, 𝑦 ⇔ βˆƒ 𝑠.

𝑝 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘ž π‘₯, 𝑦, 𝑧 = 𝑠(π‘₯, π‘₯, 𝑦, 𝑧)

β€’ Thm: Malβ€˜cev ⇔ 𝑛 βˆ’permutable + 𝐹Σ weakly preserves kernel pairs

π‘₯ = π‘š1 π‘₯, 𝑦, 𝑦 ,β‹―

π‘šπ‘–βˆ’1 π‘₯, π‘₯, 𝑦 = π‘šπ‘– π‘₯, 𝑦, 𝑦 = π‘š(π‘₯, 𝑦, 𝑦)π‘šπ‘– π‘₯, π‘₯, 𝑦 = π‘šπ‘–+1 π‘₯, 𝑦, 𝑦

π‘š π‘₯, 𝑦, 𝑦 = π‘šπ‘–+1 π‘₯, π‘₯, 𝑦 = π‘šπ‘–+2 π‘₯, 𝑦, 𝑦⋯

π‘šπ‘˜ π‘₯, π‘₯, 𝑦 = 𝑦

Proof ⇐ :π‘šπ‘– π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘šπ‘–+1 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, π‘₯, 𝑦, 𝑧

π‘š π‘₯, 𝑦, 𝑧 ≔ 𝑠(π‘₯, 𝑦, 𝑦, 𝑧)

π‘š π‘₯, π‘₯, 𝑦 = 𝑠 π‘₯, π‘₯, π‘₯, 𝑦= π‘šπ‘–+1(π‘₯, π‘₯, 𝑦)

𝑛-permutable + wkp ⇔ Malβ€˜cev

β€’ Lemma: If 𝐹Σ weakly preserves kernel pairs then for any terms 𝑝, π‘ž

𝑝 π‘₯, π‘₯, 𝑦 = π‘ž π‘₯, 𝑦, 𝑦 ⇔ βˆƒ 𝑠.

𝑝 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘ž π‘₯, 𝑦, 𝑧 = 𝑠(π‘₯, π‘₯, 𝑦, 𝑧)

β€’ Thm: Malβ€˜cev ⇔ 𝑛 βˆ’permutable + 𝐹Σ weakly preserves kernel pairs

π‘₯ = π‘š1 π‘₯, 𝑦, 𝑦 ,β‹―

π‘šπ‘–βˆ’1 π‘₯, π‘₯, 𝑦 = π‘šπ‘– π‘₯, 𝑦, 𝑦 = π‘š(π‘₯, 𝑦, 𝑦)π‘šπ‘– π‘₯, π‘₯, 𝑦 = π‘šπ‘–+1 π‘₯, 𝑦, 𝑦

π‘š π‘₯, 𝑦, 𝑦 = π‘šπ‘–+1 π‘₯, π‘₯, 𝑦 = π‘šπ‘–+2 π‘₯, 𝑦, 𝑦⋯

π‘šπ‘˜ π‘₯, π‘₯, 𝑦 = 𝑦

Proof ⇐ :π‘šπ‘– π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘šπ‘–+1 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, π‘₯, 𝑦, 𝑧

π‘š π‘₯, 𝑦, 𝑧 ≔ 𝑠(π‘₯, 𝑦, 𝑦, 𝑧)

𝑛-permutable + wkp ⇔ Malβ€˜cev

β€’ Lemma: If 𝐹Σ weakly preserves kernel pairs then for any terms 𝑝, π‘ž

𝑝 π‘₯, π‘₯, 𝑦 = π‘ž π‘₯, 𝑦, 𝑦 ⇔ βˆƒ 𝑠.

𝑝 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘ž π‘₯, 𝑦, 𝑧 = 𝑠(π‘₯, π‘₯, 𝑦, 𝑧)

β€’ Thm: Malβ€˜cev ⇔ 𝑛 βˆ’permutable + 𝐹Σ weakly preserves kernel pairs

π‘₯ = π‘š1 π‘₯, 𝑦, 𝑦 ,β‹―

π‘šπ‘–βˆ’1 π‘₯, π‘₯, 𝑦 = π‘š(π‘₯, 𝑦, 𝑦)

π‘š π‘₯, π‘₯, 𝑦 = π‘šπ‘–+2 π‘₯, 𝑦, 𝑦⋯

π‘šπ‘˜ π‘₯, π‘₯, 𝑦 = 𝑦

Proof ⇐ :π‘šπ‘– π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, 𝑦, 𝑧, π‘§π‘šπ‘–+1 π‘₯, 𝑦, 𝑧 = 𝑠 π‘₯, π‘₯, 𝑦, 𝑧

π‘š π‘₯, 𝑦, 𝑧 ≔ 𝑠(π‘₯, 𝑦, 𝑦, 𝑧)

Conclusion

β€’ 𝐹Σ preserves

β€’ preimages ⇔ weak independence implies independence

β€’ kernel pairs ⇐ 𝒱(Ξ£) is Malβ€˜cevβ‡’ ( 𝑛-permutable β‡’ Malβ€˜cev )

Open: ⇔ ???

Distributive and modular varieties

β€’ If 𝐹𝒱 𝑋 preserves kernel pairs then

β€’ 𝒱 is congruence distributive iffβˆƒπ‘˜ ∈ β„•. βˆƒπ‘š.π‘š is π‘˜βˆ’ary majority term, i.e.

π‘š π‘₯,… , π‘₯, 𝑦 = β‹― = π‘š π‘₯,… , π‘₯, 𝑦, π‘₯, … , π‘₯ = β‹― = π‘š 𝑦, π‘₯, … , π‘₯ = π‘₯

β€’ 𝒱 is congruence modular iffβˆƒπ‘˜ ∈ β„•. βˆƒπ‘š. βˆƒπ‘ž.

π‘š π‘₯,… , π‘₯, 𝑦 = β‹― = π‘š π‘₯,… , π‘₯, 𝑦, π‘₯, … , π‘₯ = β‹― = π‘š π‘₯, 𝑦, π‘₯, … , π‘₯ = π‘₯π‘š 𝑦, π‘₯,… , π‘₯ = π‘ž π‘₯, π‘₯, π‘¦π‘ž π‘₯, 𝑦, 𝑦 = π‘₯


Recommended